Microscopic Heavy-Ion Potentials Based on TDHF

Sait A. Umar Vanderbilt University Nashville, TN, USA

Collaborators V.E. Oberacker, J.A. Maruhn, and P.-G. Reinhard

Research supported by: US Department of Energy, Division of Nuclear Physics

INT Program INT-11-2d

Many-Body Fusion and Fission

No practical ab-initio many-body theory for fusion exists

All approaches involve two prongs

a) Calculate an ion-ion barrier (usually one-dimensional)

- Phenomenological (Wood-Saxon, Proximity, Folding, Bass, etc.)
- macroscopic-microscopic methods using collective variables
- b) Employ quantum mechanical tunneling methods for the reduced one-body problem (WKB, IWBC)

Incorporate quantum mechanical processes by hand

- a) Neutron transfer
- b) Few excitations of the entrance channel nuclei (CC)

R

Microscopic Collective Dynamics Based on TDHF

- Obtain collective dynamics (density evolution) from TDHF
 - system selects its evolutionary path via time-dependent action
- Find lowest energy of the system compatible with TDHF density
- Need a method to extract internal excitation energy while holding the <u>instantaneous</u> densities and currents constrained

Quasi-Static Energy Surface

INT Program INT-11-2d

Density-Constraint

Lowest energy collective state corresponding to TDHF state $|\Phi(t)>$:

Total conserved TDHF energy

Static collective state corresponding to TDHF state $|\Phi(t)>$:

Solution of Hartree-Fock equations

 $<\Phi_{\rho}|a_{h}^{\dagger}a_{p}\hat{H}|\Phi_{\rho}>=0$ <u>Subject to constraints</u> $<\Phi_{\rho}|\hat{\rho}(\mathbf{r})|\Phi_{\rho}>=\rho(\mathbf{r},t)$ $<\Phi_{\rho}|\hat{\jmath}(\mathbf{r})|\Phi_{\rho}>=0$

 $E_{DC}(\rho(\mathbf{r}, t)) = \langle \Phi_{\rho} | \hat{H} | \Phi_{\rho} \rangle$ $E_{coll} = E_{kin}(\rho(t), \mathbf{j}(t)) + E_{DC}(\rho(\mathbf{r}, t))$

INT Program INT-11-2d

Ion-Ion Potential and Excitation Energy

Collective Potential

Collective energy has kinetic and static part $E_{coll} = E_{kin}(\rho(t), \mathbf{j}(t)) + E_{DC}(\rho(\mathbf{r}, t)) \longrightarrow V_{coll} \propto E_{DC}$ Contains binding energies $V(R(t)) = E_{DC}(\rho(r, t)) - E_{A_1} - E_{A_2}$ — Subtract binding energies Label it with ion-ion separation at time t <u>Correct asymptotic behavior – no normalization or scaling</u> $E_{DC}(R_{max}) = E_{A_1} + E_{A_2} + V_{Coulomb}(R_{max}) \longrightarrow V(R_{max}) = V_{Coulomb}(R_{max})$ **Excitation Energy** $E^{*}(R(t)) = E_{TDHF} - E_{coll} = E_{TDHF} - E_{kin}(\rho(t), \mathbf{j}(t)) - E_{DC}(\rho(t))$ Approximate expression for collective kinetic energy $E_{kin}(\rho(t),\mathbf{j}(t)) \approx \frac{\hbar^2}{2m} \int d^3r \,\mathbf{j}(t)^2 / \rho(t)$

INT Program INT-11-2d

Implementation

Generalize the ordinary method of constraints

- for a single constraint - for a set of constraints - for density constraint - for density constraint - for density constraint - h $\hat{H} \rightarrow \hat{H} + \sum_{i} \lambda_{i} \hat{Q}_{i}$ - $\hat{H} \rightarrow \hat{H} + \int d^{3}r \lambda_{a}(r) \hat{\rho}_{a}(r)$

Works as efficiently as a single constraint

- numerical method for steering the solution to TDHF density is in:
 - 1. Cusson, Reinhard, Maruhn, Strayer, Greiner, *Z. Phys. A* **320**, 475 (1985) 2. Umar, Strayer, Cusson, Reinhard, Bromley, *Phys. Rev. C* **32**, 172 (1985)

INT Program INT-11-2d

Seattle, August 15-19 2011

DC-TDHF Method for Ion-Ion Potentials

- Completely microscopic description of ion-ion potential barriers
- ➔ Includes all dynamical entrance channel effect through density
- ➔ Incorporates energy dependence of barriers
- Successful in obtaining realistic fusion barriers whenever the participating nuclei are well described by Skyrme-HF
- ➔ Obtain fusion cross-sections via IWBC
- Average over all orientations for deformed nuclei

INT Program INT-11-2d

Dynamical Approach

Dynamical Effective Mass

$$E_{c.m.} = \frac{1}{2} M(R) \dot{R}^{2} + V(R)$$

$$TDHF DC-TDH$$

F

$$M(R) = \frac{2(E_{c.m.} - V(R))}{\dot{R}^2}$$

• Transform effect to potential $d \bar{R} = \left(\frac{M(R)}{\mu}\right)^{\frac{1}{2}} dR$ $V(r) \rightarrow U(\bar{R}) \qquad M(\bar{R}) = \mu$

New Generation TDHF Code

- Unrestricted 3-D Cartesian geometry
 - No fixed reaction plane
 - No reflection symmetry (+z/-z)
- Basis-Spline discretization for high accuracy
- Programmed in Fortran 95 and OMP
- Use of modern Skyrme forces with all the terms (time even/odd)
- No time-reversal symmetry assumed
- It is possible to calculate cross sections for deformed nuclei

INT Program INT-11-2d

Comparison to Other Fusion Potentials

DC-TDHF potential contains no parameters and normalization (SLy4)

Double folding: M3Y effective NN interaction, exp densities **Shallow-Potential:** H. Esbensen, PRC 77, 054608 (2008)

Coulomb tails always accurate to 50-150 keV

INT Program INT-11-2d

Application to Fusion

Fusion Cross-Sections

INT Program INT-11-2d

Application to Fusion

Ca + Ca Fusion

40Ca and 48Ca usually in Skyrme fits (here SLy4)
 40Ca+40Ca result slightly better than 48Ca+48Ca

INT Program INT-11-2d

¹⁶O + ²⁰⁸Pb Fusion Cross-Section

Umar, Oberacker, EPJA 39, 243 (2009)

INT Program INT-11-2d

Application to Fusion

⁶⁴Ni + ¹³²Sn Complete Set of Barriers

INT Program INT-11-2d

- Use IWBC
- Average over orientations

 $σ_f(E_{c.m.}) = \int dcos(β) P(β) σ(E_{c.m.}, β)$ <u>Exp.:</u> J.F. Liang *et al.*, PRL 91, 152701 (2003); PRC 75, 054607 (2007)

Umar and Oberacker, Phys. Rev. C 76, 014614 (2007)

(am

ь

Formation of ¹²C In the Universe (also ¹⁶O)

- Be has 10⁻¹⁶s lifetime and not found in nature
- In stars due to ⁴He abundance small amount of ⁸Be always present
- ⁴He+⁸Be combine to form resonant state of ¹²C
- Excited state decays to ground state via an intermediate state
- Use TDHF to study the dynamics of this collision

Umar, Maruhn, Itagaki, Oberacker Phys. Rev. Lett. **104**, 212503 (2010)

INT Program INT-11-2d

$$\alpha - Be \qquad E_{cm} = 2 MeV$$

Triple Alpha Reaction

Dynamics of Transition

INT Program INT-11-2d

Triple Alpha Reaction

Parity Evolution

INT Program INT-11-2d

Dynamics of Heavy Systems

INT Program INT-11-2d

Cold and Hot Fusion of Heavy Systems

Heavy nuclei exhibit a very different behavior in forming a composite system

Light-Medium Mass Systems

 $\sigma_{capture} \approx \sigma_{ER} \approx \sigma_{fusion}$

- Fission and quasi-fission negligible
- Simple V(R) for composite system

Heavy Systems

- $\sigma_{capture} = \sigma_{QF} + \sigma_{FF} + \sigma_{ER}$
- Quasi-fission dominant
- Di-nuclear composites common
- A multi-stage V(R)
- QF may masquerade as DI

INT Program INT-11-2d

Excitation Energy

- Excitation energy is an important indicator of reaction dynamics
- Superheavy formations are very sensitive to excitation energy
- Indicator of temperature for compound configurations
- Traditional knowledge based on initial and final reaction products:

$$E^* = E_{c.m.} + Q_{gg}$$

Time evolution of excitation energy could tell us about the survival of intermediate configurations

Density constraint makes this calculation possible via TDHF

Excitation Energies at Capture Point

 \rightarrow Experimentally cited excitation energy $E_{exp}^* = E_{c.m.} + Q_{gg}$

We calculate excitation energy as a function of R(t)

INT Program INT-11-2d

Excitation Energies

Should be alignment averaged: $E^*(E_{c.m.}) = \int_0^1 d\beta \sin(\beta) P(\beta) E^*(E_{c.m.},\beta)$

INT Program INT-11-2d

Potentials

INT Program INT-11-2d

Cross-Sections

Umar, Oberacker, Maruhn, Reinhard, PRC 81, 064607 (2010)

Angle average ²³⁸U alignment:
 significantly reduces x-section

$$\sigma_{f}(E_{c.m.}) = \int_{0}^{1} d\beta \sin(\beta) P(\beta) \sigma(E_{c.m.},\beta)$$

- x-section falls rapidly for β >10°
- $sin(\beta)$ multiply small angles
- $P(\beta)$ is in the range 0.4-0.6

Experimental data (private communication):

- 1. Yu. Ts. Oganessian, *Phys. Rev. C* **70**, 064609 (2004)
- 2. Yuri Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)

INT Program INT-11-2d

Cross-Sections

Umar, Oberacker, Maruhn, Reinhard, PRC 81, 064607 (2010)

- Could not find data for capture x-section
- Calculated capture x-section (reproducing one σ_{ER} x-section value.)

G. Giardina, S. Hofmann, A.I. Muminov, and A.K. Nasirov, *Eur. Phys. J. A* **8**, 205 (2000)

Experiments:

- 1. S. Hofmann et al., Rev. Mod. Phys., 72, 733 (2000)
- 2. S. Hofmann et al., Eur. Phys. J. A 14, 147 (2002)

INT Program INT-11-2d

Neutron Transfer in TDHF

Recent studies show that TDHF description of HI collisions is most accurate for the entrance channel dynamics:

Umar, Oberacker, *J. Phys. G* **36**, 025101 (2009) Guo, Maruhn, Reinhard, Hashimoto, *Phys. Rev. C* **77**, 041301 (2008)

Recent DD-TDHF studies show good agreement with friction models Kouhei Washiyama, Denis Lacroix, and Sakir Ayik, *Phys. Rev. C* 79, 024609 (2009)

- One of the processes that influence fusion is neutron transfer
- Investigate neutron transfer in TDHF (semi-classical) and compare with QM model calculations:

V. I. Zagrebaev, V. V. Samarin, and W. Greiner, *Phys. Rev. C* 75, 035809 (2007)

Umar, Oberacker, Maruhn, Eur. Phys. J. A 37, 245 (2008)

INT Program INT-11-2d

Two Neutron-Rich Systems Above/Below the Barrier

• $^{16}O+^{24}O$ at E_{cm}= 8 MeV (below effective barrier)

INT Program INT-11-2d

Analyze Transfer at Single-Particle Level

Long after recoil we have non-zero neutron probability left at ¹⁶O

INT Program INT-11-2d

Transfer Probability Below the Effective Barrier

In a many-body system different states will see different barriers TDHF can simulate some aspects of this physics

INT Program INT-11-2d

$^{40}Ca+^{96}Zr$ System at $E_{cm} = 91$ MeV

Transfer Probability Below the Effective Barrier

Sub-states of 2d_{5/2} dominate the transfer

Our results in agreement with quantum mechanical model: V. I. Zagrebaev, V. V. Samarin, and W. Greiner, *Phys. Rev. C* 75, 035809 (2007)

INT Program INT-11-2d

Conclusions

- There is mounting evidence that TDHF dynamics give a good description of the early-stages of low-energy HI collisions
- We have developed powerful methods for extracting more information from the TDHF dynamical evolution (V(R), M(R), E*, etc.)
- Although heavy systems pose a greater challenge, such microscopic calculations may provide an insight into these collisions
- Effort needed to incorporate deformation and scattering information in to the Skyrme parametrization