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The Strong Coupling Constant αS

αS is a key parameter for the analysis of all collider experiments

QCD: αS(MZ)=0.1184(07)

S. Bethke, Eur. Phys. J. C64 (2009) 689-703 
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Event shape variable: assigns a number to the shape 

of an event













 ⋅
≡

∑
∑

j j

j j

t p

tp
T r

r
ˆ

max
ˆ

Thrust: use     τ = 1 - T

ideal 2-jet event

spherical event

( ) K+>++= )0()()(
1

11

0

ττδατδ
τ

σ

σ
Rc

d

d
S

Observable is very sensitive to αS !
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Fit to Distribution:
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487 data points

1.10
dof

ith              w                    

(0.0007)(0.0005)(0.0015)0.1142)(m

2

perthadrexptZS

=

±±±=

χ

α

Fit to First Moment:

061.0388.0),(1 ±=Ω ∆∆ Rµ

preliminary

34 data points



0.91
dof

ith              w                    

(0.0009)(0.0005)(0.0002)0.1135)(m

2

perthadrexptZS

=

±±±=

χ

α



Theory



• hard scale (cm energy)

• jet scale (invariant mass of all 

energetic particles in one 

hemisphere)

• soft scale (uniform soft 

radiation)
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• Describes light-like particles (collinear) interacting with a low 

energetic background (soft)

Soft Collinear Effective Theory (SCET)
Bauer, Fleming, Luke, Pirjol, Rothstein, Stewart

• Expansion in

• Power counting:

soft:

collinear:

Q

QCDΛ
≈λ
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Perturbative Series
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Perturbative Series

Problems if: αS t 1

coefficients not of O(1)

K++++= )()()()(
1

3

3

2

2

1

0

τατατατδ
τ

σ

σ
RRR

d

d
SSS



Perturbative Series

Problems if: αS t 1
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Perturbative Series

Problems if: αS t 1

coefficients not of O(1)
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Perturbative Series

Problems if: αS t 1

coefficients not of O(1)
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Factorization Theorem for Thrust
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Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logsN3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)



peak: sum large logs, 

nonperturbative soft fct.

tail: sum large logs,

series of nonperturbative

Factorization Formula for all Thrust

Profile Functions:

QCDQCD QQQ Λ>>Λ>> /

series of nonperturbative

power corrections

far tail: fixed order perturbation 

theory,

power corrections

QCDQQQ Λ>>>>>> ττ

QCDQ Λ>>
Scales must equal in the far tail:

turns of resummation



Far Tail



Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs

Baikov et al.

Moch, Vermaseren, Vogt

Becher, Neubert

Schwartz; Fleming et al.

Becher, Schwartz; Hoang, Kluth
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)

Becher, Schwartz

Becher, Schwartz; Hoang, Kluth

Dasgupta, Salam



Summing large Logarithms

Setting μH, μJ, μS to their 

natural scales

→ much better convergence!
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Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)

Ellis et al., Catani et al., Gehrmann et al., Weinzierl
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Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)

Hoang, Stewart

Ligeti, Stewart, Tackmann

Lee, Sterman

Korchemsky, Sterman



Soft function from SCET factorization:

Factorization in perturbative and non-perturbative part:

Nonperturbative Corrections
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Leading effect: shift in the thrust distribution     τ → τ – 2 Λ / Q 

Are non-perturbative effects 

negligible?
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Manohar, Wise; Webber;

Dokshitzer, Weber; Akhoury, Zakharov;

Nason, Seymour; Korchemsky, Sterman;

Movilla Fernandez, Bethke, Biebel, Kluth



Leading effect: shift in the thrust distribution     τ → τ – 2 Λ / Q 

Λ / Q ` 1

Are non-perturbative effects 

negligible?
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Leading effect: shift in the thrust distribution     τ → τ – 2 Λ / Q 

Λ / Q ` 1

h proportional to αS =>

Are non-perturbative effects 
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Leading effect: shift in the thrust distribution     τ → τ – 2 Λ / Q 

Λ / Q ` 1

h proportional to αS =>

Are non-perturbative effects 
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Leading effect: shift in the thrust distribution     τ → τ – 2 Λ / Q 

Λ / Q ` 1

h proportional to αS =>

Are non-perturbative effects 

negligible?
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Λ ≈ 0.3 GeV and

h’/h ≈ -14±4 in tail region(see figure)

⇒ δαS/αS ≈ -(9±3)%
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Leading effect: shift in the thrust distribution     τ → τ – 2 Λ / Q 

Λ / Q ` 1

h proportional to αS =>

Are non-perturbative effects 

negligible?
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Λ ≈ 0.3 GeV and

h’/h ≈ -14±4 in tail region(see figure)

⇒ δαS/αS ≈ -(9±3)%

⇒ NOT negligible for 2% analysis
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Non-perturbative effects

Use tail fit results to predict peak



Non-perturbative effects

Use tail fit results to predict peak

⇒ much better prediction for peak



Non-perturbative effects

Use tail fit results to predict peak

⇒ much better prediction for peak

αS from full analysis is approximately 

9% smaller than αS without model, 

as predicted.



Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)

Hoang, Stewart

Hoang, Jain, Scimemi, Stewart



MS perturbative series includes fluctuations with arbitrarily small 

momenta →   large unphysical corrections

Both Sτ
part and Ω1 suffer from renormalon

Renormalon Substraction

Introduce gap parameter Δ:

and

→ renormalon free soft function:

)2()( modmod ∆−→ kSkS ττ

),(),( SS RR µδµ +∆=∆

( ) )2'(),'('),( mod2
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Hoang, Stewart



renormalon substracted renormalon NOT substracted

MS perturbative

series includes 

fluctuations with 

arbitrarily small 

momenta

→ large unphysical

corrections



Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)

Fleming, Hoang, Mantry, Stewart



Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)



Factorization Theorem for Thrust

Methode to simultaneously describe all three regions and multiple Q:

profile functions

Singular partonic:

NNLO matching, including full 3-loop hard function

N3LL resummation of large logs
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N3LL resummation of large logs

Nonsingular partonic:

fixed order thrust distribution (subleading orders in SCET)

Nonperturbative soft function:

nonperturabtive effects treated within field theory

Operator Product Expansion in tail → Ω1

Interface between power and perturbative corrections:

renormalon subtraction

b-mass effects (~~~~2% effect)

QED effects (~~~~2% effect)

axial anomaly at O(αS
2) (~~~~1% effect)

Kniehl, Kuhn

Hagiwara, Kuruma, Yamada





Comparison with similar analysis

sum logs power corrections data αS(MZ)

Dissertori et al. no Monte Carlo (MC) ALEPH 0.1240(34)

Dissertori et al. NLL Monte Carlo ALEPH 0.1224(39)

Becher, Schwartz N3LL uncertainty from MC ALEPH, OPAL 0.1172(21)

Davison, Webber NLL effective coupling model Most of data 0.1164(28)

Bethke et al. NLL Monte Carlo JADE 0.1172(51)

Becher, Schwartz:

• no nonperturbative soft function

• different profile function

• different way of calculating binned cross section



Numerical Analysis



Two parameter fit in tail region (factorization 

formula valid for all tau)

Ω1 is the 1st nonperturbative power correction

Experiment

ALEPH

DELPHI

OPAL

L3

SLD

TASSO

JADE

AMY

Values of Q

{91.2, 133.0, 161.0, 172.0, 183.0, 189.0, 200.0, 206.0}

{45.0, 66.0, 76.0, 89.5, 91.2, 93.0, 133.0, 161.0, 172.0, 

183.0, 189.0, 192.0, 196.0, 200.0, 202.0, 205.0, 207.0}

{91.0, 133.0, 161.0, 172.0, 177.0, 183.0, 189.0, 197.0}

{41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 

161.3, 172.3, 182.8, 188.6, 194.4, 200.0, 206.2}

{91.2}

{(14.0), (22.0), 35.0, 44.0}

{35.0, 44.0}

{55.2}

LEP

SLAC

DESY

KEK



cusp non-cusp matching alphas

LL 1 - tree 1

NLL 2 1 tree 2

Order Counting

( ) ( ) ( ) ( ) ( ) K++++
k

SS

k

SS
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Sdy
d lnlnlnlnln~ln 2 αααααασ

LL NLL NNLL N3LL

NLL 2 1 tree 2

NNLL 3 2 1 3

N3LL 4pade 3 2 4

LL’ 1 - tree 1

NLL’ 2 1 1 2

NNLL’ 3 2 2 3

N3LL’ 4pade 3 3 4

Primed counting is better if fixed order results are important



Experimental and Hadronic

Uncertainty

22

exp 1Ω+σσ



Perturbative Uncertainty

12 theory parameters:

• 6 parameters for the variation of the 

renormalization scales

• 3 parameters related to the statistical 

uncertainties of  numerical fixed order 

calculations

• 3 parameters for Padé approximants of 

unknown constants

1. Flat random scan over theory parameters

2. Fitting for each parameter set

3. Range of best fits → perturbative

uncertainty
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same analysis for other event shape variables: Heavy Jet Mass
AHMS+Schwartz

fits to moment data
AFHMS



Moment Fits



nth moment:

purely perturbative
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appear to also be 1/Qn!!!!



Global fits to M1 data

N3LL’N3LL’

NNLL’

NLL’



Global fits to M1 data

N3LL’

theory errors only

experimental errors are dominant

N3LL’

NNLL’

NLL’



Q [GeV]

Fits for (2/Q)iΩi at αS(mZ)=0.114, MS scheme:

cancelation for primed moments

→ no new information from

higher moment data

Ω1=0.37±0.02 GeV

Ω’4=38±42 GeV

Ω’3=4.5±3.7 GeV

11 M̂M −

33 M̂M ′−′

44 M̂M ′−′

Q [GeV] Q [GeV]

Q [GeV]

Q [GeV]

Ω’5=200±550 GeV

Ω’2=0.54±0.28 GeV
22 M̂M ′−′

55 M̂M ′−′
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no Ω’i>1!

Comparison to Gehrmann

with dispersive model for power corrections:
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→ fits to the higher moments are all sensitive to the same 1M̂



Summary

• αS = 0.1135 ± (0.0002)expt ± (0.0005)hadr ± (0.0009)pert

• SCET can improve convergence and therefore precision

• SCET allows to include non-perturbative effects in a systematic 

manner

• Profile functions allow to combine several kinematic regions



Backup Slides



Why do we need a global fit?

in the tail αS(mZ) and Ω1 are degenerated 

for a single Q

degeneracy is lifted by 

simultaneously fitting multiple Q



QED and b-mass effects

b-mass:

horizontal shift of thrust 

distribution towards 

larger τ

→ lower Ω→ lower Ω1

QED:

effective increase of 

coupling strength

→ lower αS



Cut on Dataset
Ω2 effects 

increase τmin

decrease of Δτ

→ increase of statistical 

missing αSΛQCD/Q 

effects become 

important

τmax

→ increase of statistical 

uncertainty



Theory Parameters

profile function 

(variation of 

renormalization scales)

Padé approximats

non-singular stat. 

uncertainty








