Confinement/deconfinement and χ**sb**

in gauge theory/string theory

correspondence

Alex Buchel

(Perimeter Institute $\&$ University of Western Ontario)

Based on: (with O.Aharony and P.Kerner) Phys.Rev.D76:086005,2007[arXiv:0706.1768] Nucl.Phys.B 820 385 (2009)[arXiv:0903.3605] **Mostly:** Nucl.Phys.B 847 297 (2011)[arXiv:1012.2404]

 \implies Confinement and χ sb in gauge theories are strongly coupled phenomena which are difficult to study from first principles

 \implies I will use gauge theory/string theory correspondence of Maldacena, where the strongly coupled dynamics of certain gauge theories is mapped to essentially classical dynamics of higher dimensional gravitational theories

 \implies I consider a specific string theory example of gauge gravity correspondence, rather than ^a phenomenological model of thereof.

 \Longrightarrow I will talk about confinement/deconfinements and χ sb in $SU(N)$ gauge theory (in the limit $N\to\infty$) with massless adjoint fermions

Outline of the talk:

- Introduction to AdS/CFT correspondence
- $\bullet~$ Beyond conformal dynamics: from ${\cal N}=4$ SYM to gauge theories with $\beta_{q|YM}\neq 0$ (Klebanov-Strassler cascading gauge theory)
	- A field-theoretic picture
	- **Dual gravitational picture**
- Finite temperature confinement/deconfinement phase transition
	- similarities and differences with lattice QCD results
- χ sb tachyon in cascading plasma
- Summary and future directions

Basic aspects of AdS/CFT correspondence:

gauge theory string theory $\mathcal{N}=4$ $SU(N)~{\rm SYM} \quad \Longleftrightarrow \quad$ N-units of 5-form flux in type IIB string theory $g^2_{\rm Y}$ \iff g_{s}

 \Longrightarrow Consider the theory in the 't Hooft (planar limit), $N\to\infty$, $g_{YM}^2\to 0$ with Ng_{YM}^2 kept fixed. SUGRA is valid $Ng_s\to\infty$. In which case the background geometry is

 $AdS_5\times S^5$

 \implies The main message is that AdS/CFT sets up a framework that could be used in analyzing the dynamics of strongly coupled gauge theories, in particular, it can be ^a useful model of sQGP

 \Longrightarrow $\mathcal{N}=4$ supersymmetric Yang-Mills theory is conformal. In the absence of chemical potentials for the conserved $U(1)$ charges, temperature is the only scale in the problem. Thus all the thermodynamic potentials are determined by dimensional analysis:

$$
\mathcal{F} \propto -T^4 \,, \qquad s \propto T^3 \,, \qquad \mathcal{E} \propto T^4
$$

 \Longrightarrow There is no finite temperature phase transition in the model. ${\cal N}=4$ SYM is *always* in a deconfined phase for any $T>0$

 \implies To make a closer link to realistic systems we need to go beyond the basic AdS/CFT correspondence

 \Longrightarrow We would like to perform a bunch of *deformation* steps, starting with ${\cal N}=4$ SYM, and ending with the theory which have a nonzero β -function.

 \implies Each *deformation* step has a precise string theory dual for type IIB string theory on $AdS_5\times S^5$

 \Longrightarrow At the end of the day we get a theory with a strong coupling scale Λ , and massless chiral fermions. This theory confines in the IR with spontaneous breaking of chiral symmetry.

Klebanov-Strassler model (a QFT story)

 \Longrightarrow The staring point again is $\mathcal{N}=4$ SU(N) SYM.

Consider a \mathbb{Z}_2 orbifold of above SYM:

$$
\mathcal{N}=4\qquad\rightarrow\qquad\mathcal{N}=2
$$

 $\mathcal{W}_{\mathcal{N}=2} = g_1\, \mathop{\rm Tr}\Phi_1\left[A^1B^1+A^2B^2\right] + g_2\, \mathop{\rm Tr}\Phi_2\left[B^1A^1+B^2A^2\right]$ $\overline{}$ $\overline{\mathsf{I}}$ $\overline{}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Note: $\beta_i = 0 \Longrightarrow g_1, g_2$ are exactly marginal couplings

Turn on the mass term that breaks SUSY $\mathcal{N}=2\,\rightarrow\,\mathcal{N}=1$

$$
\mathcal{W}_{\mathcal{N}=2} \to \mathcal{W}_{\mathcal{N}=1} = \mathcal{W}_{\mathcal{N}=2} + m \operatorname{Tr} (\Phi_1^2 - \Phi_2^2)
$$

 \implies Integrating out the massive fields we find

$$
\mathcal{W}_{eff} = \lambda \operatorname{Tr} A^i B^j A^k B^\ell \epsilon^{ik} \epsilon^{j\ell}
$$

 \Longrightarrow Klebanov and Witten argued that at energy scales $\ll m$ the theory flows to a strongly interactive superconformal field theory; the coupling λ is exactly marginal, and thus the fields $A^{i},\,B^{j}$ develop large anomalous dimensions

$$
[Ai]UV = 1 \rightarrow [Ai]IR = \frac{3}{4} \Rightarrow \gamma_{Ai} = -\frac{1}{4}
$$

$$
[Bi]UV = 1 \rightarrow [Bi]IR = \frac{3}{4} \Rightarrow \gamma_{Bi} = -\frac{1}{4}
$$

 \Longrightarrow From the exact NSVZ gauge β -functions (accounting for the anomalous dim of fields) we find

$$
\beta_i = 0
$$

■ Consider a discrete deformation

 $SU(N+P)_1$ A^1 A^2 B^1 $B^2\,$ $SU(N)_2$

$$
\beta_1 \sim 3(N+P) - 2N(1 - \gamma_{A^i} - \gamma_{B^j}) = 3P + \mathcal{O}(P^3/N^2)
$$

$$
\beta_2 \sim 3N - 2(N+P)(1 - \gamma_{A^i} - \gamma_{B^j}) = -3P + \mathcal{O}(P^3/N^2)
$$

 $SU(N)_1 \rightarrow SU(N+P)_1, P \ll N$

From the β -functions:

$$
\frac{4\pi}{g_1^2(\mu)} + \frac{4\pi}{g_2^2(\mu)} = \text{const}
$$

$$
\frac{4\pi}{g_1^2(\mu)} - \frac{4\pi}{g_2^2(\mu)} \sim P \ln \frac{\mu}{\Lambda}
$$

where Λ is the strong coupling scale of the theory

What is the effective description of the theory past the Landau poles?

 \implies Using Seiberg duality for $\mathcal{N}=1$ SUSY gauge theory, the extension of the model past the Landau poles results in self-similarity cascade (Klebanov and Strassler):

$$
N \to N(\mu) \sim 2P^2 \ln \frac{\mu}{\Lambda}
$$

UV: $N \to N + P$, IR: $N \to N - P$

 \implies If N is a multiple of P , the theory in the deep infrared is $\mathcal{N}=1$ $SU(P)$ SYM; this theory confines with the spontaneous chiral $U(1)_R$ symmetry breaking

Klebanov-Strassler model (a supergravity story)

It is possible to derive an effective 5d action from string theory dual to KS model:

$$
S_{5} = \frac{108}{16\pi G_{5}} \int_{\mathcal{M}_{5}} d^{5}\xi \sqrt{-g} \ \Omega_{1} \Omega_{2}^{2} \Omega_{3}^{2} \left\{ R_{10} - \frac{1}{2} \left(\nabla \Phi \right)^{2} - \frac{1}{2} e^{-\Phi} \left(\frac{(h_{1} - h_{3})^{2}}{2\Omega_{1}^{2} \Omega_{2}^{2} \Omega_{3}^{2}} \right) \right.+ \frac{1}{\Omega_{3}^{4}} \left(\nabla h_{1} \right)^{2} + \frac{1}{\Omega_{2}^{4}} \left(\nabla h_{3} \right)^{2} \right) - \frac{1}{2} e^{\Phi} \left(\frac{2}{\Omega_{2}^{2} \Omega_{3}^{2}} \left(\nabla h_{2} \right)^{2} + \frac{1}{\Omega_{1}^{2} \Omega_{2}^{4}} \left(h_{2} - \frac{P}{9} \right)^{2} + \frac{1}{\Omega_{1}^{2} \Omega_{3}^{4}} h_{2}^{2} \right) - \frac{1}{2\Omega_{1}^{2} \Omega_{2}^{4} \Omega_{3}^{4}} \left(4\Omega_{0} + h_{2} \left(h_{3} - h_{1} \right) + \frac{1}{9} P h_{1} \right)^{2} \right\},
$$

where:

$$
R_{10} = R_5 + \left(\frac{1}{2\Omega_1^2} + \frac{2}{\Omega_2^2} + \frac{2}{\Omega_3^2} - \frac{\Omega_2^2}{4\Omega_1^2\Omega_3^2} - \frac{\Omega_3^2}{4\Omega_1^2\Omega_2^2} - \frac{\Omega_1^2}{\Omega_2^2\Omega_3^2}\right) - 2\square \ln\left(\Omega_1\Omega_2^2\Omega_3^2\right)
$$

$$
-\left\{\left(\nabla\ln\Omega_1\right)^2 + 2\left(\nabla\ln\Omega_2\right)^2 + 2\left(\nabla\ln\Omega_3\right)^2 + \left(\nabla\ln\left(\Omega_1\Omega_2^2\Omega_3^2\right)\right)^2\right\},
$$

⇒ We have "Einstein-Hilbert" gravity in 5d with 7 scalar fields:

$$
\{g_{\mu\nu}, \Omega_1, \Omega_2, \Omega_3, \Phi, h_1, h_2, h_3\}
$$

 \implies Apriori, on a field theory side it is difficult to identify the operators of the gauge theory which are important at strong coupling. Given ^a dual holographic picture we can readily identify these operators using AdS/CFT dictionary:

$$
\{T_{\mu\nu}\,,\mathcal{O}_4^{1,2}\,,\mathcal{O}_6\,,\mathcal{O}_8\} \,+\{\mathcal{O}_3^{1,2}\,,\mathcal{O}_7\}
$$

where I separated operators that have vanishing VEV in chirally symmetric states:

$$
\mathcal{O}_3^i \propto \langle \lambda \lambda \rangle^{1,2} \,, \qquad \mathcal{O}_7 \propto \langle FF \lambda \lambda \rangle
$$

 \implies Euclidean gravitational solutions in this 5-dim theory of gravity coupled to various scalars fields with compactified time-direction describe **confined equilibrium states** of the cascading plasma. As usual,

$$
t_E \sim t_E + \frac{1}{T_{plasma}}
$$

⁼[⇒] Black holes with translationary invariant horizon describes **deconfined equilibrium states** of the cascading gauge theory plasma, with:

> $T_{plasma} \quad \iff \quad T_{Hawking}$ $s_{plasma} \quad\iff\quad s_{Bekenstein-Hawking}$ \mathcal{E}_{plasma} \iff Black hole mass density \mathcal{F}_{plasma} \iff Black hole gravitational action

 \implies Spectrum of physical excitation in deconfined gauge theory plasma corresponds to spectrum of black-hole quasinormal modes

- \Longrightarrow Comments on confinement/deconfinement transition in $N\to\infty$ gauge theories:
- In the deconfined phase the free energy density and the entropy density

$$
\mathcal{F}_{deconfined} \propto \mathcal{O}\left(N^2\right) , \qquad s_{deconfined} \propto \mathcal{O}\left(N^2\right)
$$

• In the confined phase the free energy density

$$
\mathcal{F}_{confined} \,\propto\mathcal{O}\left(N^0\right)\,,\qquad s_{confined} \,\propto\mathcal{O}\left(N^0\right)
$$

• Since

$$
\lim_{N \to \infty} \left. \frac{\mathcal{F}}{N^2} \right|_{deconfined} \neq 0, \quad \text{or} \quad \lim_{N \to \infty} \left. \frac{\mathcal{F}}{sT} \right|_{deconfined} \neq 0
$$

and

$$
\lim_{N \to \infty} \left. \frac{\mathcal{F}}{N^2} \right|_{confined} = 0,
$$

the confined phase of plasma is thermodynamically favourable once

$$
\frac{\mathcal{F}}{sT} > 0, \quad \text{provided} \quad s \sim \mathcal{O}(N^2)
$$

⇒ Confinement/deconfinement phase transition in cascading plasma (with unbroken chiral symmetry)

 T_C is the critical temperature

$$
T_c = 0.6141111(3)\Lambda
$$

The phase transition is of the first-order, between the **deconfined chirally symmetric** phase and the **confined phase with broken chiral symmetry** 16

 \implies How close is the cascading plasma thermodynamics to that of the QCD?

Recall the lattice data for the QCD:

 \blacksquare for the energy density

Figure 1: QCD thermodynamics from lattice; E Karsch and E.Laermann, hep-lat/0305025.

■ for the pressure:

Figure 2: QCD thermodynamics from lattice; F.Karsch and E.Laermann, hep-lat/0305025.

In the cascading plasma, similar to QCD,

$$
\frac{\mathcal{P}}{T^4} \propto (1 - \delta) , \qquad \frac{\mathcal{E}}{T^4} \propto \left(1 + \frac{1}{3}\delta\right) , \qquad \delta \equiv \frac{1}{2\ln\frac{T}{\Lambda}} \ll 1
$$

 \implies The energy density approaches the conformal plateau in the UV asymptotically 3 times as fast as the free energy

 \implies The difference with the QCD is that this the UV plateau is approached much more slowly here:

The pressure $\mathcal P$ and the energy density $\mathcal E$, divided by sT , as a function of $\frac{T}{T_c}$. T_c is the temperature for the deconfinement phase transition in the cascading plasma.

 \implies Even though in the UV the cascading theory is quite different from the QCD, in the IR it is simply $\mathcal{N}=1$ SYM

 \implies Is the deconfined chirally symmetric phase of the cascading plasma perturbatively stable?

 \implies To answer this question:

we look at linearized χ sb fluctuations $\,\propto e^{-i\omega t+i\vec{k}\cdot\vec{x}}$ about chirally symmetric thermal state. Suppose that these fluctuations have ^a dispersion relation

$$
\mathfrak{w} = \mathfrak{w}(\mathfrak{q}^2)\,, \qquad \mathfrak{w} \equiv \frac{\omega}{2\pi T}\,, \qquad \mathfrak{q} = \frac{|\vec{k}|}{2\pi T}
$$

These χ sb fluctuations are unstable, provided

$$
\operatorname{Im}(\mathfrak{w}) > 0 \quad \text{for} \quad \operatorname{Im}(\mathfrak{q}) = 0
$$

Using the holographic duality, one can precisely map these fluctuations into quasinormal modes of the 5d black hole solution, describing the deconfined chirally symmetric equilibrium phase of the cascading plasma

$$
S_{\chi SB}\left[\delta f, \delta k_{1}, \delta k_{2}\right] = \frac{1}{16\pi G_{5}} \int_{\mathcal{M}_{5}} \text{vol}_{\mathcal{M}_{5}} h^{5/4} f_{2}^{1/2} f_{3}^{2} \left\{ \mathcal{L}_{1} + \mathcal{L}_{2} + \mathcal{L}_{3} + \mathcal{L}_{4} + \mathcal{L}_{5} \right\},
$$

\n
$$
\mathcal{L}_{1} = -\frac{(\delta f)^{2}}{f_{3}^{2}} \left(-\frac{P^{2} e^{\Phi}}{2 f_{2} h^{3/2} f_{3}^{2}} - \frac{(\nabla K)^{2}}{8 f_{3}^{2} h^{p} e^{\Phi}} - \frac{K^{2}}{2 f_{2} h^{5/2} f_{3}^{4}} \right),
$$

\n
$$
\mathcal{L}_{2} = -\frac{9 f_{3}^{2} - 24 f_{2} f_{3} + 4 f_{2}^{2}}{f_{2} h^{1/2} f_{3}^{4}} (\delta f)^{2} + 2 \boxed{\frac{(\delta f)^{2}}{f_{3}^{2}} - \left(\nabla \frac{(\delta f)^{2}}{f_{3}^{2}} \right)^{2}}
$$

\n
$$
-2 \nabla \left(\ln h^{1/4} f_{3}^{1/2} \right) \nabla \left(\frac{(\delta f)^{2}}{f_{3}^{2}} \right) + 2 \nabla \left(\ln f_{2}^{1/2} h^{5/4} f_{3}^{2} \right) \nabla \left(\frac{(\delta f)^{2}}{f_{3}^{2}} \right),
$$

\n
$$
\mathcal{L}_{3} = -\frac{1}{2 P^{2} e^{\Phi}} \left(\frac{9}{2 f_{2} h^{3/2} f_{3}^{2}} (\delta k_{1})^{2}
$$

\n
$$
+ \frac{1}{2 h f_{3}^{4}} \left(2 (\nabla K)^{2} (\delta f)^{2} + f_{3}^{2} (\nabla \delta k_{1})^{2} + 4 f_{3} \delta f \nabla K \nabla \delta k_{1} \right) \right),
$$

\n
$$
\mathcal{L}_{4} = \frac{P^{2} e^{\Phi}}{2} \left(\frac{2}{9 h f_{3}^{
$$

 \Longrightarrow The fluctuations $\{\delta k_1, \delta k_2, \delta f\}$ are dual to χ sb operators $\mathcal{O}^{1,2}_3, \mathcal{O}_7$

$$
\delta f = e^{-i\omega t + ikx_3} F, \qquad \delta k_1 = e^{-i\omega t + ikx_3} \mathcal{K}_1, \qquad \delta k_2 = e^{-i\omega t + ikx_3} \mathcal{K}_2,
$$

where $\{F, \mathcal{K}_1, \mathcal{K}_2\}$ are functions of the radial coordinate only

⇒ Imposing the incoming-wave boundary conditions are the horizon, and the normalizability of the fluctuations wave-functions in the UV we find dispersion relation

$$
\mathfrak{w}=\mathfrak{w}(\mathfrak{q}^2)
$$

 \implies The left plot represents the dispersion relation of the chiral fluctuations at the threshold of instability, *i.e.*,, with $\mathfrak{w}(\mathfrak{q}^2)=0$. The blue dashed vertical lines represent the onset of instability: $T = T_{\chi SB}$, such that $(i\mathfrak{w} = 0, \mathfrak{q}^2 = 0)$. The vertical green dashed line represents the confinement/deconfinement critical temperature T_c ,

$$
T_{\chi SB} = 0.882503(0)T_c
$$

 \Longrightarrow On the right plot: the green dots indicate quasinormal modes with $(\mathfrak{w} = -i0.01, \mathfrak{q}^2)$ as a function of $\frac{T}{\Lambda}$ — these fluctuations are stable. The red dots indicate quasinormal modes with $(\mathfrak{w} = i0.01, \mathfrak{q}^2)$ as a function of $\frac{T}{\Lambda}$ — these fluctuations are genuine tachyons whenever $q^2 > 0$. 24

 \implies If chiral tachyons condense with zero momentum in the new ground state, there must exit homogeneous and isotropic deconfined phase of the cascading plasma, with spontaneous broken chiral symmetry for $T < T_{\chi SB}$.

 \implies I will argue now that such homogeneous and isotropic phase does not exist. Specifically, for $T < T_{\chi$ SB

- we turn the (gaugino) fermion mass $\bar{m}\equiv\frac{M}{T}$ $\frac{N}{T}$, explicitly breaking the chiral symmetry;
- the chiral condensates $T^{-3}\langle\lambda\lambda\rangle\equiv {\cal O}(\bar{m})$
- we can compute now

$$
\lim_{\bar{m}\to 0}\mathcal{O}(\bar{m})
$$

⇒ Once again, holographic correspondence allows us to compute above expectation value, without any approximation!

⇒ Homogeneous and isotropic deconfined phase with spontaneously broken chiral symmetry does not exist.

 \implies It appears chiral tachyons must condense with finite momentum, resulting in some inhomogeneous phase.

Summary

- I considered a cascading gauge theory, which is in the same universality class in the IR as $\mathcal{N}=1$ $SU(M)$ SYM, in the planar limit, and for (infinitely) large 't Hooft coupling.
- Using holography, I argued, without any further approximations, that this theory undergoes ^a first order confinement phase transition (with spontaneous broken chiral symmetry) at T_c
- Below T_c , the metastable chirally symmetric deconfined phase in this theory becomes perturbatively unstable at

$$
T_{\chi SB} = 0.882503(0)T_c
$$

- Chiral symmetry breaking tachyons at $T < T_{\rm XSB}$ do not condense at zero momentum —- indication of the inhomogeneous ground state?
- Amusingly, (S.Katz lattice QCD computations (lecture in St. Goat, 2011))

$$
\frac{151}{175} = 0.862857
$$

Need to study the tachyons of the cascading plasma further!

Figure 3: Equation of state of the mass deformed ${\cal N}=4$ gauge theory plasma. At $T\sim m$ the deviation from the conformal thermodynamics is $\sim 2\%$. For the ideal gas approximation the deviation is about 40% . (S.Deakin, P.Kerner, J.Liu, AB, hep-th/0701142.)

 $\Longrightarrow \mathcal{N}=2^*$ model appears to share a 'thermodynamic plateau' with QCD, but there is not confinement in this model.