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Introduction

Nuclear Equation of state
Symmetry Energy

Phase diagram
Spacetime evolution

First questions to be answered:
Why is the Symmetry Energy so important?

@ At low densities: Nuclear structure (neutron skins, pigmy resonances), Nuclear
Reactions (neutron distillation in fragmentation, charge equilibration), and
Astrophysics, (neutron star formation, and crust),

@ At high densities: Relativistic Heavy ion collisions (isospin flows, particle
production), Compact stars (neutron star structure), and for fundamental
properties of strong interacting systems (transition to new phases of the matter)
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Nuclear Equation of state
Symmetry Energy

Phase diagram
Spacetime evolution

First questions to be answered:
Why is the Symmetry Energy so important?

@ At low densities: Nuclear structure (neutron skins, pigmy resonances), Nuclear
Reactions (neutron distillation in fragmentation, charge equilibration), and
Astrophysics, (neutron star formation, and crust),

@ At high densities: Relativistic Heavy ion collisions (isospin flows, particle
production), Compact stars (neutron star structure), and for fundamental
properties of strong interacting systems (transition to new phases of the matter).

Why HIC?
@ Probing the in-medium nuclear interaction in regions away from saturation.

@ Reaction observables sensitive to the symmetry term of the nuclear equation of
state.

@ High density symmetry term probed from isospin effects on heavy ion reactions
at relativistic energies.
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Introduction

Nuclear Equation of state
Symmetry Energy

Phase diagram
Spacetime evolution

First questions to be answered:
Why is the Symmetry Energy so important?

@ At low densities: Nuclear structure (neutron skins, pigmy resonances), Nuclear
Reactions (neutron distillation in fragmentation, charge equilibration), and
Astrophysics, (neutron star formation, and crust),

@ At high densities: Relativistic Heavy ion collisions (isospin flows, particle
production), Compact stars (neutron star structure), and for fundamental
properties of strong interacting systems (transition to new phases of the matter).

Why HIC?
@ Probing the in-medium nuclear interaction in regions away from saturation.

@ Reaction observables sensitive to the symmetry term of the nuclear equation of
state.

@ High density symmetry term probed from isospin effects on heavy ion reactions
at relativistic energies.

In this talk:

@ HIC at intermediate energies 400AMeV-2AGeV .

@ Investigation of particle ratios: Probes for the symmetry energy density
dependence. In-medium effects in inelastic cross sections & Kaon potential
choices.
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Equation of State (EOS)

The nuclear matter thermodynamical prop-
erties are described by an equation of state.

The nuclear EOS gives the binding energy
E/A or the pressure P of the system per
nucleon, as a function of the baryon density
or the temperature.

E(p7 T) = Eth(pv T) + Ec(p, T= 0) + Eo
Eiwn(p, T): thermic energy, consists of a
kinetic and a dynamic term.

Ec(p, T = 0): compression energy at T = 0.
Ey: binding energy at T =0 and pop.

2
Incompressibility: K = QpS(ng)LJB:po
B
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Introduction

Equation of State (EOS)

The nuclear matter thermodynamical prop-
erties are described by an equation of state.

The nuclear EOS gives the binding energy
E/A or the pressure P of the system per
nucleon, as a function of the baryon density
or the temperature.

E(p7 T) = El'h(pr T) + Ec(p, T= 0) + ED
Eiwn(p, T): thermic energy, consists of a
kinetic and a dynamic term.

Ec(p, T = 0): compression energy at T = 0.
Ey: binding energy at T =0 and pop.

2
Incompressibility: K = QpS(ng)LJB:pO
B

Nuclear Equation of state
Symmetry Energy

Phase diagram
Spacetime evolution

— Skgrme Saft
Skyrme Hard

E/A [MeV]

1 " 1 L 1
] [IN} 02 03 04 0s
-3.
p[fm ]

At psat: well defined by studies on stable nuclei.

High pg: is predicted by the theoretical models
and is adjusted to fit the HIC data.

Constraints from HIC:
Multiplicities and Flows of n and p .
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Symmetry Energy

The EOS depends on the asymmetry parame-
Z.

N—
ter o = NiZ:

E(pB,a) = e(ppBB,a) = E(p370) + Esym(pB)a2

Thus, it gives a definition of the symmetry en-

ergy:
_ 108%E(ps,a) 1 8¢
Fom = 3 00z 120 = 3P 5,7, lbes g
a Esm
Ksym = 9P0( )|ps =po

The symmetry energy describes the difference
between the binding energy of the symmetric
matter and that of the pure neutron matter.
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Nuclear Equation of state
Symmetry Energy

Phase diagram
Spacetime evolution

Symmetry E

gy

The EOS depends on the asymmetry parame-
t N—-Z.
era=JNyz:

E(pg,a) = % = E(pB,0) + Esym(ps)a?

Thus, it gives a definition of the symmetry en-
ergy:

_ 108%E(ps,a) 1 8¢
Eom = 3 et 10 = 39257 o
82 Esm
Ksyrn—gpo( 5 )IPB =po

The symmetry energy describes the difference
between the binding energy of the symmetric

matter and that of the pure neutron matter.
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Different behavior even at saturation point.
High pg, discrepancies between the models
increases.

Constraints from HIC:
Multiplicities and Differential flows of n and p.
Pion flows and lIsospin ratios 7~ /7, KO/K™T .
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@ Liquid phase:
T ~ 10MeV .
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B
@

Mid Rapidity

@ Compression. Sequential N-N
binary collisions. Incoming
matter of the target & the
projectile is mixed &
compressed forming a

Pre-equilibrium

Hadrodynamic hnse
evolution P short-lived stage of nuclear
matter of high pg that depends
on the EOS.
Without QGP With QGP E =1AGeV, T =~ 30 — 60MeV,
pB 22— 3pg.

@ Initial stage. Nuclei at ground
state. P=0,T =0, p = po.
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Nuclear Equation of state
Symmetry Energy

Phase diagram
Spacetime evolution

B time

';g @ Expansion. Expansion of the
8 density energy. T,p .

§ Hot matter interacts with the

cold matter of the spectator.
Ebeam > 10AGeV = QGP/,',T,,'t,
P lower than Ppadronic phase-

@ Compression. Sequential N-N
binary collisions. Incoming
matter of the target & the
projectile is mixed &

Pre-equilibrium

Hadrodynamic h compressed forming a
evolution phase short-lived stage of nuclear
b i matter of high pg that depends
. { on the EOS.
Without QGP //’\\wﬁh QaP E — 1AGeV, T ~ 30 — 60MeV.
pB =~ 2 — 3po.

@ Initial stage. Nuclei at ground
state. P=0,T =0, p = po.
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Introduction

[+ Low pg = no
further interaction.

[+ Expansion of the
density energy. T,p .
Hot matter interacts with the
cold matter of the spectator.
Ebeam > 10AGeV = QGPIimitv
P lower than Ppagronic phase-

Mid Rapidity

@ Compression. Sequential N-N
binary collisions. Incoming
matter of the target & the
projectile is mixed &

Pre-equilibrium compressed forming a

Hadrodynamic phase :

evolution short-lived stage of nuclear
matter of high pg that depends
on the EOS.
E = 1AGeV, T ~ 30 — 60MeV,
pB A 2 —3pg.

@ Initial stage. Nuclei at ground
state. P=0,T =0, p = po.



Quantum Hadrodynamics (QHD)

Meson exchange model
Asymmetric Nuclear Equation of State

Neutron
Proton._

The NN Interaction is described by the exchange of mesons.
SCALAR (attraction): o, ¢ (isospin dependence).
VECTOR (repulsion): w, p (isospin dependence).
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Quantum Hadrodynamics (QHD)

Meson exchange model
Asymmetric Nuclear Equation of State

Neutron
Proton._

The NN Interaction is described by the exchange of mesons.
SCALAR (attraction): o, ¢ (isospin dependence). teson
VECTOR (repulsion): w, p (isospin dependence). \

Lagrangian density

nig- o AR

+ P(—uwp — VT * P + 800 + 57 g)w

Lagrangian density of: the free nucleons, the o meson with U(o) = %mf,o2 + %gga3 +
}—‘g3a4, the w meson with the field tensor Q,, = Jywy — Oywy, the p meson with

the field tensor I?W = Oupi — Oupji, the 6 meson and of their interaction.
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Quantum Hadrodynamics (QHD)

Meson exchange model
Asymmetric Nuclear Equation of State

The nuclear EOS for asymmetric nuclear matter in the QHD picture:

£=Y2 / oy B0+ U®) + 3R + 3 honks + 3Forks
i=n,p
The nuclear Symmetry energy in the QHD picture :
2
1k 1 m*
Egym=-—L + > |f,—f
sym 6 E:— + > P 5 E;:k PB
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Vlasov term

Transport theory Collision term

Relativistic transport equation
Relativistic Boltzmann-Uehling-Uhlenbeck (RBUU)

[p}i0% + (gupyiF!" + mi(9km?)) OF 1fi(x, p*) =

dp2dp3dp4

@n)3 —tr?rpﬁrW(P*yPik,P;vPZ)

{ffa[l — f][1 — h] — B[l — B][1 - f]}

@ Vlasov term. Temporal evolution of the system, which is described by the
phase-space distribution function f(x, p*), under the influence of a mean field
(m;,p;).

@ Collision term. Transition rate W, is expressed by the differential cross section

do
( dQ(s,0) )'

W(p*,p3,p3,pi) = (P" +P2)2*54(P +p3 —pP5 —p;)

where © is the scattering angle in the cms frame and s the square of the total
energy, s = (p* + p3)?

Vaia D. Prassa Exploring the isovector equation of state at high densities with HIC



Vlasov term
Collision term

Transport theory

Nucleus Test Test particle method

ticl . . o q
0 kb Representation of the phase-space distribution function by a number
of test particles.
Gaussian test particles
SNy N N
o g(p" = p; (7)) = p & TH N6 [prprt (r) — mi?]

Distribution function
* . (RN (x) /o2 (p*—p} (T))? /o>
f(x,p*) = m Zf‘:’l" fj;’j dr eRinR(x)/ o J(P" =P (7)) /o),

x8[(xu = Xip (1)) uf ()18 [y () — mi?]

Test particles equations of motions

d p_ pi(r)
ar i T mE(x)’
Lo = BB FEY (4(r)) + 0% m? ()

Vaia D. Prassa Exploring the isovector equation of state at high densities with HIC



Vlasov term

Transport theory Collision term

Collision term

Inelastic channels
d®ps d®pt o
(27r 3 f p2 503 56‘ W(p*, p>,pP3,pP;) Ingoing  Outgoing Isospin
channel Channel coefficients
{0 p3)f(x, P4)[ (X-,P ML = f(x,p3)] = =
. . nn pA 1
f(XaP ) (X Pz)[ (X1p3)][1_f(xvp4)]} nAO 2/3
np pA° 1/3
nA+ 2/3
@ Factors (1 —f;), (fi = f(x,p})), Pauli pp pAT 1/3
principle. nA*T+ 1
@ Transition rate: Decay width:
W = (2m)*6* (k + ko — k3 — kq) (m*)*| T |2.
3 p2 2 2
@ Two particles collide if: Mq) =T R (@), z(q) = 9 +9
q 22 2\ 21 52
d < dg= /et 1+¢°R qg°>+ 0
s
Elastic channels Resonance decay probability P,
Q NN <= NN r(M)At
P=1—exp|——F"—
Q NA = NA ~hc
v
Q AA = AA

Vaia D. Prassa Exploring the isovector equation of state at high densities with HIC



Cross sections

Particle Production Rewr-muiclza e

— k=00 Elastic Baryon-Baryon collisions
k=11

N - kel ! In-medium effects: Dirac-Brueckner.
N k=17
— ok = prdis | Suppression  of  cross sections at
) Epeam < 300AMeV and high pg.
=
" At high Ej.;,, the o+ approaches asymp-
o totically ofee
3 3 Fuchs et al. Phys. Rev. (64 (2001),
1 1 1 1 1 1 024003. p
0 50 100 150 200 250 300 350
E,, [MeV]
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Oinel (mb)

0.1

001

Particle Production

Cross sections

Kaon-nucleon potential

e T Ze";mv:: ST Inelastic Baryon-Bary
L = R In-medium effects: DBHF.
3 3 E Ter Haar and Malfliet, Phys.Rev.C36, 4
C ] C (1987)
3 e E i = f(p)ofe(Erab)
i 11 — ] ]

, | oose,| 1 F(0) = 1 + ao(ps/po) + ai(ps/po)® +
E o 30 R a(ps/po)?.
i :'. 1 F ! - "’i"n 1 Inverse channel:
Moo 1 r P=P | 1 (2Sy+1)(2Sy+1) 92
r :{ | | 1 r J]If | | | 1 INA—=NN = (35, 51)(25,+1) g QUNNHNA
0 0,5 1 15 2 00 I0 05 1 1.5 2

E,, (GeV) (GeV)
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Cross sections

Kaon-nucleon potential

Particle Production

2
State I Decay channel  Weights
20 A~ —3/2 nm— 1
A° -1/2 pr— 1/3
- nm® 2/3
21 AT +1/2 p w0 2/3
> nmt 1/3
ATT 43/2 p ot 1

10

20 30
time (fm/c)
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Cross sections
Kaon-nucleon potential

Particle Production

' (FOPI)

+ + Centrality dependence

410 Au + Au collision at 1AGeV.
Apart: number of participants in a collision.

Overestimation of data.
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Cross sections
Kaon-nucleon potential

Particle Production

' (FOPI)

+ + Centrality dependence

410 Au + Au collision at 1AGeV.
Apart: number of participants in a collision.

5 5 . .
Overestimation of data.
1 1
% 0 100.0 200.0 300.0 4003
A
part
@ : : e "
s
} o w FOPI
|o‘i"';}’-aog( o xropl| 210"

107 Transverse momentum spectra

'""m e 1 Au + Au collision at 1AGeV, at mid-rapidity

(-0.2 < y? <0.2).

1121, d*oldp,dy (mbam/(MeVrcy’)

Very good agreement with data.

.
300°
P, (MeV)
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Particle Production

Pion rapidity distribution

Au + Au collision at Epeam = 1 AGeV,
with p: > 0.1 GeV/c.

Mid rapidity region: good agreement.

Spectator region: overestimation.

Cross sections

Kaon-nucleon potential

FOPI

Vaia D. Prassa
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Cross sections

Particle Production Rewr-muiclza e

NA — BYK
T
Kaon production ]
PR
! -
Q B— YK p/
Q BB — BYK /
1 1 1 1 1
L. 10 20 30 40 60
Au + Au central collision at 1AGeV. R o e e
PR
§ 0.02f ! - o002} P -
> /
* 001 - o001 | —
Y/
/
0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 10 20 30 40 50 60
time (fm/c) time (fm/c)
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Cross sections

Particle Production Rewr-muiclza e

N1t — YK NA — BYK
0N T T 0¥ T T
Kaon production 7 %%er ]
e
- 0.02f ! —
Q B— YK p/
- 001f -
Q BB — BYK /
1 1 1 1 1
L. 60 0 10 20 30 40 60
Au + Au central collision at 1AGeV. o R o e e
- 002 @ e ——— -
/
/
)
- 001f / -
Y/
/
1 1 1 1 1
50 60 10 20 30 40 50 60
time (fm/c) time (fm/c)
wio K-pot

Rapidity distribution of K+

Ni + Ni collision at 1.93AGeV.

oefr: reduction of KT = towards a
better agreement with data.
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Cross sections

Particle Production Rewr-muiclza e

Yield ratios: Determination of the Egy;, behavior.

7~ /mt: partially affected from the in-medium cross sections.
KO9/K™: appears robust against the in-medium cross sections.

V. Prassa et al, Nucl.Phys. A789, 311-333 (2007)

(n/my-ratio

(K/K*)-ratio
»
T
1

—_
5]
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T
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1
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Cross sections
Kaon-nucleon potential

Particle Production

Kaons equation of motion Kaon in-medium energy

[(0" +iVy)? + mi?] ¢k (x) =0

Chiral perturbation theory potential

Ex(k) = ko = /K2 + m2 + Vg

3 —_————————
V= —=iu I [— NC 1
8fx2 | chpr |
kN I ]
mi = [mk — 5 ps + VuVH I ]
f,
v « I b
L€ L1 ]
B 12 OBE
= < i i
One boson exchange model potential ] ]
1 L ]
vk = gf:j“ L .
1 - ]
mg
* 2
m = m _ o T TR SN N TN AN S S SN SN T (N SN SN T T S NN SR S S T T
K kT 3 &N 0 1 2 3 2
Pe/Po
v
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Cross sections
Kaon-nucleon potential

Particle Production

Kaons equation of motion Kaon in-medium energy

[(0" +iVy)? + mi?] ¢k (x) =0

Ex(k) = ko = 1/k2 4+ m*? 4+
Chiral perturbation theory potential K (k) 0 tmict Vo

3 1
Y7 Y ]
Y kN C ]
* __ 2
My = ([ My — ﬁg ps + VMV'U‘:F f%ps3 |

One boson exchange model potential

1 . L
VE = S (fri* 648" 1
* mg -
my = mf( + ?go/\/a |

upper sign KT
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Cross sections
Kaon-nucleon potential

Particle Production

Kaons equation of motion Kaon in-medium energy

[(0" +iVy)? + mi?] ¢k (x) =0

Ex(k) = ko = 1/k2 4+ m*? 4+
Chiral perturbation theory potential K (k) 0 tmict Vo

3 1
Y7 Y ]
Y kN C ]
* __ 2
My = ([ My — ﬁg ps + VMV'U‘:F f%ps3 |

y

One boson exchange model potential

E, (k=0/m,

(£ 05

1
3
= mg
my = \/mf(-i-?(goNUJFfsps)
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AN, J/dy

Cross sections

Kaon-nucleon potential

Particle Production

2004~

ity distribution: Dependence on the Vi

Central Au+ Au@1AGeV.
Reduction in the whole rapidity region.

4 OBE: less stopping.

Combination of Vi and o4 further reduction.
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Cross sections

Particle Production eem-mueizem peimiEl]

0.08
gm_ ity distribution: Dependence on the Vi
2004
Central Au+ Au@lAGeV.

Reduction in the whole rapidity region.

v 14 OBE: less stopping.
" -1 Combination of Vi and o.g: further reduction.
*
= 002

1.5
0.03] -
OBE — OBE
- \ - o002 -
Rapidity distribution: Isospin dependent-Vy o1 cwpr o 001 arr -
Central Au+ Au@1AGeV. L N I
003 T T T T T
Rapidity distributions not affected. s ol _ R PR OFF
Main contribution: mid-rapidity region. g 2\
£ oo N\ cwer T 001F ChPT *
Combination Vi and o.¢: further reduction. ol TR 3 -
-15 1 0.5 ?m 03 1 15 15 1 0.5 o 05 1 )
y y
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Cross sections
Kaon-nucleon potential

Particle Production

Rapidity distributions of KT

0.08 T T
A XN Ni + Ni@1.93AGeV b < 4fm.
{ 0.04F ChPT: ofee good agreement with exp. data.
Z 0f x oefr: underestimation of the exp. data.
Iig OBE: 0fee good agreement with exp. data.
: ¥ 15 Oeff: on the exp. data.

Exploring the isovector equation of state at high densities with HIC
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Particle Production

Cross sections

Kaon-nucleon potential

w K-pot
0.08 — T T T T T T T T
| €< w ChPT e
conf B L 2e,
c F /. §4§ D
H o o ®
= 004
=
2 002 2
e 1 ., 1 1 o, 1, 1N
5 -1 0.5 0 05 1 15
005 1 T T i T
5 0.06
©
ok 384,
S 004 3
s O F Coahs
I =3 <
002 Ay ‘e
e ) ., 1 . 1 ., 1 . 1 ¢
1.5 -1 0.5 0 05 1 1.5

Centrality dependence K™

Au+ Au@1AGeV collision.

Underestimation of the experimental data.

OBE: closer to the exp.data.

V. Prassa et al, Nucl.Phys. A832 88-99 (2010)

Rapidity distributions of KT

Ni + Ni@1.93AGeV b < 4fm.

ChPT: ofee good agreement with exp. data.
oeff: underestimation of the exp. data.
OBE: 0fee good agreement with exp. data.
Oeff: on the exp. data.

w K-pot
1.0x10™ T T T T
P [[® —-® v OBE pot
© [ | < - — <€ ~cnPT pot g3 7
2 - .
= - -7
= 5 Phg 4
s 500 - _ < —
P L i
o [ ]
0.0 . 1 N 1 N 1
~ 02 04 0.6 08
Lox10™ —— T T .
5 L ]
© - -
H r 9
- -~
A . -
5 5.0x10” [~ -
v [ - ]
< B 4
= [ ]
[ " 1 N 1 N -
0.0
02 04 0.6 08
AP‘M/AM‘(
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Cross sections
Kaon-nucleon potential

Particle Production

Temporal evolution of K°/K*

18 s i Central Au+ Au@1AGeV.
OBE: reduction K®/K™*. Favors K* production.
ChPT: raise. Favors KO production.

IOBE: raise KO/K™.
IChPT: sharp drop.

time (fm™) time (fm”)
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Cross sections
Kaon-nucleon potential

Particle Production

Temporal evolution of K°/K*

18 s SA.ALu.ly Central Au + Au@1AGeV.
OBE: reduction K°/K™*. Favors K+ production.
ChPT: raise. Favors K° production.

IOBE: raise KO/K™.
k R IChPT: sharp drop.

——7—
1

=¥

T==

N

2ft 7 Au+Au@1AGeV i

P T - T T Y QO ]
time (fm™) time (fm”) o-—-aIChPT| 1

=—=a ChPT __

K9/K* dependence on the EOS o—OBE | -
Central Au+ Au@1AGeV. ]
IChPT: reduction ~ 20%. 4
IOBE: NLp = 3%, while NLpé == 5%. 09 ’JL NLp NLp3 ]
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Summary & Outlook

Summary

o Effective N-N cross sections:

Dirac Brueckner Hartree Fock.
@ Pions: reduction of production. At mid-rapidity good agreement with the
data.
o 7~ /7t depends on the effective inelastic cross sections.
o Kaons: more affected (=~ 30%).
o KO/K™ almost unchanged (large mean free path).

o Kaon-nucleon potential
@ Chiral Perturbation Theory, ChPT.
@ One-Boson-Exchange, OBE.
@ Reduction of kaon production.
Good agreement with the data (particularly with OBE).
ChPT: K%/ K+ depends on the parametrization of the EOS.
OBE: K9/K* more robust against the EOS parametrization.

© 060

Outlook
@ Inclusion of momentum dependence.
T. Gaitanos, et al. Nucl.Phys. A828, 9-28 (2009).
o Improvement of NN-interactions.
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