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OVERVIEW 
Quarkonium: Bound state of a heavy quark anti-quark pair

mQ � ΛQCD

v � 1

BottomoniumCharmonium

J/ψ → cc̄(n = 1, 3S1)

ηc → cc̄(n = 1, 1S0)

χcJ → cc̄(n = 1, 3PJ)

J = {0, 1, 2}

ηb → bb̄(n = 1, 1S0)

χbJ → bb̄(n = 1, 3PJ)

MM

2.98

3.096

∼ 3.5

9.39

9.46Υ(1S)→ bb̄(n = 1, 3S1)

∼ 10
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•Remove the heavy quark mass (like HQET) from QCD

•Power counting in relative velocity           (not          )

• 

•Separates the scales: 

NRQCD
Appropriate EFT for Describing Quarkonium Dynamics: 

Non-Relativistic QCD

v � 1 1/mQ

L = ψ†
�

i∂0 +
∇2

2mQ

�
ψ + χ†

�
i∂0 −

∇2

2mQ

�
χ

Bodwin, Braaten & Lepage;  Luke, Manohar & Rothstein;  Pineda & Soto

mQ, mQv, mQv2
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QUARKONIUM DECAY

Inclusive & Semi-Inclusive Decay Rates can be Calculated via the 
O.P.E.

E.G. J/ψ → γ + X

O1(3S1) = ψ†σχ · χ†σψ

dΓ
dEγ

(J/ψ → γ + X) =
�

β

dΓ
dEγ

(cc̄[β] → γ + X)�J/ψ|Oα|J/ψ�

Bodwin, Braaten & Lepage

LO

O8(3S1) = ψ†σTAχ · χ†TAσψ

O(v3)
O(v7)
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QUARKONIUM DECAY
Bodwin, Braaten & Lepage

χcJ → γ + X

LO

dΓ
dEγ

(χcJ → γ + X) =
�

β

dΓ
dEγ

(cc̄[β] → γ + X)�χcJ |Oα|χcJ�

O1(3P0) =
1
3
ψ†(−

i

2
↔
D ·σ)χχ†(−

i

2
↔
D ·σ)ψ

O8(3S1) = ψ†σTAχ · χ†TAσψ

O(v5)

O(v5)
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QUARKONIUM PRODUCTION

NRQCD Factorization for Production

Bodwin, Braaten & Lepage

•Inclusive Production Cross Section

of the 4-fermion operators. Since the final state must include a quarkonium, the 4-fermion

operators that appear in production cross sections involve projections onto the space of

states that contain, in the asymptotic future, the quarkonium state H plus anything else.

The generic form of a production operator is

OH
n = χ†Knψ

(
∑

X

∑

mJ

|H + X〉〈H + X|
)

ψ†K′
nχ

= χ†Knψ
(
a†

HaH

)
ψ†K′

nχ, (6.1)

where the sums are over the 2J +1 spin states of the quarkonium H and over all other final-

state particles X. In the second line of (6.1), the projection has been expressed compactly

in terms of the operator a†
H that creates the quarkonium H in the out state. A sum over

the angular-momentum quantum numbers mJ is implicit in a†
HaH . The factors Kn and K′

n

in the operator are products of a color matrix (either the unit matrix or T a), a spin matrix

(either the unit matrix or σi), and a polynomial in the covariant derivative D and other

fields. The overall operator OH
n is invariant under color and spatial rotations.3 We assume

that any matrix elements of OH
n will be evaluated in the quarkonium rest frame; otherwise

the factors Kn and K′
n may depend on the 4-momentum of the quarkonium.

It is convenient to introduce notation for the production operators that is analogous

to that for the decay operators defined in (2.10) and (2.12). The production operators of

dimension 6 are

OH
1 (1S0) = χ†ψ

(
a†

HaH

)
ψ†χ, (6.2a)

OH
1 (3S1) = χ†σiψ

(
a†

HaH

)
ψ†σiχ, (6.2b)

OH
8 (1S0) = χ†T aψ

(
a†

HaH

)
ψ†T aχ, (6.2c)

3Here we consider explicitly only unpolarized production of heavy quarkonium. In the case of

polarized production, a†H would create a state of definite polarization, and Kn and K′
n would,

in general, depend on one or more vectors associated with the incoming particles, such as the

directions of their spins and momenta.

73

“fragmentation” functions

of the 4-fermion operators. Since the final state must include a quarkonium, the 4-fermion
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n = χ†Knψ
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mJ

|H + X〉〈H + X|
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ψ†K′
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= χ†Knψ
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a†

HaH

)
ψ†K′

nχ, (6.1)

where the sums are over the 2J +1 spin states of the quarkonium H and over all other final-
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in terms of the operator a†
H that creates the quarkonium H in the out state. A sum over

the angular-momentum quantum numbers mJ is implicit in a†
HaH . The factors Kn and K′

n

in the operator are products of a color matrix (either the unit matrix or T a), a spin matrix

(either the unit matrix or σi), and a polynomial in the covariant derivative D and other

fields. The overall operator OH
n is invariant under color and spatial rotations.3 We assume

that any matrix elements of OH
n will be evaluated in the quarkonium rest frame; otherwise

the factors Kn and K′
n may depend on the 4-momentum of the quarkonium.

It is convenient to introduce notation for the production operators that is analogous

to that for the decay operators defined in (2.10) and (2.12). The production operators of

dimension 6 are

OH
1 (1S0) = χ†ψ

(
a†

HaH

)
ψ†χ, (6.2a)

OH
1 (3S1) = χ†σiψ

(
a†

HaH

)
ψ†σiχ, (6.2b)

OH
8 (1S0) = χ†T aψ

(
a†

HaH

)
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3Here we consider explicitly only unpolarized production of heavy quarkonium. In the case of

polarized production, a†H would create a state of definite polarization, and Kn and K′
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in general, depend on one or more vectors associated with the incoming particles, such as the

directions of their spins and momenta.

73

σ(a + b → H + X) =
�

β

σ̂(a + b → QQ̄(β) + X)�0|OH

β
|0�
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QUARKONIUM PRODUCTIONQUARKONIUM PRODUCTION
Bodwin, Braaten & Lepage

•        Production at large     in hadronic collisionsp⊥J/ψ

dσ

dp⊥
(pp̄→ J/ψ(p⊥) + X) =

�
dx1fi/p(x1)

�
dx2fj/p̄(x2)

×

�

β

σ̂(i j → cc̄(β, p⊥) + X)�0|OJ/ψ
β |0�

LO

of the 4-fermion operators. Since the final state must include a quarkonium, the 4-fermion

operators that appear in production cross sections involve projections onto the space of

states that contain, in the asymptotic future, the quarkonium state H plus anything else.
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73

OH
8 (3S1) = χ†σiT aψ

(
a†

HaH

)
ψ†σiT aχ. (6.2d)

Some of the color-singlet production operators of dimension 8 are

OH
1 (1P1) = χ†(− i

2

↔
Di)ψ

(
a†

HaH

)
ψ†(− i

2

↔
Di)χ, (6.3a)

OH
1 (3P0) =

1

3
χ†(− i

2

↔
D · σ)ψ

(
a†

HaH

)
ψ†(− i

2

↔
D · σ)χ, (6.3b)

OH
1 (3P1) =

1

2
χ†(− i

2

↔
D × σ)iψ

(
a†

HaH

)
ψ†(− i

2

↔
D × σ)iχ, (6.3c)

OH
1 (3P2) = χ†(− i

2

↔
D(iσj))ψ

(
a†

HaH

)
ψ†(− i

2

↔
D(iσj))χ, (6.3d)

PH
1 (1S0) =

1

2

[
χ†ψ

(
a†

HaH

)
ψ†(− i

2

↔
D)2χ + h.c.

]
, (6.3e)

PH
1 (3S1) =

1

2

[
χ†σiψ

(
a†

HaH

)
ψ†σi(− i

2

↔
D)2χ + h.c.

]
. (6.3f)

Given that the long-distance part of the production rate can be expressed in terms of

vacuum matrix elements of operators of the form given in (6.1), the inclusive production

cross section must have the form

σ(H) =
∑

n

Fn(Λ)

Mdn−4
〈0|OH

n (Λ)|0〉, (6.4)

where it is understood that the matrix element is to be evaluated in the quarkonium rest

frame. The short-distance coefficients Fn depend on all the kinematic variables of the pro-

duction process, but they are independent of the quarkonium state H . Equation (6.4) is the

equivalent for production of our factorization formula (2.14) for quarkonium decay.

Beyond leading order in perturbation theory, interactions involving soft (infrared) gluons

and gluons collinear to the final-state jets potentially spoil this factorization picture, both

by making the QQ-production process long-ranged and by making connections between the

outgoing quarkonium and the final-state jets that destroy the topological factorization. In

the case of quarkonium decay, we were able to use the KLN theorem to argue that such

final-state soft and collinear interactions cancel in the inclusive decay rate. In the case of

quarkonium production, the KLN theorem does not apply directly because we have specified

that the final state contain the quarkonium: some of the cuts in the KLN sum are missing.

Cuts are missing only for diagrams in which a soft or collinear gluon attaches to one of the

74

O
H

8 (3P1) =
1
2
χ†(−

i

2
↔
D×σ)iTAψ(a†

H
aH)χ†TA(−

i

2
↔
D×σ)iχ

O
H

8 (3P0) =
1
3
χ†(−

i

2
↔
D ·σ)TAψ(a†

H
aH)ψ†TA(−

i

2
↔
D ·σ)χ

O
H

8 (3P2) = χ†(−
i

2
↔
D (iσj))TAψ(a†

H
aH)χ†TA(−

i

2
↔
D (iσj))χ
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QUARKONIUM PRODUCTION
Cho & Lebovich

3S[8]
1

3P [8]
J

1S[8]
0

3S[1]
1
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Fragmentation:

QUARKONIUM PRODUCTION
•        Production at large     in hadronic collisionsp⊥J/ψ

σ̂(a + b → cc̄(3S[8]
1 ) + X)�0|OJ/ψ(3S[8]

1 )|0� is special

dσ̂

dp⊥
(ij → J/ψ + X)octet

p⊥→∞→
�

dz
dσ̂

dp⊥
(ij → g(p⊥/z) + X)Dg→J/ψ(z)

Braaten & Fleming
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QUARKONIUM PRODUCTION

Gluon Fragmentation

It is instructive to examine the high energy limit of color-octet quarkonia production.

As the partonic Mandelstam invariants grow to infinity, the cross section in eqn. (2.15)

reduces to

dσ

dt̂
(ab → ψQc)octet

ŝ→∞−→
dσ

dt̂
(ab → g∗c) ×

( 1

M2

)2
× |A

(

g∗ → ψQ

)

|2. (2.17)

This asymptotic expression has a simple gluon fragmentation interpretation. The first

factor represents the differential cross section for producing a high energy virtual gluon.

The second term comes from the square of the gluon’s propagator. The last factor equals

the square of the amplitude in eqn. (2.9) times M8(ψQ) and determines the virtual gluon’s

probability to hadronize into a ψQ bound state. The gluon fragmentation picture for heavy

quarkonium production is thus precisely recovered in the high energy limit [1].

Gluon fragmentation via the color-octet mechanism represents the dominant source of

large p⊥ quarkonia at hadron colliders [4,6,10]. The total cross section for ψQ production

reduces at high energies to the fragmentation form

d3σ

dy3dy4dp⊥

(

AB → ψQX
)

frag
=

∫ 1

0
dz

d3σ

dy3dy4dp⊥

(

AB → g
(p⊥

z

)

X, µ
)

Dg→ψQ
(z, µ).

(2.18)

The gluon fragmentation function evaluated at the factorization scale µ = M is readily

identified from eqn. (2.17):

Dg→ψQ
(z, M) =

4παs(M)M8(ψQ)

M2
δ(1 − z). (2.19)

Leading log QCD corrections to this result may be summed up using the Altarelli-Parisi

equation

µ
dDg→ψQ

dµ
(z, µ) =

αs(µ)

π

∫ 1

z

dy

y
Pgg(y)Dg→ψQ

(z

y
, µ

)

(2.20)

where

Pgg(y) = 6
[ y

(1 − y)+
+

1 − y

y
+ y(1 − y) +

33 − 2nf

36
δ(1 − y)

]

(2.21)

denotes the gluon splitting function for nf active quark flavors. At high energies, the

fragmentation approximation in (2.18) incorporates sizable O(log(E2/M2)) renormaliza-

tion effects, and its intrinsic O(M2/E2) errors are negligible. In contrast, the color-octet

formula in (2.16) does not include any QCD corrections which are small at low p⊥, but it

retains full dependence upon all O(M2/E2) terms. These two forms for the ψQ differential

cross section are thus complementary.

9

•Sum Logarthms: Run from     to p⊥ 2mc
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〈Oψ′

1 (3S1)〉 is of order m3
cv

3, so the contribution to the fragmentation function is of order

α3
sv

3. While all other matrix elements are suppressed by powers of v2, there are some with

fewer short-distance suppression factors of αs. In particular, there are some matrix elements

for which the leading-order short-distance process is g∗ → cc̄ and the rate is of order αs.

Of these matrix elements, the leading one in the nonrelativistic limit is 〈Oψ′

8 (3S1)〉, which

scales like m3
cv

7. The suppression factor of v4 relative to 〈Oψ′

1 (3S1)〉 reflects the fact that

the cc̄ pair in the ψ′ can make a double E1 transition with amplitude of order v2 from the

dominant |cc̄〉 Fock state to a |cc̄gg〉 state in which the cc̄ pair is in a color-octet 3S1 state.

The contribution to the fragmentation function for g → ψ′ from the short-distance

production of a cc̄ pair in a color-octet 3S1 state was calculated to leading order in αs in

Ref. [12]. The calculation was carried out for the specific case of g → χcJ , but since the

short-distance coefficients in (1) are independent of the quarkonium state, the result applies

equally well to ψ′. The fragmentation function is

Dg→ψ′(z, µ) =
παs(2mc)

24m3
c

δ(1 − z) 〈0|Oψ′

8 (3S1)|0〉. (3)

In Ref. [12], the corresponding fragmentation function for g → χcJ was expressed in terms

of a quantity H ′

8 defined by

H ′

8 ≡
1

(2J + 1)m2
c

〈0|OχcJ

8 (3S1)|0〉. (4)

The form (3) is preferred, since it corresponds to the factorization of the fragmentation func-

tion into a short-distance factor proportional to αs/m3
c and a long-distance matrix element.

In the fragmentation function for g → χcJ , the matrix element 〈OχcJ

8 (3S1)〉 can be

determined phenomenologically from data on charmonium production in B-meson decays.

From eq. (24) of Ref. [11], we have

Γ(B → χc2 + X)

Γ(B → eν̄e + X)
≈ 14.8

〈0|Oχc2

8 (3S1)|0〉
m2

cmb
. (5)

The branching fraction for B → χc2 + X has recently been measured by the CLEO collabo-

ration to be (0.25±0.11)% [13]. Assuming mc ≈ 1.5 GeV and mb ≈ 4.5 GeV, the expression

4

10/23



Surprises from J/ψ polarization  

Lansberg, 2009 Cho & Wise, Beneke & Rothstein, 1995, … 

NRQCD CSM 

!  NRQCD:    Dominated by color octet – NLO is not a huge effect 

!  CSM:          Huge NLO – change of  polarization?  

QUARKONIUM PRODUCTION
Polarization

Cho, & Wise, Beneke & Rothstein

3S[1]
1

3S[8]
1
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OPEN QUESTIONS

1. What about IR behavior?
2. How about summing logarithms in all the other contributions?
3. Are the NRQCD production matrix elements really universal?
4. Will the prediction for polarization change?

Answers from SCET:

1. Gauge invariance from Wilson lines.
2. Running of production operators sums logs.
3. No! NRQCD production matrix elements are not universal.
4. Maybe...

(Also from QCD factorization: Kang, Qiu, Sterman)
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SCET APPROACH

Quarkonium production at large     in     collisions:

Fleming, Leibovich, Mehen & Rothstein

p⊥ pp̄
√

ŝ ∼ p⊥ � mQ

1. At           match QCD onto SCET with massive quarks
2. Factor differential cross section
3. Run to 
4. Match onto NRQCD 

µ ∼ p⊥

µ ∼ mQ
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SCET APPROACH
The subscript on the momenta indicates the light-like direction that dominates the particle

momentum, that is

pn ≈ Q

2
nµ; nµ = (1, 0, 0, 1)

pn̄ ≈ Q

2
n̄µ; n̄µ = (1, 0, 0,−1) , (4)

where the components of the light-cone vectors n and n̄ are in the familiar (k0, k1, k2, k3)

form. The light-cone momenta of heavy quarks which form the quarkonium scale as

pn′ = p⊥

(√

1 +
m2

Q

p2
⊥

ey,

√

1 +
m2

Q

p2
⊥

e−y, 1

)
≈ p⊥

[
(1 +

m2
Q

2p2
⊥

)ey, (1 +
m2

Q

2p2
⊥

)e−y, 1

]
, (5)

and the heavy quark momentum is dominated by

pn′ ≈ p⊥
2

n′µ; n′µ = (cosh y, 1, 0, sinh y) . (6)

The invariant mass of the final state remnants in the production process is p2
X = [(p1 +

p2) − p]2 = 4Ec.m.(Ec.m. − m⊥ cosh y), where m2
⊥ = p2

⊥ + M2
H ≈ p2

⊥. We restrict ourselves

to the regime where Ec.m. >∼ p⊥ ∼
√

p2
X $ MH , so that the final state remnant can be

integrated out of at the hard scattering scale Q ∼ p⊥. There are additional scalings that

need to be considered, for which we need to distinguish between the hadronic CM energy

Ec.m. and the partonic CM energy Êc.m.. Regardless of their scaling relative to p2
⊥, if

Ec.m. $ Êc.m. then we are in the regime where the parton light-cone momentum fraction x

goes to zero (a.k.a. small-x), and the existence of terms scaling like ln x would be of concern.

We will not consider such a scenario since it goes far beyond the scope of this work. In

addition, though x may be small phenomenology suggests that it is not small enough that

we need to account for small-x affects. A second scaling region to consider is Êc.m. $ p⊥. In

this case one would first integrate out the scale Êc.m. by matching onto a version of SCET

with off-shellness of order p2
⊥, and then match onto the version of SCET considered in the

remainder of this text. We will consider this scenario in a future publication.

We integrate out the hard scale Q by matching onto massive SCET [7], where collinear

momentum modes have invariant mass on order of the heavy quark mass mQ. In addition to

collinear modes, SCET has soft modes and ultra-soft (usoft) modes. For example, if we are

interested in describing the motion of a highly energetic particle with off-shellness m2 in the

light-like direction n, the collinear mode light-cone momentum will scale as ∼ Q(1, λ2
m, λm),

5

The subscript on the momenta indicates the light-like direction that dominates the particle

momentum, that is

pn ≈ Q

2
nµ; nµ = (1, 0, 0, 1)

pn̄ ≈ Q

2
n̄µ; n̄µ = (1, 0, 0,−1) , (4)

where the components of the light-cone vectors n and n̄ are in the familiar (k0, k1, k2, k3)

form. The light-cone momenta of heavy quarks which form the quarkonium scale as

pn′ = p⊥

(√

1 +
m2

Q

p2
⊥

ey,

√

1 +
m2

Q

p2
⊥

e−y, 1

)
≈ p⊥

[
(1 +

m2
Q

2p2
⊥

)ey, (1 +
m2

Q

2p2
⊥

)e−y, 1

]
, (5)

and the heavy quark momentum is dominated by

pn′ ≈ p⊥
2

n′µ; n′µ = (cosh y, 1, 0, sinh y) . (6)

The invariant mass of the final state remnants in the production process is p2
X = [(p1 +

p2) − p]2 = 4Ec.m.(Ec.m. − m⊥ cosh y), where m2
⊥ = p2

⊥ + M2
H ≈ p2

⊥. We restrict ourselves

to the regime where Ec.m. >∼ p⊥ ∼
√

p2
X $ MH , so that the final state remnant can be

integrated out of at the hard scattering scale Q ∼ p⊥. There are additional scalings that

need to be considered, for which we need to distinguish between the hadronic CM energy

Ec.m. and the partonic CM energy Êc.m.. Regardless of their scaling relative to p2
⊥, if

Ec.m. $ Êc.m. then we are in the regime where the parton light-cone momentum fraction x

goes to zero (a.k.a. small-x), and the existence of terms scaling like ln x would be of concern.

We will not consider such a scenario since it goes far beyond the scope of this work. In

addition, though x may be small phenomenology suggests that it is not small enough that

we need to account for small-x affects. A second scaling region to consider is Êc.m. $ p⊥. In

this case one would first integrate out the scale Êc.m. by matching onto a version of SCET

with off-shellness of order p2
⊥, and then match onto the version of SCET considered in the

remainder of this text. We will consider this scenario in a future publication.

We integrate out the hard scale Q by matching onto massive SCET [7], where collinear

momentum modes have invariant mass on order of the heavy quark mass mQ. In addition to

collinear modes, SCET has soft modes and ultra-soft (usoft) modes. For example, if we are

interested in describing the motion of a highly energetic particle with off-shellness m2 in the

light-like direction n, the collinear mode light-cone momentum will scale as ∼ Q(1, λ2
m, λm),

5

p2
X ∼ p2

⊥

Integrate out    : match differential cross sectionX

×fi/p(x1)fj/p̄(x2)Dβ

H
(ξi)

dσ

dp⊥
(pp̄→ H(p⊥) + X)→

�

β

�
{dξi} dx1 dx2 σ̂

β(ξi, x1, x2)
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MATCHING
An Example: qq̄ → QQ̄

2
Q
Q

q

q

Q
Q

q

q

+

FIG. 1: Matching of OQQQQ
qq onto the full theory at leading order. On the left are two leading order

Feynman diagrams that contribute to the production of a QQ̄ pair from an incoming qq̄ pair . On

the right is the tree-level matrix element of OQQ
qq . The dashed lines are incoming and outgoing

collinear light quark lines, and the dashed double lines are incoming and outgoing QQ̄ pairs. At

this order the matching coefficient is proportional to α3
s(Q).

′γµg
µν
⊥ }. This operators scale as λ8

mQ
in the SCETm power counting. The hard matching

coefficient C(ω1.ω2, ω̄1, ω̄2, ω′
1, ω

′
2, ω

′
3, ω

′
4)D

abcd
µνρλ is determined by perturbatively matching this

operator onto the full theory operator in Eq.(2) at the scale Q, and is therefore given by an

expansions in αs(Q). For example, the matching of the operator OQQ
qq is depicted in Feynman

diagrams in Fig. 1. Note that the diagrams on the left side of this diagram are only a gauge

invariant sub-set of all possible qq̄ → QQ̄ diagrams. There are additional diagrams that will

be considered next that match onto a fragmentation diagram, or interference diagrams that

match onto the matrix element of a hybrid operator.

The fragmentation operator for an incoming qq̄ to produce an outgoing gluon in the n′

direction is

OGG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2)F

abcd
µνρλ (17)

× (χ̄n,ω2Γ
aµχn̄,ω̄1)(B

bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Bcρ
n′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1)

This operator can produce a QQ̄ pair through a time ordered product with an order one

interaction term from the SCET Lagrangian. These operators scale as λ6
m, and are therefore

enhanced by λ2
m ∼ m2/Q2 relative to the direct production processes. Again these operators

must be matched onto the full theory. For example, the matching of OG
qq is depicted in

Feynman diagrams in Fig. 2. Note, that the matching coefficient at tree level is proportional

to α2
s(Q), which is one order lower in αs(Q) compared to the direct contribution considered

previously.

9

+ · · · ++

2

FIG. 2: Matching OGG
qq at leading order. On the left is the square of the full theory amplitudes, and

on the right is the matrix element of OGG
qq . At this order the matching coefficient is proportional

to α2
s(Q).

The hybrid operator has the form

OQQG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3)H

abcd
µνλ (18)

×
[
(χ̄n,ω2Γ

aµχn̄,ω̄1)(B
bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃cχn′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1) + h.c.
]
,

where h.c. stands for hermitian conjugate. This operator scales as λ7
m, and thus falls in

between the fragmentation contribution and direct production in the power counting. In

addition this the leading order matching goes as α2
s(Q)

√
αs(Q).

Next we Fierz transform the SCETm operators so that all fields in each direction are

grouped together. To simplify matters we keep only those field bilinears for the incoming

directions n and n̄ that have non-vanishing overlap with the initial hadrons h1 and h2, which

we now restrict to be a proton or anti-proton. The direct production operator in Eq.(16)

transforms to

OQQQQ
qq = K

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3, ω

′
4) (19)

×(χ̄n,ω2

n̄/

2
χn,ω1)(χ̄n′,ω′

2
Γ̃aχn′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
4
Γ̃aχn′,ω′

3
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) ,

the fragmentation contribution operator Eq.(17) transforms to

OGG
qq = Kνρ

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2) (20)

× (χ̄n,ω2

n̄/

2
χn,ω1)(B

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Baρ
n′,ω′

2
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) ,

and the hybrid operator transforms to

OQQG
qq = Kν

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3) (21)

×
[
(χ̄n,ω2

n̄/

2
χn,ω1)(B

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃aχn′,ω′

2
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) + h.c.

]
.

10

+ · · · +

Q

Q̄
2

O(1) O(λ2) λ ∼ mQ/p⊥

dσ

dp⊥
(pp̄→ H(p⊥) + X)→

�

β

�
{dξi} dx1 dx2 σ̂

β(ξi, x1, x2)

×fq/p(x1)fq̄/p̄(x2)Dβ

H
(ξi)

Dg→H(z) DQQ̄,QQ̄→H(u, v, z)
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The matrix elements involving the incoming states |h1
n〉 and |h2

n̄〉 in Eqs.(26,27,28) are

related to the parton distribution functions (PDFs) [8]

1

2

∑

spin
〈hn(p)|χn,ω1n̄/χn,ω2|hn(p)〉 = 4n̄ · p

∫ 1

0

dz δ(ω−)δ(ω+ − 2zn̄ · p)fi/p(z) (29)

− 4n̄ · p
∫ 1

0

dz δ(ω−)δ(ω+ + 2zn̄ · p)f̄i/p(z)

1

2

∑

spin
〈hn(p)|Tr

[
Bµ

n,ω1
Bn,ω2

µ

]
|hn(p)〉 = −ω+n̄ · p

2

∫ 1

0

dz δ(ω−)δ(ω+ − 2zn̄ · p)fg/p(z) ,

where ω± = ω1 ± ω2, fi/p(z) is the quark PDF, f̄i/p(z) is the anti-quark PDF, and fg/p(z)

is the gluon PDF. In addition the vacuum matrix element in the fragmentation operator,

Eq.(27) can be related to the standard fragmentation function giving the probability of

finding the quarkonium state H(p⊥, y) in the gluon

〈0|Tr
{
(Baν

n′,ω′
1
)P†

H(p⊥, y)PH(p⊥, y)(Baρ
n′,ω′

2
)
}
|0〉

= −
ω

′2
+

2

∫ 1

0

dz

z
δ(ω′

−)δ(ω′
+ − 2n̄′ · p

z
)DH/g(z) . (30)

For completeness we give the SCET definition of the light-quark to quarkonium fragmenta-

tion function

〈0|n̄/′χn′,ω′
1
P†

H(p⊥, y)PH(p⊥, y)χ̄n′,ω′
2
|0〉 =

ω′
+

2

∫ 1

0

dz

z
δ(ω′

−)δ(ω′
+ − 2n̄′ · p

z
)DH/q(z) (31)

−
ω′

+

2

∫ 1

0

dz

z
δ(ω′

−)δ(ω′
+ +

2n̄′ · p
z

)DH/q̄(z) .

Substituting Eqs.(29, 30) into Eq.(27) we arrive at the familiar factored form for the frag-

mentation cross section in proton anti-proton collisions:

dσ

dp⊥
=

1

2s

∫
dx1dx2

dz

z

∫
dy

(4π)2
σ̂(x1, x2, z, p⊥, y)fq/p(x1)fq̄/p̄(x2)DHQ/g(z) , (32)

where σ̂ is the short-distance partonic differential cross section for producing a gluon from

the collision of a quark and antiquark, fq/p(x1) is the PDF for finding a light quark in the

proton, fq̄/p̄(x2) is the PDF for find a light anti-quark in the anti-proton, and DHQ/g(z) is

the fragmentation function for finding the quarkonium state HQ in a gluon.

The vacuum matrix elements in the direct production and hybrid operators are also

fragmentation functions, but of a new type. Here we define the direct production operator

13

O(1)

+

2

FIG. 2: Matching OGG
qq at leading order. On the left is the square of the full theory amplitudes, and

on the right is the matrix element of OGG
qq . At this order the matching coefficient is proportional

to α2
s(Q).

The hybrid operator has the form

OQQG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3)H

abcd
µνλ (18)

×
[
(χ̄n,ω2Γ

aµχn̄,ω̄1)(B
bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃cχn′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1) + h.c.
]
,

where h.c. stands for hermitian conjugate. This operator scales as λ7
m, and thus falls in

between the fragmentation contribution and direct production in the power counting. In

addition this the leading order matching goes as α2
s(Q)

√
αs(Q).

Next we Fierz transform the SCETm operators so that all fields in each direction are

grouped together. To simplify matters we keep only those field bilinears for the incoming

directions n and n̄ that have non-vanishing overlap with the initial hadrons h1 and h2, which

we now restrict to be a proton or anti-proton. The direct production operator in Eq.(16)

transforms to

OQQQQ
qq = K

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3, ω

′
4) (19)

×(χ̄n,ω2

n̄/

2
χn,ω1)(χ̄n′,ω′

2
Γ̃aχn′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
4
Γ̃aχn′,ω′

3
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) ,

the fragmentation contribution operator Eq.(17) transforms to

OGG
qq = Kνρ

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2) (20)

× (χ̄n,ω2

n̄/

2
χn,ω1)(B

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Baρ
n′,ω′

2
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) ,

and the hybrid operator transforms to

OQQG
qq = Kν

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3) (21)

×
[
(χ̄n,ω2

n̄/

2
χn,ω1)(B

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃aχn′,ω′

2
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) + h.c.

]
.
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FIG. 1: Matching of OQQQQ
qq onto the full theory at leading order. On the left are two leading order

Feynman diagrams that contribute to the production of a QQ̄ pair from an incoming qq̄ pair . On

the right is the tree-level matrix element of OQQ
qq . The dashed lines are incoming and outgoing

collinear light quark lines, and the dashed double lines are incoming and outgoing QQ̄ pairs. At

this order the matching coefficient is proportional to α3
s(Q).

′γµg
µν
⊥ }. This operators scale as λ8

mQ
in the SCETm power counting. The hard matching

coefficient C(ω1.ω2, ω̄1, ω̄2, ω′
1, ω

′
2, ω

′
3, ω

′
4)D

abcd
µνρλ is determined by perturbatively matching this

operator onto the full theory operator in Eq.(2) at the scale Q, and is therefore given by an

expansions in αs(Q). For example, the matching of the operator OQQ
qq is depicted in Feynman

diagrams in Fig. 1. Note that the diagrams on the left side of this diagram are only a gauge

invariant sub-set of all possible qq̄ → QQ̄ diagrams. There are additional diagrams that will

be considered next that match onto a fragmentation diagram, or interference diagrams that

match onto the matrix element of a hybrid operator.

The fragmentation operator for an incoming qq̄ to produce an outgoing gluon in the n′

direction is

OGG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2)F

abcd
µνρλ (17)

× (χ̄n,ω2Γ
aµχn̄,ω̄1)(B

bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Bcρ
n′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1)

This operator can produce a QQ̄ pair through a time ordered product with an order one

interaction term from the SCET Lagrangian. These operators scale as λ6
m, and are therefore

enhanced by λ2
m ∼ m2/Q2 relative to the direct production processes. Again these operators

must be matched onto the full theory. For example, the matching of OG
qq is depicted in

Feynman diagrams in Fig. 2. Note, that the matching coefficient at tree level is proportional

to α2
s(Q), which is one order lower in αs(Q) compared to the direct contribution considered

previously.

9

O(λ2)

fragmentation function in Eq.(26) as

〈0|(χ̄n′,ω′
2
Γ̃aχn′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
4
Γ̃aχn′,ω′

3
)|0〉 (33)

= −16 δ(ω′
1 − ω′

2 + ω′
3 − ω′

4)

∫
dz du dv δ(ω′

1 − ω′
2 −

n̄′ ·p
z

)

×δ(ω′
2 −

n̄′ ·p
2z

(2v − 1) +
n̄′ ·p
2z

)δ(ω′
4 −

n̄′ ·p
2z

(2u − 1) − n̄′ ·p
2z

) D{1,8}
φ (u, v, z) ,

where the superscript indicates whether the QQ̄ pair is in a relative color-singlet or color-

octet configuration. This distribution is a combination of fragmentation function and light-

cone distribution amplitude. The variable z corresponds to the fraction of the QQ̄ pair

light-cone momentum that the HQ carries away. The variables u and v correspond to the

fraction of the total QQ̄ light-cone momentum carried by each of the heavy quark in each QQ̄

pair. These variables do not have to be the same. The only constraint on the momentum

is that the difference of the light-cone momentum of the two heavy quark pairs is zero.

Substituting Eqs.(29, 33) into Eq.(26) gives a more generalized factored form for the direct

production cross section

dσ

dp⊥
=

1

2s

∫
dx1dx2

dz

z
dudv

∫
dy

(4π)2
σ̂(x1, x2, z, u, v, p⊥, y)fq/p(x1)fq̄/p̄(x2)D

{1,8}
φ (u, v, z) .

(34)

We can also define a hybrid fragmentation function

〈0|
[
(KνB

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃aχn′,ω′

2
) + h.c.

]
|0〉 = (35)

(2n̄′ ·p)2δ(ω′
1 − ω′

2 + ω′
3)

∫
dz

z
du δ(ω′

2 − ω′
3 +

n̄′ ·p
z

)δ(ω′
3 −

1

2
n̄′ ·p(2u − 1) − n̄′ ·p

2z
)H{8}

φ (u, z) .

Again we obtain a combination of fragmentation function and light-cone distribution am-

plitude. Substituting Eqs.(29, 35) into Eq.(28) we arrive at a generalized factored form for

the hybrid contribution to the differential cross section

dσ

dp⊥
=

1

2s

∫
dx1dx2

dz

z
du

∫
dy

(4π)2
σ̂(x1, x2, z, u, p⊥, y)fq/p(x1)fq̄/p̄(x2)H

{8}
φ (u, z) . (36)

The terms involving the first square bracket are precisely what is obtained from the renor-

malization of the light-cone distribution amplitude. The terms involving the second square

bracket contribute to Altarelli-Parisi type running.

14

DQQ̄→H(u, v, z)
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FIG. 4: The O(1) Feynman diagram for the direct production operator.
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FIG. 5: The O(g) Feynman diagram for the direct production operator.

with n̄′ ·P the large light-cone momentum of the quarkonium state HQ. In deriving the

Feynman rules we can set the momentum of HQ equal to the QQ̄ pair momentum so ξ = 1.

The O(g) Feynman diagram is shown in Fig. 5, and the associated Feynman rule is

24

DQQ̄→H(u, v, z)

n̄� ·pH = zn̄� ·pQQ̄

n̄� ·p1 = u n̄� ·pQQ̄

n̄� ·p2 = (1− u) n̄� ·pQQ̄

n̄� ·p3 = (1− v) n̄� ·pQQ̄

n̄� ·p4 = v n̄� ·pQQ̄
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RUNNING

DGLAP Evolution in
FIG. 3: The one-loop direct production fragmentation function Feynman diagrams.

subdivided again into two contributions. The first color singlet piece is

iM{8} = ξ̄Q̄
n′ΓξQ

n′ ξ̄
Q
n′Γ̃ξQ̄

n′ δ(ω− − 2n̄′ ·p1 − 2n̄′ ·p2)δ(η̄ − n̄′ ·p3 + n̄′ ·p4) (41)

×(2g2CF ) µ2ε

∫
dDk

(2π)D

1

k2 + i0

×
{[

n̄′ ·(p1 + k)

(p1 + k)2 + i0

1

n̄′ ·k

(
δ(η − n̄′ ·p1 + n̄′ ·p2) − δ(η − n̄′ ·p1 + n̄′ ·p2 − 2n̄′ ·k)

)

+(p1 ↔ −p2)

]

−D − 2

2

1

(p1 + k)2 + i0

&k2
⊥

(p2 − k)2 + i0
δ(η − n̄′ ·p1 + n̄′ ·p2 − 2n̄′ ·k)

}

, (42)

which is the Feynman gauge one loop expression for the light-cone distribution amplitude

of a meson. The UV divergent terms in this expression give a Brodsky-Lepage evolution
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FIG. 3: The one-loop direct production fragmentation function Feynman diagrams.

subdivided again into two contributions. The first color singlet piece is

iM{8} = ξ̄Q̄
n′ΓξQ

n′ ξ̄
Q
n′Γ̃ξQ̄
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MATCHING NRQCD

Octet Matrix Elements Depend on Quarkonium Direction: 
Less Universal than Supposed

+

2

FIG. 2: Matching OGG
qq at leading order. On the left is the square of the full theory amplitudes, and

on the right is the matrix element of OGG
qq . At this order the matching coefficient is proportional

to α2
s(Q).
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POLARIZATION FIX? MAYBE!
dσ

dp⊥
(pp̄→ J/ψ(p⊥) + X)

3S[8]
1

3S[1]
1 α→ 0

α→ 1
But

dσ
dp⊥

(3S[1]
1 )

dσ
dp⊥

(3S[8]
1 )

∼ λ4 Extra Suppression

SCET Matching Coefficient at High Scale For a    
Configuration that results in a color-singlet            pair

QQ̄

QQ̄3S1

Expansion in           and αs(p⊥) λ ∼ mQ

p⊥

(C(1)(α3
s) + C(2)(α4

s) + . . . )

(C̃(1)(α3
s) + . . . )

0

D[1](NLO)
QQ̄→H

(u, v, z)

D[1](LO)
QQ̄→H

(u, v, z)
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However

POLARIZATION FIX? MAYBE!

D[8](LO)
QQ̄→H

(u, v, z)

Has non-zero LO in    (       ) matching coefficient∝ α3
sαs

Generate color-singlet through running

µ2 d

dµ2
D[8]

QQ̄→H
(u, v, z;µ) =

� 1

0
dxPQQ̄[8]→QQ̄[1](x;µ)D[1]

QQ̄→H
(w, v, z/x;µ)

Will degrade the polarization... But is it enough?!?!?!
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POLARIZATION FIX? MAYBE!
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One-Loop Estimate
MixingQQ̄(8)→ QQ̄(1)

Kang, Qiu, Sterman
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FIG. 3. Leading order Feynman diagrams represent the fragmentation of a heavy quark pair to

another heavy quark pair.
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FIG. 4. J/ψ cross section (upper panel) and polarization (lower panel) as a function of pT . The

solid lines are computed from the NLP term in Eq. (1) with fragmentation functions given by Eq.

(6); the dashed line is LO CSM cross section as in Ref. [15], and all in [nb/GeV].

result is consistent with that in Refs. [13, 14]. We regard these results as compelling evidence

for the phenomenological relevance of the power expansion.

Summary—We have argued that a practical strategy for the phenomenology of heavy

quarkonium production at high pT is to expand the cross sections first in the large scale

9

Still a factor of ~ 5 smaller than Octet Fragmentation



•Rigorous treatment of momentum region between   
and      is crucial for an accurate description of 
Quarkonium production at high

•May resolve the polarization problem, but this has to 
wait on a complete analysis

CONCLUSIONS
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