
Confinement/deconfinement and χsb

in gauge theory/string theory

correspondence

Alex Buchel

(Perimeter Institute & University of Western Ontario)

Based on: (with O.Aharony and P.Kerner) Phys.Rev.D76:086005,2007[arXiv:0706.1768]

Nucl.Phys.B 820 385 (2009)[arXiv:0903.3605]

Mostly: Nucl.Phys.B 847 297 (2011)[arXiv:1012.2404]

1



=⇒ Confinement and χsb in gauge theories are strongly coupled phenomena which are

difficult to study from first principles

=⇒ I will use gauge theory/string theory correspondence of Maldacena, where the strongly

coupled dynamics of certain gauge theories is mapped to essentially classical dynamics of

higher dimensional gravitational theories

=⇒ I consider a specific string theory example of gauge gravity correspondence, rather than

a phenomenological model of thereof.
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=⇒ I will talk about confinement/deconfinements and χsb in SU(N) gauge theory (in the

limit N → ∞) with massless adjoint fermions
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Outline of the talk:

• Introduction to AdS/CFT correspondence

• Beyond conformal dynamics: from N = 4 SYM to gauge theories with βg YM 6= 0

(Klebanov-Strassler cascading gauge theory)

A field-theoretic picture

Dual gravitational picture

• Finite temperature confinement/deconfinement phase transition

similarities and differences with lattice QCD results

• χsb tachyon in cascading plasma

• Summary and future directions
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Basic aspects of AdS/CFT correspondence:

gauge theory string theory

N = 4 SU(N) SYM ⇐⇒ N-units of 5-form flux in type IIB string theory

g2YM ⇐⇒ gs

=⇒ Consider the theory in the ’t Hooft (planar limit), N → ∞, g2YM → 0 with Ng2YM kept

fixed. SUGRA is valid Ngs → ∞. In which case the background geometry is

AdS5 × S5

=⇒ The main message is that AdS/CFT sets up a framework that could be used in analyzing

the dynamics of strongly coupled gauge theories, in particular, it can be a useful model of

sQGP
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=⇒N = 4 supersymmetric Yang-Mills theory is conformal. In the absence of chemical

potentials for the conserved U(1) charges, temperature is the only scale in the problem.

Thus all the thermodynamic potentials are determined by dimensional analysis:

F ∝ −T 4 , s ∝ T 3 , E ∝ T 4

=⇒ There is no finite temperature phase transition in the model. N = 4 SYM is always in a

deconfined phase for any T > 0

=⇒ To make a closer link to realistic systems we need to go beyond the basic AdS/CFT

correspondence

=⇒ We would like to perform a bunch of deformation steps, starting with N = 4 SYM, and

ending with the theory which have a nonzero β-function.

=⇒ Each deformation step has a precise string theory dual for type IIB string theory on

AdS5 × S5

=⇒ At the end of the day we get a theory with a strong coupling scale Λ, and massless chiral

fermions. This theory confines in the IR with spontaneous breaking of chiral symmetry.
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Klebanov-Strassler model (a QFT story)

=⇒ The staring point again is N = 4 SU(N) SYM.

Consider a Z2 orbifold of above SYM:

N = 4 → N = 2

SU(N)1

A1

A2

B1

B2

SU(N)2

SU(N)1 × SU(N)2

Ai : (N̄ ,N)

Bi : (N, N̄)

WN=2 = g1 TrΦ1

[

A1B1 +A2B2
]

+ g2 TrΦ2

[

B1A1 + B2A2
]

Note: βi = 0 =⇒ g1, g2 are exactly marginal couplings
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Turn on the mass term that breaks SUSY N = 2 → N = 1

WN=2 → WN=1 = WN=2 +m Tr
(

Φ2
1 − Φ2

2

)

=⇒ Integrating out the massive fields we find

Weff = λTrAiBjAkBℓǫikǫjℓ

=⇒ Klebanov and Witten argued that at energy scales ≪ m the theory flows to a strongly

interactive superconformal field theory; the coupling λ is exactly marginal, and thus the fields

Ai, Bj develop large anomalous dimensions

[Ai]UV = 1 → [Ai]IR =
3

4
=⇒ γAi = −1

4

[Bi]UV = 1 → [Bi]IR =
3

4
=⇒ γBi = −1

4

=⇒ From the exact NSVZ gauge β-functions (accounting for the anomalous dim of fields) we

find

βi = 0
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Consider a discrete deformation

SU(N)1 → SU(N + P )1 , P ≪ N

SU(N + P )1

A1

A2

B1

B2

SU(N)2

β1 ∼ 3(N + P )− 2N(1− γAi − γBj ) = 3P +O(P 3/N2)

β2 ∼ 3N − 2(N + P )(1− γAi − γBj ) = −3P +O(P 3/N2)
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From the β-functions:
4π

g21(µ)
+

4π

g22(µ)
= const

4π

g21(µ)
− 4π

g22(µ)
∼ P ln

µ

Λ

where Λ is the strong coupling scale of the theory

E
E = µ

g1g1 g2g2

1

g2

1

= 0 , SU(N + P )

is strongly coupled

1

g2

2

= 0 , SU(N)

is strongly coupled

What is the effective description of the theory past the Landau poles?

10



=⇒ Using Seiberg duality for N = 1 SUSY gauge theory, the extension of the model past

the Landau poles results in self-similarity cascade (Klebanov and Strassler):

N → N(µ) ∼ 2P 2 ln
µ

Λ

UV : N → N + P , IR : N → N − P

=⇒ If N is a multiple of P , the theory in the deep infrared is N = 1 SU(P ) SYM; this

theory confines with the spontaneous chiral U(1)R symmetry breaking

11



Klebanov-Strassler model (a supergravity story)

It is possible to derive an effective 5d action from string theory dual to KS model:

S5 =
108

16πG5

∫

M5

d5ξ
√−g Ω1Ω

2
2Ω

2
3

{

R10 −
1

2
(∇Φ)

2 − 1

2
e−Φ

(

(h1 − h3)
2

2Ω2
1Ω

2
2Ω

2
3

+
1

Ω4
3

(∇h1)
2
+

1

Ω4
2

(∇h3)
2

)

−1

2
eΦ

(

2

Ω2
2Ω

2
3

(∇h2)
2
+

1

Ω2
1Ω

4
2

(

h2 −
P

9

)2

+
1

Ω2
1Ω

4
3

h2
2

)

− 1

2Ω2
1Ω

4
2Ω

4
3

(

4Ω0 + h2 (h3 − h1) +
1

9
Ph1

)2}

,

where:

R10 = R5+

(

1

2Ω2
1

+
2

Ω2
2

+
2

Ω2
3

− Ω2
2

4Ω2
1Ω

2
3

− Ω2
3

4Ω2
1Ω

2
2

− Ω2
1

Ω2
2Ω

2
3

)

−22 ln
(

Ω1Ω
2
2Ω

2
3

)

−
{

(∇ ln Ω1)
2
+ 2 (∇ lnΩ2)

2
+ 2 (∇ lnΩ3)

2
+

(

∇ ln
(

Ω1Ω
2
2Ω

2
3

))2

}

,
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=⇒ We have “Einstein-Hilbert” gravity in 5d with 7 scalar fields:

{gµν ,Ω1,Ω2,Ω3,Φ, h1, h2, h3}

=⇒ Apriori, on a field theory side it is difficult to identify the operators of the gauge theory

which are important at strong coupling. Given a dual holographic picture we can readily

identify these operators using AdS/CFT dictionary:

{Tµν ,O1,2
4 ,O6 ,O8} + {O1,2

3 ,O7}

where I separated operators that have vanishing VEV in chirally symmetric states:

Oi
3 ∝ 〈λλ〉1,2 , O7 ∝ 〈FFλλ〉
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=⇒ Euclidean gravitational solutions in this 5-dim theory of gravity coupled to various scalars

fields with compactified time-direction describe confined equilibrium states of the cascading

plasma. As usual,

tE ∼ tE +
1

Tplasma

=⇒ Black holes with translationary invariant horizon describes deconfined equilibrium

states of the cascading gauge theory plasma, with:

Tplasma ⇐⇒ THawking

splasma ⇐⇒ sBekenstein−Hawking

Eplasma ⇐⇒ Black hole mass density

Fplasma ⇐⇒ Black hole gravitational action

=⇒ Spectrum of physical excitation in deconfined gauge theory plasma corresponds to

spectrum of black-hole quasinormal modes
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=⇒ Comments on confinement/deconfinement transition in N → ∞ gauge theories:

• In the deconfined phase the free energy density and the entropy density

Fdeconfined ∝ O
(

N2
)

, sdeconfined ∝ O
(

N2
)

• In the confined phase the free energy density

Fconfined ∝ O
(

N0
)

, sconfined ∝ O
(

N0
)

• Since

lim
N→∞

F
N2

∣

∣

∣

∣

deconfined

6= 0 , or lim
N→∞

F
sT

∣

∣

∣

∣

deconfined

6= 0

and

lim
N→∞

F
N2

∣

∣

∣

∣

confined

= 0 ,

the confined phase of plasma is thermodynamically favourable once

F
sT

> 0 , provided s ∼ O
(

N2
)
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=⇒ Confinement/deconfinement phase transition in cascading plasma (with unbroken chiral

symmetry)

0.95 1.00 1.05 1.10 1.15 1.20

-0.1

0.1
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0.5

0.6

T

Tc

F

sT

TC is the critical temperature

Tc = 0.6141111(3)Λ

The phase transition is of the first-order, between the deconfined chirally symmetric

phase and the confined phase with broken chiral symmetry
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=⇒ How close is the cascading plasma thermodynamics to that of the QCD?

Recall the lattice data for the QCD:

for the energy density
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Figure 1: QCD thermodynamics from lattice; F.Karsch and E.Laermann, hep-lat/0305025.17



for the pressure:
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Figure 2: QCD thermodynamics from lattice; F.Karsch and E.Laermann, hep-lat/0305025.
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In the cascading plasma, similar to QCD,

P
T 4

∝ (1− δ) ,
E
T 4

∝
(

1 +
1

3
δ

)

, δ ≡ 1

2 ln T
Λ

≪ 1

=⇒ The energy density approaches the conformal plateau in the UV asymptotically 3 times

as fast as the free energy

=⇒ The difference with the QCD is that this the UV plateau is approached much more slowly

here:
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The pressure P and the energy density E , divided by sT , as a function of T
Tc

. Tc is the

temperature for the deconfinement phase transition in the cascading plasma.

=⇒ Even though in the UV the cascading theory is quite different from the QCD, in the IR it is

simply N = 1 SYM
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=⇒ Is the deconfined chirally symmetric phase of the cascading plasma perturbatively

stable?

=⇒ To answer this question:

we look at linearized χsb fluctuations ∝ e−iωt+i~k·~x about chirally symmetric thermal

state. Suppose that these fluctuations have a dispersion relation

w = w(q2) , w ≡ ω

2πT
, q =

|~k|
2πT

These χsb fluctuations are unstable, provided

Im(w) > 0 for Im(q) = 0

Using the holographic duality, one can precisely map these fluctuations into quasinormal

modes of the 5d black hole solution, describing the deconfined chirally symmetric equilibrium

phase of the cascading plasma
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SχSB

[

δf, δk1, δk2

]

=
1

16πG5

∫

M5

volM5
h5/4f

1/2
2 f2

3

{

L1+L2+L3+L4+L5

}

,

L1 = − (δf)2

f2
3

(

− P 2eΦ

2f2h3/2f2
3

− (∇K)2

8f2
3hP

2eΦ
− K2

2f2h5/2f4
3

)

,

L2 = −9f2
3 − 24f2f3 + 4f2

2

f2h1/2f4
3

(δf)2 + 2
(δf)2

f2
3

−
(

∇ (δf)2

f2
3

)2

−2∇
(

lnh1/4f
1/2
3

)

∇
(

(δf)2

f2
3

)

+ 2∇
(

ln f
1/2
2 h5/4f2

3

)

∇
(

(δf)2

f2
3

)

,

L3 = − 1

2P 2eΦ

(

9

2f2h3/2f2
3

(δk1)
2

+
1

2hf4
3

(

2(∇K)2 (δf)2 + f2
3 (∇δk1)

2 + 4f3δf ∇K∇δk1

))

,

L4 =
P 2eΦ

2

(

2

9hf2
3

(∇δk2)
2 +

2

f2h3/2f4
3

(

3 (δf)2 + 4f3 δfδk2 + f3
3 (δk2)

2
)

)

,

L5 =
K

f2h5/2f6
3

(

f2
3 δk1δk2 −K (δf)2

)

.
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=⇒ The fluctuations {δk1, δk2, δf} are dual to χsb operators O1,2
3 ,O7

δf = e−iωt+ikx3F , δk1 = e−iωt+ikx3K1 , δk2 = e−iωt+ikx3K2 ,

where {F,K1,K2} are functions of the radial coordinate only

=⇒ Imposing the incoming-wave boundary conditions are the horizon, and the

normalizability of the fluctuations wave-functions in the UV we find dispersion relation

w = w(q2)
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=⇒ The left plot represents the dispersion relation of the chiral fluctuations at the threshold

of instability, i.e., , with w(q2) = 0. The blue dashed vertical lines represent the onset of

instability: T = TχSB, such that (iw = 0, q2 = 0). The vertical green dashed line

represents the confinement/deconfinement critical temperature Tc,

TχSB = 0.882503(0)Tc

=⇒ On the right plot: the green dots indicate quasinormal modes with (w = −i0.01, q2)

as a function of T
Λ

— these fluctuations are stable. The red dots indicate quasinormal modes

with (w = i0.01, q2) as a function of T
Λ

— these fluctuations are genuine tachyons

whenever q2 > 0. 24



=⇒ If chiral tachyons condense with zero momentum in the new ground state, there must exit

homogeneous and isotropic deconfined phase of the cascading plasma, with spontaneous

broken chiral symmetry for T < TχSB.

=⇒ I will argue now that such homogeneous and isotropic phase does not exist. Specifically,

for T < TχSB

we turn the (gaugino) fermion mass m̄ ≡ M
T , explicitly breaking the chiral symmetry;

the chiral condensates T−3〈λλ〉 ≡ O(m̄)

we can compute now

lim
m̄→0

O(m̄)

=⇒ Once again, holographic correspondence allows us to compute above expectation value,

without any approximation!
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=⇒ Homogeneous and isotropic deconfined phase with spontaneously broken chiral

symmetry does not exist.

=⇒ It appears chiral tachyons must condense with finite momentum, resulting in some

inhomogeneous phase.
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Summary

• I considered a cascading gauge theory, which is in the same universality class in the IR

as N = 1 SU(M) SYM, in the planar limit, and for (infinitely) large ’t Hooft coupling.

• Using holography, I argued, without any further approximations, that this theory

undergoes a first order confinement phase transition (with spontaneous broken chiral

symmetry) at Tc

• Below Tc, the metastable chirally symmetric deconfined phase in this theory becomes

perturbatively unstable at

TχSB = 0.882503(0)Tc

• Chiral symmetry breaking tachyons at T < TχSB do not condense at zero momentum

—- indication of the inhomogeneous ground state?

• Amusingly, (S.Katz lattice QCD computations (lecture in St. Goat, 2011))

151

175
= 0.862857
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Need to study the tachyons of the cascading plasma further!
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=⇒ This is not to say that we can not see a thermodynamic plateau in holography:
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Figure 3: Equation of state of the mass deformed N = 4 gauge theory plasma. At T ∼ m

the deviation from the conformal thermodynamics is ∼ 2%. For the ideal gas approximation

the deviation is about 40%. (S.Deakin, P.Kerner, J.Liu, AB, hep-th/0701142.)

=⇒N = 2∗ model appears to share a ’thermodynamic plateau’ with QCD, but there is not

confinement in this model.
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