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Two-nucleon removal (knockout) reaction sensitivity

Probe of (spatial) two-nucleon correlations (g.s.) 

angular          orbital angular momentum

Bottom line:
There us a need for data to benchmark and 
validate predictions for more exclusive

final-state observables
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Outline of this discussion

1. Removal (knockout) reactions – essentials:
Spatial selectivity - near surface dominance
Thresholds: direct vs indirect (two-step) pathways

2. 2N overlaps, two-particle density – angular 
correlations – value of the LS representation   

3. Limited data sets so far – status - tests

4. The case of 12C(-2N) – asks several questions

5. Summary comments – further test cases?
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Probing single particle (shell model) states 

Experiments do not measure target final states. Final 
state of core c measured – using decay gamma rays.
How can we describe and what can we learn from 
these? 
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P.G. Hansen and J.A. Tostevin, Ann Rev Nucl Part Sci 53 (2003) 219

One such experimental option is one or two-nucleon 
removal – at ~100 MeV/nucleon
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Removal probes single-nucleon wave functions

Interaction with the 
target probes wave 
functions at surface
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Reaction timescales – surface grazing collisions
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For 100 and 250 MeV/u incident energy:
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Must include all 2 nucleon removal mechanisms

core survival
and nucleon
“ removal ’’

2N stripping
1N stripped 
1N diffracted
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Strength from e-induced knockout – stable nuclei

W. Dickhoff and C. Barbieri, Progress in Particle 
and Nuclear Physics 52 377 (2004) 
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Removal strengths at the two Fermi surface(s)
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Two nucleon knockout – direct reaction set
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neutron rich
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neutron 
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Direct two-proton removal reaction mechanism
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-np: direct and indirect – really hard
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Structure interface – via the two-nucleon overlaps

We use this AS IS – no Moshinsky, NN relative s-
states projection … no light-ion vertex restrictions
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Sensitivity to s.p. orbitals – correlation with radii
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Target drills a cylindrical volume at projectile surface

(i) 2N removal cross sections will be 
sensitive to the spatial correlations of 
pairs of nucleons near the surface
(ii) No spin selection rule (for S=0 
versus S=1 pairs) in this 2N removal 
reaction mechanism 
(iii) Expectation of the sensitivity to 
correlations can be predicted from 
2N overlaps in the sampled volume
(iv) No linear or angular momentum 
mismatch – mechanism ‘sees’ ALL 
hole-like-state configurations

(i) 2N removal cross sections will be 
sensitive to the spatial correlations of 
pairs of nucleons near the surface
(ii) No spin selection rule (for S=0 
versus S=1 pairs) in this 2N removal 
reaction mechanism 
(iii) Expectation of the sensitivity to 
correlations can be predicted from 
2N overlaps in the sampled volume
(iv) No linear or angular momentum 
mismatch – mechanism ‘sees’ ALL 
hole-like-state configurations

z
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Correlations (cfp) of two d5/2 protons in 28Mg
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Two-nucleon position correlations

E.C. Simpson, JAT, PRC 82, 044616 (2010)

Summing over spins (to which we are insensitive) the two 
nucleon joint-position probability is:
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Mapping rapid changes of structure: a challenge

P. Fallon et al., PRC 81, 041302(R) (2010)
P. Adrich et al., PRC 77, 054306 (2008) *** 
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Sudden nucleon removal from the mass A residue

Sudden removal:  residue momenta probe the
summed momenta of pair in 
the projectile rest frame

A

Projectile rest 
frame

laboratory frame         and 

and component equations



22

Residue momentum 11Be10Be – halo case
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Single-neutron knockout to the continuum: 22C

N. Kobayashi, T. Nakamura, JAT et al., (in preparation, 2011)

240 MeV/u @ RIKEN

SF          sigma (mb)

Shell model (WBP)

Expt.



24

0+

4+

0+

Two nucleon KO – predicted p//  J-dependence

2+

R
es

id
ue

 m
om

en
tu

m
 p

ro
ba

bi
lit

y

2+

residue parallel momentum (MeV/c)

28Mg (2p) 82.3 A MeV

4+
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Two-nucleon removal p// distributions

(-2p) (-2n)

E.C. Simpson et al., PRL 102 132502 (2009); PRC 79, 064621(2009)
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First final-state-exclusive p//: 28Mg(-2p)
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I  C(I=L) C(L=I+1) C(L=I-1)
0    0.571       0.428 0.0
2    0.510 0.122 0.367
4    0.367 0.034 0.598
6    0.142 0.0 0.857

Final-state spin-value sensitivity: e.g. 54Ni(-2n)

Relatively ‘pure’ 2N 
configurations give 
simple L (and I) –
dependences – e.g. 
assuming [f7/2]6  [f7/2]4

I L-values
0    L= 0, 1
2    L= 1, 2, 3
4    L= 3, 4, 5
6    L= 5, 6

-400                        0                         400
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Spectroscopy of 44S at N=28 – using 46Ar(-2p)

et al.,
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Angular correlations – and L-transfer sensitivity

E.C. Simpson, JAT, PRC, submitted (2010)

depends only on L (=1+2) of the two nucleons.
Structure calculation tells us strength of the L-content of the 
2N overlap via the LS coupled two-nucleon amplitudes:

After summing over the nucleon spins (to which we are 
insensitive) the two nucleon joint-position probability is:

predict p// distribution
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Configuration-mixed, sd-shell example: 26Si(-2n)

E.C. Simpson, JAT, PRC 
submitted (2010)

with cross sections:
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Two-nucleon position correlations

E.C. Simpson, JAT, PRC 82, 044616 (2010)

Summing over spins (to which we are insensitive) the two 
nucleon joint-position probability is:
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Perturbative extended basis: 48Ca(-2n, gs)
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np correlations - light nuclei – high thresholds
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In two nucleon removal data - one sees

12C1 2
12C

10(N,Z)

Cross sections: J.M. Kidd et al. PRC 37, 2613 (1988)
Momentum distributions: D.E. Greiner et al., PRL 35, 152 (1975)
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Comparison to (inclusive) cross section data

Cross sections: J.M. Kidd et al. PRC 37, 2613 (1988)
Momentum distributions: D.E. Greiner et al., PRL 35, 152 (1975)
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Exclusive observables: 12C(-np) case at 2.1 GeV/u

E.C. Simpson, JAT, 
PRC 83, 014605
(2011)

WBP

PJT
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Inclusive 2p removal momentum distribution 

E.C. Simpson, 
JAT, in preparation
(2010)

Momentum distributions: D.E. Greiner et al., PRL 35, 152 (1975)
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Existing (inclusive and averaged) p// distributions

Momentum distributions: D.E. Greiner et al., PRL 35, 152 (1975)
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Two-nucleon position correlations

E.C. Simpson, JAT, PRC 82, 044616 (2010)

The two nucleon joint-position probability is:

12C(-np)
10B(1+,T=0)
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Two-nucleon correlations

E.C. Simpson, JAT, PRC 82, 044616 (2010)
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np-removal – specific predictions

E.C. Simpson, JAT, PRC 82, 044616 (2010)

10B(1+,T=0)
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Testing the T=0 wave function at A=12

Role of NNN force?Role of NNN force?


