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Event Shapes

A large class of event shape observables can be written in the
form of

e(X ) =
1
Q

∑
i∈X

∣∣pi,⊥
∣∣ fe(ηi),

where rapidity η = 1
2 log

(
E+p‖
E−p‖

)
I Thrust

τ = 1− T = 1− 1
Q

max
t̂

[∑
i

∣∣∣̂t · pi

∣∣∣]

=
1√
s

∑
i∈X

|pi,⊥|e−|ηi |

I C-paprameter C =
1√
s

∑
i∈X

|pi,⊥|
3

cosh ηi

I Jet Broadening BT =
1

2
√

s

∑
i∈X

|pi,⊥|
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Angularities
... as a subclass

Berger, Kucs, Sterman, 03

τa =
1√
s

∑
i∈X

Ei (sin θi)
a (1− |cos θi |)1−a

=
1√
s

∑
i∈X

∣∣pi,⊥
∣∣e−|ηi |(1−a)

Infrared safety: −∞ < a < 2

Factorizability: −∞ < a < 1? (Hornig, Lee, Ovanesyan)
SCETa (Chris’ talk)

For a� 1, |psoft ,⊥|/|pcoll.,⊥| ∼ e−ηcoll. � 1
E.g., a=0, Thrust distribution τ = 1− T

For a ∼ 1, |psoft ,⊥| ∼ |pcoll.,⊥|.
E.g., a=1, jet broadening observable, B.
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Factorization of Angularities

Factorization Theorem in QCD
I Collins, Soper, Sterman,...
I Berger, Kucs, Sterman (03)

Angularities for a < 1 been calculated to NLL/LO
Factorization Theorem in Traditional SCET (SCET I)

I Bauer, Manohar,Wise, Lee, Sterman, Becher, Schwartz, Fleming,
Hoang, Mantry, Stewart, ...

I Hornig, Lee, Ovanesyan calculated angularities in SCET to NLL/LO
for a < 1.

Fail at a=1!
I Spurious divergences in each sector (a ≥ 1), yet disappear after

summing over sectors as long as a ≤ 2.
I Rapidity divergence

Other cases with divergence in similar nature?
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Soft Collinear Effective Theory (SCET I)
(Luke, Bauer, Fleming, Pirjol, Stewart)

Describe interactions between energetic particles E ∼ Q.
Fluctuations, ΛQCD or other low energy scales, about light cone
coordinate n = (1,0,0,1).

Integrate out “far offshell” degrees of freedom.
I soft-collinear decoupling
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SCET degrees of freedom (modes)
pµ = (p−,p+,p⊥); p2 = p+p− + p2

⊥

Light Cone Coordinates:
n = (1, ~n) ∼ (1,0,0,1)

power counting parameter
λ ≡ ΛQCD

Q

hard modes: p2 ∼ Q2

integrated out
n-collinear

pµ ∼ Q(1, λ2, λ)

n̄-collinear
pµ ∼ Q(λ2,1, λ)

usoft (p2 ∼ Q2λ4)

pµ = Q(λ2, λ2, λ2)
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Factorization Theorem for Angularities τa<1
Bauer, Fleming, Lee, Sterman, 08

<Chis’ talk on Tuesday>
In QCD

dσ
de

=
1

2Q2

∑
X

|M(e+e− → X )|2(2π)4δ4(e − e(x))

where

|M|(e+e− → X )|2 =
∑

i=V ,A

Li
µν〈0|jµ†i (x)|X 〉δ(e − e(X ))〈X |jνi (0)|0〉

and Li
µν is the lepton tensor, and jµ,νi are the currents.

Define operator ê that returns the value of an event shape for a
given final state X , ê|X 〉 = e(X )|X 〉

dσ
de

=
1

2Q2

∫
dxeiq·x

∑
i=V ,A

Li
µν〈0|jµ†i (x)δ(e − ê)jνi (0)|0〉
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Factorization Theorem for Angularities τa<1
Bauer, Fleming, Lee, Sterman, 08

Matching onto SCET
jµi (x) =

∑
n

∑
p̃n,p̃n̄

Cnn̄(p̃n, p̃n̄;µ)On,n̄(x ; p̃n, p̃n̄;µ),

in which,

On,n̄(x ; p̃n, p̃n̄;µ) = ei(p̃n−p̃n̄)χ̄n,pn (x)Yn(x)Γµi Ȳn̄(x)χn̄,pn̄ (x)

Write the event shape distribution in SCET in a factorized form

dσ
de

=
1

6Q2

∑
n

|Cnn̄(p̃n, p̃n̄;µ)|2
∫

dx
∫

denden̄desδ(e − en − en̄ − es)
1

N2
C

× Tr〈0|χn,Q(x)βδ(en − ên)χ̄n,Q(0)γ |0〉Tr〈0|χ̄n,−Q(x)αδ(en̄ − ên̄)χ̄n,Q(0)δ|0〉
× Tr〈0|Ȳ †n̄ (x)Y †n (x)δ(es − ês)YnȲn̄(0)|0〉

∑
i=V ,A

Li ((Γ̄µi )
)
αβ

(Γiµ)γδ

Final result for differential event shape distribution

1
σ0

dσ
de

= H(s;µ)

∫
denden̄desδ(e − en − en̄ − es)Jn(en;µ)Jn̄(en̄;µ)S(es;µ)
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[Not Quite] Back-to-Back Jets in SCET
When a → 1

τa =
1√
s

∑
i∈X

∣∣pi,⊥
∣∣e−|ηi |(1−a)

For a� 1, es ∼ en ∼ en̄, but |ps
⊥| � |pn

⊥| ∼ |pn̄
⊥| and

|ηs| � |ηn| ∼ |ηn̄|.
Soft radiation decoupled from the collinear radiation.

For a→ 1, τa=1 = 1√
s

∑ |pi
⊥| is independent of the rapidity of the

rapidity of each sate. For the e ∼ es ∼ en, we need |ps
⊥| ∼ |pn

⊥|.

Jet Broadening Displacement From Thrust Axis
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SCET Modes
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For a=1, SCETII

Jet Broadening Event Shape

BT = 1
2τa=1 = 1

2
∑ |~ki,⊥|

Q

Demanding BT � 1 for dijet events
Relevant on-shell modes with
|~pt | ∼ λQ
soft modes: ks ∼ Q(λ, λ, λ)
collinear modes: kn ∼ Q(1, λ2, λ)
kn̄ ∼ Q(λ2,1, λ)

Invariant massess of soft and collinear modes are on the same
order O(Q2λ2)

Rapidity divergence arises as jets go soft or soft radiations go
collinear since they are all on the same parabola.

J.-Y. Chiu (CMU) Rapidity RG 09.28.11 14



Factorization Theorem for Jet Broadening BT = 1
2τa=1

Define e ≡ τa=1 from now on to simplify the notification

dσ
de

= σ0H(s)

∫
denden̄desδ(e − en − en̄ − es)

×
∫

d~p1td~p2tJn(Q−,en, ~p1t )Jn̄(Q+,en̄, ~p2t )S(es, ~p1t , ~p2t ),

where in covariant guages (d̄ ≡ 2− 2ε)

Jn =
2πΩd̄

Nc
〈0| χ̄nδ(P̂−−Q−)δ(ê − en)δ(P̂⊥ + ~p1⊥)

n̄/
2
χn|0〉,

Jn̄ =
2πΩd̄

Nc
〈0| n/

2
χn̄δ(P̂+−Q+)δ(ê − en̄)δ(P̂⊥ + ~p2⊥)χ̄n̄|0〉,

S = p1−2ε
1t p1−2ε

2t Ωd̄

∫
dΩ12

Nc
×

〈0 | S†nSn̄δ(ê − es)δd̄ (P̂n⊥ − ~p1⊥)δd̄ (P̂n̄⊥ − ~p2⊥)S†n̄Sn|0〉.
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Naive Calculation with Pure Dim-Reg

Bare jet function:

Jn(en,pi,t = 0) =
αsCF

π

(
µ2

Q2e2
n

)ε 1
en

∫ 1

0
dz

1 + (1− z)2

z
,

where z ≡ l−/Q, and l is the momentum of the gluon going
across the cut.
Integral ill-defined as z → 0, the soft region.
Leftover 1

ε divergence multiplies non-zero en terms that virtual
diagrams, which are always proportional to δ(en), cannot cancel.

Traditional dim-reg regulating the ~k⊥ part of the real radiation dose
not regulate the phase space integral while pT is fixed.
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New Regulator and ν-Renomalization Group

Goal:
I Multiplicatively Renormalizable
I In the spirit of dimensional regularization
I Does not introduce new dimensionful scales in the integrants, and

maintains manifest power counting in the effective theory.

η-regulator

Wn =

[∑
perm

exp

(
−g
n̄·P̂

[
|n̄·P̂g |−η
ν−η

n̄·An,q(0)

])]

Sn =

[∑
perm

exp

(
−g
n·P̂

[
|2P̂3

g |−η/2

ν−η/2 n·As,q(0)

])]
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η-Regulator

Regulates the z-momentum of each gluon coming off Wilson Line.
Preserves Exponentiation Theorems.
Preserves modes and their power counting.
Dim-reg. style evolution equations.
Does not hide soft functions, as analytic regulators do.
η contribution spontaneously goes to zero when rapidity
divergence is not present
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Zero-Bin Subtractions

No zero-bon subtration needed with η-regulator
Soft-bin contribution is scaleless with Rapidity Ragulator η
(as scaleless integral is 0 in pure dim-reg)
Obtain correct IR- and UV- divergences without 0-bin subtraction
Soft function is nonetheless non-zero
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Regulator Comparison

Analytic regulator
(QCD: Smirnov, Rakhmetov, 99; Beneke, Feldmann, 04; SCET: JC, Golf, Kelley, Manohar,07; Becher, Neubert, 10;)

I Hides soft contributions (although still get fix-order matrix element
correct after summing different sectors).

I Each collinear sector has complicated regulator dependent and is
meaningless before summing all sectors together...
⇒breaks factorization

I Does not exponentiation.
∆-regulator JC, Fuhrer, Hoang, Kelley, Manohar, 09

I Introduces additional scales into integrals
I Exponentiates after proper zero-bin subtraction
I No known evolutions equation.

Off the light cone Collins, Soper, 81

I Introduces more scales into integrals
I Proof of exponentiation straightforward
I Introduces gauge modes that are not appropiate by strict power

counting.
I Understood evolution equation.
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Jet Function Calculation with η-regulator

n-direction jet function with pt = 0 in Laplace space yields

Jn ∝
(

G2CF Ω2−2ε

4(2π)3−2ε

)(µτ
Q

)2ε
{

1
2

1− ε
Γ(1− ε)Γ(−2ε)

+
Γ(−η)

Γ(1− ε)Γ(2− η)

( ν
Q

)η
Γ(−2ε)

}
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Soft Function Calculation with η-regulator

S(τ, ~b1t , ~b2t ) =

(
G2CF Ω2−2ε

4(2π)3−2ε

)(ντ
Q

)ηs
(µτ

Q

)2ε
Γ(−ηs − 2ε)

Γ(η/2)2

Γ(η)

×
[

2F1

(
−η − 2ε

2
,
1− η − 2ε

2
; 1− ε;−b2

1Q2

τ2

)

+2F1

(
−η − 2ε

2
,
1− η − 2ε

2
; 1− ε;−b2

2Q2

τ2

)]
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Physics of 2-Parameter RG

µ

ν

k+

k−
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Renormalization Group Equations

η-divergences and ν-anomalous dimensions cancels when we
sum up the contributions from the jet and soft fuctions.
Individual J and S are multiplicatively renormalizable.
η-divergence are absorbed in the renormalization constants, ZJ,S,
such that

J(0)
n J(0)

n̄ S(0) =[
ZJn (µ, ν)JR

n (µ, ν)
] [

ZJn̄ (µ, ν)JR
n̄ (µ, ν)

] [
ZS(µ, ν)SR(µ, ν)

]
,

where
ZJn (µ, ν)ZJn̄ (µ, ν)ZS(µ, ν) = Z−1

H (µ).
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E.g. for soft function in Fourier-Laplace space

ZS(τ,b1t ,b2t , µ, ν)

=
αsCF

2πε2
+
αsCF

2πε
ln
(µ2

ν2

)
− αsCF

π
e−εγE

Γ(−2ε)
Γ(1− ε)

1
η

(µτeγE

Q

)2ε
×[

2F1

(
−2ε,

1
2

(1− 2ε); 1− ε;−b2
1Q2

τ2

)
+ b1 ↔ b2

]
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Renormalization Group Equations

The rapidity divergences for the jet and soft functions introduce a
new set of anomalous dimension (γνJ , γ

ν
S) :

ν
d

dν
SR(µ, ν) = γνS SR(µ, ν), ν

d
dν

JR
n (µ, ν) = γνJ JR

n (µ, ν)

Just like the traditional µ anomalous dimension:

µ
d

dµ
SR(µ, ν) = γµS SR(µ, ν), and µ

d
dµ

JR
n (µ, ν) = γµJ JR

n (µ, ν)

Since the cross-section is invariant under µ and ν variation, and
that the hard function itself is free from rapidity divergence
(and therefore γνH = 0), we must have the relations

γµH + γµJn
+ γµJn̄

+ γµS = 0, and γνJn
+ γνJn̄

+ γνS = 0.

(In some complicated form depending on both e and pt , will show
simple cancelation explicitly in next example for pT spectrum.)
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Running Strategy

Natural scales:
I hard function: independent of ν, µH =

√
s

I soft function (νS, µS) = (
√

s e,
√

s e)
I jet functions (νJ , µJ) = (

√
s,
√

s e)

2-Parameter RG
I UV- and Rapidity-

Divergences are
indepdendent

I µ and ν RG are independent
(commute)

I ∂µ∂νF = ∂ν∂µF , where F
can be jet function J(ν, µ)
or soft function S(ν, µ)

µ

ν
jetsoft

hard

UH

VS

√
s

√
s e

√
s e

√
s
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Running Strategy

Natural scales:
I hard function: independent of ν, µH =

√
s

I soft function (νS, µS) = (
√

s e,
√

s e)
I jet functions (νJ , µJ) = (

√
s,
√

s e)

Running
I In µ:

Evolve hard function
from high scale
µH =

√
s to common

low scale µJ=µS=
√

se
I In ν:

Evolve soft function
from νS =

√
se to jet

scale νJ =
√

s

µ

ν
jetsoft

hard

UH

VS

√
s

√
s e

√
s e

√
s
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Solution to the µ-RGE for the hard function

H(s, µ) = UH(s;µH , µ)H(s;µH)

with

UH(s;µH , µ) =

∣∣∣∣∣∣eKH (µH ,µ)

(
−s − i0
µ2

H

)ηH (µH ,µ)
∣∣∣∣∣∣
2

Solution to the ν-RGE for the soft function at one-loop

SR(τ,b1t ,b2t , µ, ν) =

µeγE (τ +
√

b2
1Q2 + τ2)

2Q

ζ

µeγE (τ +
√

b2
2Q2 + τ2)

2Q

ζ

× SR(τ,b1t ,b2t , µ, νS)

in which ζ = −2αs
π CF ln µ2

ν2 .
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NLO singular cross-section

1
σ0

dσ
de

=
1
e
αs(µ)CF

π

(
−3− 4 log

e
2

)
Resummed cross-section up to NLL

1
σ0

dσ
de

= H(Q, µ)
4e2γEζ

Γ(−2ζ)

1
e

( µ

eQ

)2ζ(
1− 2F1(1,1; 1− ζ;−1)

)2

To compare with standard Total Jet Broadening observable BT , recall

e = 2BT
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Comparison with literature...

QCD calculations with resummation in the literature:
1 Catani, Turnock and Webber (1992)⇒ Correct up to NLL.

Agree with our NLL result.
2 Dokshitzer, Lucenti, Marchesini and Salam (1998)
⇒ Corrections to our previous result in [1] at NLL’ or NNLL.
⇒ Agree with updated result in this talk

SCET resummation for BT after our letter...
3 Becher, Bell and Neubert (2011)
⇒ Claim to agree with [2] for all logs at α2

S order.
⇒ Factorization broken by regulator
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Comparison with data

Q = 130 GeV
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Other Applications?

Rapidity divergences do not only appear when observing Jet
Broadening...

pT spectrum for Higgs/Drell-Yan Production
TMD-PDF, Generalized Parton Distribution
Electroweak corrections to high energy process at the LHC
...
In general, processes or observables involving collinear and soft
mode with similar transverse momentum, invariant mass, or
off-shellness.
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pT Resummation in SCET

Idilbi, Ji, Yuan (2005)
I Calculation using SCET, no factorization theorem derived

Mantry and Petriello (2009, 2010)
I Factorization theorem derived in SCET
I Keep residual momentum, and thus power suppressed terms for

each sector to be well regularized.

Becher and Neubert (2010)
I Absence of soft function
I Analytic regulator break factorization
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When observing pT (or related observables)
When measuring thurst distribution or ,
|ps
⊥| � |pn

⊥| ∼ |pn̄
⊥| and |ηs| � |ηn| ∼ |ηn̄|.

Ultra-Soft radiation decoupled from the collinear radiation.

When observing transverse momentum (pT ) distribution or jet
broadening event shape (BT ), kS,⊥ ∼ kn,⊥ ∼ kn̄,⊥, both soft and
collinear radiation contribute to the transverse momentum at the
same order.
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Higgs pT distribution in SCETII
with η-regulator and ν-RG

dσ
dQ2dp2

T dy
∝

∫
dx1

x1

∫
dx2

x2
δ(~pH

T + ~pn,t + ~pn̄,t + ~ps,t )g⊥ασg⊥βω

× H(m2
H , µ)S

(
~ps,t ;µs, µ; νs, ν

)
× Fαβn;g

(
x1, ~pn,t ;µB, µ; νB, ν

)
× Fσωn̄;g

(
x2, ~pn̄,t ;µB, µ; νB, ν

)
fg/p(

ωa

P−
, µ) = −

∑
spins

θ(ωa)ωa〈pn|Bcµ
n⊥(0)δ(

ωa

P−
− P̄n)Bc

n⊥µ(0)|pn〉

Fαβg (
ωa

P−
, ~pt , µ) = −

∑
spins

∫
d2~bte−i~bt .~pt θ(ωa)〈pn|Bcα

n⊥(~bt )δ(
ωa

P−
− z)Bcβ

n⊥(0)|pn〉

=
∑

i

1
z

∫ 1

z

dz ′

z ′

∫
d2~bte−i~bt .~pt Iαβgi (

ωa

z ′ P−
, ~bt , µ)fi (z ′, µ)

divergent/ill-defined integral by pure dim-reg.
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Beam Function Calculation with η-regulator

Total beam function in n-direction including real and virtual yields

Fµνg←g(z, ~pt ) ∝ Γ(1 + ε)
µ2ε

(p2
t )(1+ε)

[
gµνt

δ(1− z)

η

( ν
ωa

)η
+ pgg

(
1
z

)
gµνt

+ 4
(1− z)

z2

(
(
pµt pνt

p2
t

+
1
2

gµνt ) + 2ε(
pµt pνt

p2
t
− 1

2ε
gµν−2ε)

)]
splitting function

pgg(z) =
1 + (1− z)4 + z4

[1− z]+z
(µB, νB) = (pt , ω)
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Soft Function Calculation with η-regulator

Soft

S(~pt ) ∝ Γ
(

1 + ε+
η

2

)
Γ
(η

2

)( µ2ε

(p2
t )(1+ε)

)(
νη

(p2
t )η/2

)

(µs, νs) = (pt ,pt )
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µ and ν RG similar to the previous case

The rapidity divergences for the jet and soft functions introduce a
new set of anomalous dimension (γνB, γ

ν
S) :

ν
d

dν
SR(µ, ν) = γνS SR(µ, ν), ν

d
dν
BR

n (µ, ν) = γνB BR
n (µ, ν)

Just like the traditional µ anomalous dimension:

µ
d

dµ
SR(µ, ν) = γµS SR(µ, ν), and µ

d
dµ
BR

n (µ, ν) = γµB BR
n (µ, ν)

In impact parameter space

γνS = 2
αs

π
CA ln

(
b2µ2e2γE

4

)
and γνB = −αs

π
CA ln

(
b2µ2e2γE

4

)
γµS = −2

αs

π
CA ln

(
µ2

ν2

)
and γµBn

= −αs

π
CA ln

(
ν2

ω2
n

)
J.-Y. Chiu (CMU) Rapidity RG 09.28.11 42



Since the cross-section is invariant under µ and ν variation, and
that the hard function itself is free from rapidity divergence
(and therefore γνH = 0), we must have the relations

γµH + γµBn
+ γµBn̄

+ γµS = 0, and γνBn
+ γνBn̄

+ γνS = 0.

In impact parameter space

γµH = 2
αs

π
CA ln

(
µ2

ωnωn̄

)
= 2

αs

π
CA ln

(
µ2

ν2

)
+
αs

π
CA ln

(
ν2

ω2
n

)
+
αs

π
CA ln

(
ν2

ω2
n̄

)

0 = 2
αs

π
CA ln

(
b2µ2e2γE

4

)
− 2

αs

π
CA ln

(
b2µ2e2γE

4

)
Recover CSS formula by µ and ν RG
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Solution to the µ-RGE for the hard function

H(s, µ) = UH(MH ;µH , µ)H(MH ;µH)

with

UH(MH ;µH , µ) =

∣∣∣∣∣∣eKH (µH ,µ)

(
−M2

H − i0
µ2

H

)ηH (µH ,µ)
∣∣∣∣∣∣
2

Solution to the ν-RGE for the soft function

S(µ, ν) = Vs

(
µ,

ν

νs

)
⊗ S(µ, νS)

with
Vs (pt ;ωs, µ, ν) = e−2γEωs

Γ(1− ωs)

Γ(1 + ωs)

[
ωs

µ

[
1

(pt
µ )1−ωs

]
+

+ δ(pt )

]

and ωs

(
µ, ννs

)
= 2Γcusp[αs(µ)] log ν

νs
.

Resummed cross-section up to NLL

1
σ0

dσ̂
dpT

= UH(MH ;µH , µ = pT )Vs (pt ;ωs, µ = pT , ν = MH)
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Comparison with literature...

QCD calculations with resummation in the literature:
1 Collins, Soper, and Sterman (1985)

SCET resummation for pT distribution
2 Gao, Li, Liu (2005)
3 Idilbi, Ji, Yuan (2005)

I SCET-like calculation, no factorization theorem derived
I log hidden in phase space

4 Mantry, Petriello
I Factorization theorem derived in SCET
I Keep residual momentum, and thus power suppressed terms for

each sector to be well regularized.
I log hidden in phase space

5 Becher, Bell and Neubert (2010)
I Absence of soft function
I Analytic regulator break factorization
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Conclusion

When measuring transverse momentum related observables...
I Soft contributions are important
I Uncanceled divergences remain in each sector, rapidity divergence.
I New kind of logarithms to resum, yet related to the cups angle (the

high scale).

There are other cases with rapidity divergence such as, higgs pT
distribution, and electroweak corrections to LHC processes.
Rapidity RG making use of the η-regulator provides controllable
form to divergences, and a way to resum the log systematically.
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Jet Broadening Resummation in [3]

Bechera, Bell and Neubert also attempted to resum the rapidity logs
for the jet broadening...

1
σ0

dσ
dbT

= H(Q2, µ)
e−2γEη

Γ(2η)

1
bT

(
bT

µ

)2η

I2(η)

where
I(η) =

4η

1 + η
2F1(η,1 + η,2 + η,−1)

= 1 + η2
[
π2

12
− log2 2

]
+O

(
η3
)

and
η ≡ αs(µ)

π
CF log

Q2

µ2 ∼
αs(µ)

π
CF log

1
b2

T

Not claimed to be correct when we did NLL resum.
Reproduced by RRG when properly convolving in ~pT

back
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Comparison in Fixed order Expanded Result

back
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