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Main message 

By means of the AdS/CFT correspondence we can 
determine the gluonic field configuration sourced by 
a heavy quark undergoing arbitrary motion in a non-
abelian strongly coupled gauge theory 

Based on: 

A. Güijosa, J.F. Pedraza and MCh arXiv:1106.4059 



Plan for the talk 

•  Motivation 

•  The gluonic profile for arbitrary quark motion 

•  Ingredients for the computation (stringy) 

•  Conclusions 
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When a charge accelerates in vacuum, it produces a propagating   

Motivation 

disturbance in the associated gauge field  

!x(t)!x(tr)

Weak coupling image (in vacuum) 

e.g. Charge subject to a kick the pulse travels at the speed of light 
and the characteristic width        does not change in time and is  
determined by the duration of the kick. 
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When a charge accelerates in vacuum, it produces a propagating   

Motivation 

disturbance in the associated gauge field  

The problem of finding the spacetime profile of this disturbance for 
an arbitrary charge trajectory was solved long ago for classical EM 

[See Jackson for example] 

!x(t)

1

4
F 2 =

e2
[
(x− x(tr)) · v(tr)

]4

!x(tr)

(Lorentz boost of the static result) 



When a charge accelerates in vacuum, it produces a propagating   

Motivation 

disturbance in the associated gauge field  

The problem of finding the spacetime profile of this disturbance for 
an arbitrary charge trajectory was solved long ago for classical EM 

!x(t)!x(tr)

What happens in the case of a strongly coupled non-abelian  
gauge theory? 



The AdS/CFT correspondence allows us to address 
this question in a very simple way 
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Motivation 
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Recently, using the AdS/CFT correspondence, the energy density 
radiated by a heavy quark undergoing arbitrary motion in the vacuum 
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Motivation 

Recently, using the AdS/CFT correspondence, the energy density 
radiated by a heavy quark undergoing arbitrary motion in the vacuum 
of               SYM was calculated [Ha>a et al., Liu et al]. 

A more technical motivation ... 

N = 4

The results were rather surprising: 

The radiation pattern closely resembles that of classical EM and  
weakly coupled SYM  

The radiation pulse travels at the speed of light and does NOT 
broaden as it propagates outward 

(In a strongly coupled non abelian theory one might expect quanta to 
propagate slower than speed of light and the energy distribution to be  
isotropic) 



Motivation 
More than 10 years ago, Callan and Güijosa, using AdS/CFT calculated 
                   for an oscillating quark and found that the propagating  〈TrF 2(x)〉
waves display broadening.   

(We will review their calculation later) 



Motivation 
More than 10 years ago, Callan and Güijosa, using AdS/CFT calculated 
                   for an oscillating quark and found that the propagating  〈TrF 2(x)〉

How can it be that the                    profile in this case displays broadening 
while the pattern of radiation calculated by Hatta et al. does not?   

〈TrF 2(x)〉

We want to solve this conflict 

waves display broadening.   



Ingredients for the computation 

AdS5×S5

Holographic correspondence: 

=SYM in Minkowski spacetime  N = 4

z = o

z =∞

!x

=T = 0

ds2 =
L2

z2

[
− dt2 + d!x2 + dz2

]
λ ≡ L4

l4s
= g2

YMNc

(Poincaré patch) 



Holographic correspondence: 

Probe particle = Probe fundamental string 

Quark 

=

z = 0

z =∞

z = zm

D7-branes 

Ingredients for the computation 



Holographic correspondence: 

Quark 

=

Mass of the quark: 

z = 0

z =∞

z = zm

To be more precise: 

D7-branes 

•  The string endpoint represents the quark, while the rest of the string 
codifies the profile of the gluonic field 

Probe particle = Probe fundamental string 

m =
√

λ

2πzm

Ingredients for the computation 



〈TrF 2(!x, t)〉 =
√

λ

128π2

[
−

(
2πm√

λ

)4

+
7

4|!x|4

(
2πm|!x|√

λ

)6

+ . . .

]

i.e., the field does not diverge at the source 

≡
√

λ

2πm
∼width of 

the cloud 

|!x| <

√
λ

2πm

[Hovdebo, Kruczenski, Mateos, Myers, Winters] 

[Danielsson, Kruczenski, Keski‐Vakkuri] 〈TrF 2(!x, t)〉 =
√

λ

16π2|!x|4

Infinitely massive quark: 

i.e., behaves as a pointlike charge 

Finite mass quark: 

Ingredients for the computation 



Holographic correspondence: 

Quark 

=
z = 0

z =∞

String 

Quark moving with constant = Vertical string moving with constant v v

Ingredients for the computation 



Holographic correspondence: 

z = 0

z =∞

=

Accelerated quark = Accelerated string 

!x(t)

!x(t)

Ingredients for the computation 

For the accelerating quark, the string trails behind its endpoint 
i.e., the quark has a ‘tail’, and it is this tail that is responsible for the 
damping effect  

(This same mechanism has been seen to be responsible for drag force in 
thermal plasma ) [Herzog, Karch, Kovtun, Kozcaz, Yaffe; Gubser; Casalderrey, Teaney] 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We want to calculate                      for an arbitrary trajectory   〈TrF 2(x)〉
And according to GKPW recipe 

i.e. We need to calculate the dilaton field              sourced by the string  φ(x, z)

dual to the quark, and and pick out the            term in its expansion near O(z4)
the boundary of AdS5

x

z

〈TrF 2(x)〉 = − lim
z→0

( 1
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∂zφ(x, z)
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Ingredients for the computation 

And according to GKPW recipe 

i.e. We need to calculate the dilaton field              sourced by the string  φ(x, z)

dual to the quark, and and pick out the            term in its expansion near O(z4)
the boundary of AdS5

〈TrF 2(x)〉 = − lim
z→0

( 1

z3
∂zφ(x, z)

)

Quick note: the calculation of the energy density requires the determination 
of the gravitational waves emitted by the string and involves an integral 
over all points of the source. 

We want to calculate                      for an arbitrary trajectory   〈TrF 2(x)〉
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Danielsson, Keski-Vakkuri and Kruczenski showed us the way ... 



Ingredients for the computation 

Danielsson, Keski-Vakkuri and Kruczenski showed us the way ... 

Some of the steps 

Solve the linearized eom for the dilaton  
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embedding functions 



Ingredients for the computation 

Danielsson, Keski-Vakkuri and Kruczenski showed us the way ... 

Some of the steps 

Solve the linearized eom for the dilaton  

∂m
(√

−GEG
mn
E ∂nφ

)
= J(x) ; J(x) ∝

√
−gEδ($x−X(t, z))

Using Greens’ function methods 

U = 1− (t− t′)2 + (!x− !x′)2 + (z − z′)2

2zz′
where 

φ(x, z) =
1

16π2α′

∫
dt′dz′

√
g

d

dU

( 2U2 − 1√
1− U2

θ(1− |U |)
)

is the invariant distance between the observation (unprimed) and  
the source (primed) point. 



Ingredients for the computation 

Danielsson, Keski-Vakkuri and Kruczenski showed us the way ... 

Some of the steps 

Solve the linearized eom for the dilaton  

∂m
(√

−GEG
mn
E ∂nφ

)
= J(x) ; J(x) ∝

√
−gEδ($x−X(t, z))

Using Greens’ function methods 

U = 1− (t− t′)2 + (!x− !x′)2 + (z − z′)2

2zz′

φ(x, z) =
1

16π2α′

∫
dt′dz′

√
g

d

dU

( 2U2 − 1√
1− U2

θ(1− |U |)
)

Then, all we need is the string embedding! 

where 



z = 0

z =∞

=!x(t)

!x(t)

Extremizing the NG action we determine the string embedding  

Ingredients for the computation 

Xµ(τ, z)



z = 0

z =∞

=!x(t)

!x(t)

Extremizing the NG action we determine the string embedding  

[Mikhailov] 

Proper time 

There is an analytic solution for an arbitrary time-like quark trajectory !x(t)
with purely outgoing waves as a boundary condition 

Ingredients for the computation 

Xµ(τ, z) = z∂τx
µ(τ) + xµ(τ)

Xµ(τ, z)



Ingredients for the computation 
Geometrical interpretation of the solution: 

z = 0

z =∞

=

!x(t) !x(t)!x(tr)
!x(tr)

The behavior at time    of the string segment located at radial position t z
is completely determined by the behavior of the string endpoint at a 
retarded time tr

!X(t, z)



Ingredients for the computation 
Geometrical interpretation of the solution: 

z = 0

z =∞

=

!x(t) !x(t)!x(tr)
!x(tr)

!X(t, z)

Finally, with the string embedding at hand (for an arbitrary trajectory), 
we can determine the resulting dilaton profile, and using the GKPW recipe 
obtain the expectation value of the gluonic field generated by the quark. 
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The gluonic profile  
•  Infinitely massive quark  

φ(x, z) =
1

16π2α′

∫
dt′dz′

√
g

d

dU

( 2U2 − 1√
1− U2

θ(1− |U |)
)

Reminder: 

Contributions from all points along the string. 



The gluonic profile  
•  Infinitely massive quark  

φ(x, z) =
1

16π2α′

∫
dt′dz′

√
g

d

dU

( 2U2 − 1√
1− U2

θ(1− |U |)
)

Reminder: 

Contributions from all points along the string. 

However through a “convenient” change of variables this integral can  
be written as a total derivative and therefore the final result is a  
surface term.  

When all dust settles, the observed                     depends only on the  
behavior of the (lower) string endpoint.  

〈TrF 2(x)〉



The gluonic profile  
•  Infinitely massive quark  

〈TrF 2(x)〉 =
√
λ

16π2

1
[
(x− x(τ0)) · v(τ0)

]4

(x− x(τ0))
2 = 0Such that , i.e. signals propagate purely along 

Skipping the details of the calculation, the final result is 

null intervals. 

[MCh, Güijosa, Pedraza] 



The gluonic profile  
•  Infinitely massive quark  

〈TrF 2(x)〉 =
√
λ

16π2

1
[
(x− x(τ0)) · v(τ0)

]4

(x− x(τ0))
2 = 0Such that , i.e. signals propagate purely along 

Skipping the details of the calculation, the final result is 

null intervals. 

[MCh, Güijosa, Pedraza] 

The gluonic field is simply the boosted version of the Coulombic profile 
set up by a static point like quark, at the appropriate retarded time. 
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The gluonic profile  
Some remarks about the result: 

•  The gluonic profile only depends on the position and velocity of the quark 
at a retarded time  τ0

〈TrF 2(x)〉 =
√
λ

16π2

1
[
(x− x(τ0)) · v(τ0)

]4



The gluonic profile  
Some remarks about the result: 
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The gluonic profile  
Some remarks about the result: 

•  The gluonic profile only depends on the position and velocity of the quark 
at a retarded time  τ0

•  Is identical to the classical EM result           for a point like electric charge 1

4
F 2

replacing e2 →
√
λ/8π2

•  The net profile propagates at the speed of light and there is no broadening 

〈TrF 2(x)〉 =
√
λ

16π2

1
[
(x− x(τ0)) · v(τ0)

]4



The gluonic profile  
•  Finite mass quark  

Again, skipping the details, the final result is 

〈TrF 2(x)〉 =
√
λ

32π2
H(x, v, a, j, f, ḟ , f̈)

where all dynamical quantities are understood to be evaluated at the   
retarded time      defined by   τ0 (x− x(τ0))

2 = −z2m

f = γ("F · "v, "F )
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where all dynamical quantities are understood to be evaluated at the   
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2 = −z2m
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The gluonic profile  
•  Finite mass quark  

Again, skipping the details, the final result is 

where all dynamical quantities are understood to be evaluated at the   
retarded time      defined by   τ0 (x− x(τ0))

2 = −z2m

Some remarks about this result: 

•  The presence of higher derivative terms are due to the fact that the quark 
is no longer pointlike (the gluonic cloud is deformed). 

•  Signals no longer travel at the speed of light, but rather propagate along 
a timelike interval. 

〈TrF 2(x)〉 =
√
λ

32π2
H(x, v, a, j, f, ḟ , f̈)

f = γ("F · "v, "F )
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The gluonic profile  
•  Finite mass quark  

Again, skipping the details, the final result is 

where all dynamical quantities are understood to be evaluated at the   
retarded time      defined by   τ0 (x− x(τ0))

2 = −z2m

Some remarks about this result: 

•  Signals no longer travel at the speed of light, but rather propagate along 
a timelike interval. 

•  In fact, the external force replaces a dependence on a infinite number  
of higher derivative terms which indicates nonlocality. 

〈TrF 2(x)〉 =
√
λ

32π2
H(x, v, a, j, f, ḟ , f̈)

f = γ("F · "v, "F )

[MCh, Güijosa, Pedraza] 



The gluonic profile  
Applications 

•  Harmonic motion 

The gluonic profile of a finite mass quark undergoing harmonic motion  
in one direction (two snapshots) 

The over all pattern decays very fast: ∝ 1

|!x|4
i.e. no radiation falloff 



The gluonic profile  
Applications 

•  Harmonic motion 

The gluonic profile of a finite mass quark undergoing harmonic motion  
in one direction (two snapshots) 

Let us now make contact with the results of Callan and Güijosa 
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Assumptions for their calculation: 

Small oscillation amplitude A ! 1/ω
and thereby treated the string dynamics in a linearized approximation 
which implies z ! 1/ω

Through the UV/IR this translates into  |!x| ! 1/ω
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Small oscillation amplitude A ! 1/ω
and thereby treated the string dynamics in a linearized approximation 
which implies z ! 1/ω

Through the UV/IR this translates into  |!x| ! 1/ω

Using our general formula and taking this considerations into account 
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√
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16π2|#x|4 +

√
λ( #A · #x)
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The gluonic profile  
Assumptions for their calculation: 

Small oscillation amplitude A ! 1/ω
and thereby treated the string dynamics in a linearized approximation 
which implies z ! 1/ω

Through the UV/IR this translates into  |!x| ! 1/ω

Using our general formula and taking this considerations into account 

〈TrF 2(x)〉 =
√
λ

16π2|#x|4 +

√
λ( #A · #x)
4π2|#x|6 e−iω(t−|"x|)(1− iω|#x|) +O(A2)

static contribution Dynamical contribution linear in  A

Contains a single time delay corresponding to propagation strictly at the 
speed of light 



The gluonic profile  
Their result (leading dynamical contribution) 

[Callan and Güijosa] f(u) =
105

u9
− 57iω

u8
− 12ω2

u7
+

iω3

u6with 

〈TrF 2(x)〉 =
√
λ( "A · "x)
32π2

∫ ∞

0
dz′z′2(1− iωz′)f(

√
z′2 + |"x|2)e−iω(t−

√
z′2+|"x|2−z′)



The gluonic profile  
Their result (leading dynamical contribution) 

f(u) =
105

u9
− 57iω

u8
− 12ω2

u7
+

iω3

u6with 

Under the corresponding assumptions, and after integration by parts, this 
can be rewritten as 

〈Tr F2(x)〉 =
√
λ( "A · "x)
4π2|"x|6 e−iω(t−|"x|)(1− iω|"x|+ . . .+) +O(ω|"x|2, A2)

〈TrF 2(x)〉 =
√
λ( "A · "x)
32π2

∫ ∞

0
dz′z′2(1− iωz′)f(

√
z′2 + |"x|2)e−iω(t−

√
z′2+|"x|2−z′)

i.e. There is a single time delay (NO broadening) and therefore NO conflict 
with the results of Hatta et al. 

[Callan and Güijosa] 



The gluonic profile  
Their result (leading dynamical contribution) 

f(u) =
105

u9
− 57iω

u8
− 12ω2

u7
+

iω3

u6with 

Under the corresponding assumptions, and after integration by parts, this 
can be rewritten as 

〈Tr F2(x)〉 =
√
λ( "A · "x)
4π2|"x|6 e−iω(t−|"x|)(1− iω|"x|+ . . .+) +O(ω|"x|2, A2)

〈TrF 2(x)〉 =
√
λ( "A · "x)
32π2

∫ ∞

0
dz′z′2(1− iωz′)f(

√
z′2 + |"x|2)e−iω(t−

√
z′2+|"x|2−z′)

[Callan and Güijosa] 

All it was needed is a “convenient” choice of worldsheet parameterization 
to solve the integral ... 



The gluonic profile  
Applications 

•  Circular motion 

The gluonic profile of a finite mass quark undergoing circular motion 

As the mass approaches infinity, the pattern reduces to the expected 
synchrotron form (Liu et al.) 



The gluonic profile  
Applications 

•  Constant proper acceleration 

The gluonic profile of a finite mass quark moving with constant proper 
acceleration. 

We see the expected Lorentz contraction in the longitudinal direction 
as the quark increases its velocity.  



•  We have determined the gluonic field configuration sourced by a heavy 
quark undergoing arbitrary motion in             SYM at strong coupling.   

•  Signals propagate without temporal broadening just as was found for 
the energy density (radiation pattern). 

•  There is no real conflict between Callan and Güijosa’s result and  
that of Hatta et al. (or ours).  

Conclusions 

N = 4

•  It would be interesting to inquire to what extent the surprising pattern of 
unbroadened propagation obtained here (and in Hatta’s work) is present in  
other setups (using AdS/CFT).   

•  The form of our result depends crucially on the choice of the boundary 
conditions for the string embedding (outgoing). 



Thank you 


