Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Oleg Andreev

Landau Institute, Moscow & ASC, München

Based on Int.J.Mod.Phys. E20, 2189 (2011)

INT 11-3 Workshop

Motivations

RHIC and LHC

◆ AA, nuclei on nuclei. $A \sim 60 - 200$ (Cu, Au, Pb) ✦ pp, protons on protons. Benchmark for "ordinary" QCD ✦ dA, deuteron on nucleus. QCD in "cold" nuclei ✦ RHIC @ BNL 200 GeV LHC @ CERN 5500 GeV

RHIC: in the semi-QGP

up to \sim 1.5 - 2 Tc

LHC: deep in the complete QGP?

up to \sim 4 Tc

Phase Diagram for QCD 2010

Space-Time Picture of Nucleus-Nucleus Collisions

 \triangle A phase of hydrodynamical expansion L andau

Which parameters matter?

- ✦ Initial energy density profile: Glauber or CGC
- ✦ Initial value of shear tensor
- \blacklozenge Hydrodynamic starting time τ_0
- \blacklozenge Second-order coefficients: relaxation time and λ_1
- ✦ Ansatz for non-equilibrium particle distribution
- ✦ The equation of state
- ✦ The freeze-out procedure

Which parameters matter?

✦ Initial energy density profile: Glauber or CGC

 \blacklozenge Initial value of shear tensor: $\zeta = 0$, $\eta/s = const$

 \blacklozenge Hydrodynamic starting time τ_0

- \blacklozenge Second-order coefficients: relaxation time and λ_1
- ✦ Ansatz for non-equilibrium particle distribution

✦ The equation of state: conformal matter, pQCD, or MIT bag

✦ The freeze-out procedure

Shear and Bulk Viscosities

Thursday, November 3, 11

 $\overline{}$

Equation of State

 \blacklozenge Phenomenological models for $1.2\,T_c \leq T \leq 4\,T_c$ (Fuzzy bags)

$$
p(T) = a\Bigl(T^4 - \alpha T^2\Bigr) - B \qquad \qquad \text{ogilvie et al}
$$

 \blacklozenge It is mainly semi-QGP such that α_s is not so big

Thursday, November 3, 11

The Model

but at the same time

1+0 Dimensional Hydrodynamics

✦ Energy momentum tensor (for relativistic hydrodynamics) $T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} - p\Delta^{\mu\nu} + \Pi^{\mu\nu}$ $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$

✦ Evolution equation (conservation law)

$$
D_\mu T^{\mu\nu}=0
$$

✦ Good approximation for the early time evolution is to consider no dependence on the transverse spatial coordinates (*x, y*) change the variables as $\tau = \sqrt{t^2 - z^2}$, $\tau^2 - z^2$, $\eta = \operatorname{arctanh}(z/t)$ impose the boost invariant expansion in the beam-direction (z)

As a result, the problem becomes one-dimensional!

Bjorken Solution

 \blacklozenge Energy momentum tensor in (τ, x, y, η) coordinates

$$
T^{\mu\nu} = \begin{pmatrix} \varepsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Pi + \frac{1}{2}\Phi & 0 & 0 \\ 0 & 0 & \Pi + \frac{1}{2}\Phi & 0 \\ 0 & 0 & 0 & \Pi - \Phi \end{pmatrix}
$$

 \blacklozenge At first order $\Phi = \frac{4\eta}{3\tau}$ and $\frac{4\eta}{3\tau}$ and $\Pi=-\frac{\zeta}{\tau}$ \blacklozenge For perfect fluid $\eta=\zeta=0$ and the equation of state $p(T) = aT^4 - B$ Bjorken found

$$
T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3}}
$$

At early proper times, it defines a base line on top of which dissipative and QCD effects have to established

Perfect Fluid and QCD effects

$$
\begin{aligned}\n\text{Now, for } \eta &= \zeta = 0 \text{ and } p(T) = a(T^4 - \alpha T^2) - B \\
T(\tau) &= \begin{cases}\n\left(\frac{c}{\tau}\right)^{\frac{1}{3}} \left[\left(\frac{1}{2} + \frac{1}{2}\sqrt{1 - \frac{\alpha^3}{54}\left(\frac{\tau}{c}\right)^2}\right)^{\frac{1}{3}} + \left(\frac{1}{2} - \frac{1}{2}\sqrt{1 - \frac{\alpha^3}{54}\left(\frac{\tau}{c}\right)^2}\right)^{\frac{1}{3}}\right] & \text{if } \tau \le \sqrt{\frac{54}{\alpha^3}}c, \\
\sqrt{\frac{2}{3}\alpha \cos\left[\frac{1}{3}\arccos\left(\sqrt{\frac{54}{\alpha^3}\frac{c}{\tau}}\right)\right]} & \text{if } \tau \ge \sqrt{\frac{54}{\alpha^3}}c\n\end{cases}\n\end{aligned}
$$

with
$$
c = \tau_0 T_0 (T_0^2 - 0.5\alpha)
$$

★ For
$$
T_0 = 0.8 \, \text{GeV}
$$
, $\tau_0 = 0.08 \, \text{fm/c}$

\n★ For small T

\n
$$
T(\tau) \approx \left(\frac{c}{\tau}\right)^{\frac{1}{3}} + \frac{\alpha}{6} \left(\frac{\tau}{c}\right)^{\frac{1}{3}}
$$

Viscous Fluid

Attempt of Synthesis

★ Now,
$$
\eta/s = \kappa \left(1 - k\frac{\alpha}{T^2}\right)
$$
, $\zeta/s = m\frac{\alpha}{T^2}$, $p(T) = a(T^4 - \alpha T^2) - B$

\n★ At first order, one can combine the viscosities as 0.075

\n $v = \frac{\eta}{s} + \frac{3\zeta}{4s}$

\n0.070

\nSurprisingly, the difference between v and conjectured bound value $\kappa = 1/4\pi$ is very small: cancellation!

\nHere $\kappa = 1/4\pi$, $k = 1/4$, $m = 0.024$

✦ Approximate solution

$$
T(\tau) \approx T_{\rm v} + \frac{\alpha}{6} \left[\frac{1}{T_{\rm v}} - \frac{2\kappa}{3c} (1+6\delta) \left(\frac{c}{\tau} \right)^{\frac{1}{3}} \left(\ln(\tau T_{\rm v}) - \frac{2\kappa}{3\tau T_{\rm v}} \right) \right] , \quad T_{\rm v}(\tau) = \left(\frac{c}{\tau} \right)^{\frac{1}{3}} - \frac{2\kappa}{3\tau}
$$

The Light Quarks Make the Life Difficult

Wuppertal-Budapest collaboration

▶ parameterization (Fuzzy bag) for
$$
1.2 T_c \leq T \leq 4 T_c
$$

\n $p(T) = a(T^4 + \gamma T^3 - \alpha T^2 + \beta T) - B$

✦ or even simpler

$$
p(T) = a\left(T^4 - \alpha T^2 + \beta T\right) - B
$$

$$
T(\tau) = -2\gamma + f^{\frac{1}{3}} \left[\left(\frac{1}{2} + \frac{1}{2} \sqrt{1 - \frac{(\alpha + 24\gamma^2)^3}{54f^2}} \right)^{\frac{1}{3}} + \left(\frac{1}{2} - \frac{1}{2} \sqrt{1 - \frac{(\alpha + 24\gamma^2)^3}{54f^2}} \right)^{\frac{1}{3}} \right]
$$

$$
f = c\tau^{-1} - 16\gamma^3 - \alpha\gamma - \beta
$$

$$
c = \tau_0 (T_0^3 + 6\gamma T_0^2 - \frac{1}{2}\alpha T_0 + \beta)
$$

✦ Our findings stand such a modification of the equation of state

Conclusions

✦ Can our findings stand the test of a 3+1 hydrodynamical code?

✦ But many interesting things to do also in one-dimension

- ✓ second order hydrodynamics (issue of uncertainty about the relaxation coefficients)
- ✓ effects of finite baryon chemical potential (equation of state, viscosities)
- ✓ analytical solutions for lower temperatures (if any for $T < 0.3 \,\mathrm{GeV}$)