INT program Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

Seattle, August 8 - September 2, 2011

Exploring the isovector equation of state at high densities with HIC

Vaia D. Prassa

Aristotle University of Thessaloniki

Department of Physics

< <p>>

4 句

500

Outline

Introduction

- Nuclear Equation of state
- Symmetry Energy
- Phase diagram
- Spacetime evolution

2 Quantum Hadrodynamics (QHD)

- Meson exchange model
- Asymmetric Nuclear Equation of State

Transport theory

- Vlasov term
- Collision term

Particle Production

- Cross sections
- Kaon-nucleon potential

5 Summary & Outlook

Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

First questions to be answered: Why is the Symmetry Energy so important?

- At *low densities*: Nuclear structure (neutron skins, pigmy resonances), Nuclear Reactions (neutron distillation in fragmentation, charge equilibration), and Astrophysics, (neutron star formation, and crust),
- At high densities: Relativistic Heavy ion collisions (isospin flows, particle production), Compact stars (neutron star structure), and for fundamental properties of strong interacting systems (transition to new phases of the matter).

Why HIC?

- Probing the in-medium nuclear interaction in regions away from saturation.
- Reaction observables sensitive to the symmetry term of the nuclear equation of state.
- High density symmetry term probed from isospin effects on heavy ion reactions at relativistic energies.

In this talk:

- HIC at intermediate energies 400*AMeV-2AGeV*.
- Investigation of particle ratios: Probes for the symmetry energy density dependence. In-medium effects in inelastic cross sections & Kaon potential choices.

Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

First questions to be answered: Why is the Symmetry Energy so important?

- At *low densities*: Nuclear structure (neutron skins, pigmy resonances), Nuclear Reactions (neutron distillation in fragmentation, charge equilibration), and Astrophysics, (neutron star formation, and crust),
- At high densities: Relativistic Heavy ion collisions (isospin flows, particle production), Compact stars (neutron star structure), and for fundamental properties of strong interacting systems (transition to new phases of the matter).

Why HIC?

- Probing the in-medium nuclear interaction in regions away from saturation.
- Reaction observables sensitive to the symmetry term of the nuclear equation of state.
- High density symmetry term probed from isospin effects on heavy ion reactions at relativistic energies.

In this talk:

- HIC at intermediate energies 400*AMeV-2AGeV*.
- Investigation of particle ratios: Probes for the symmetry energy density dependence. In-medium effects in inelastic cross sections & Kaon potential choices.

Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

First questions to be answered: Why is the Symmetry Energy so important?

- At *low densities*: Nuclear structure (neutron skins, pigmy resonances), Nuclear Reactions (neutron distillation in fragmentation, charge equilibration), and Astrophysics, (neutron star formation, and crust),
- At high densities: Relativistic Heavy ion collisions (isospin flows, particle production), Compact stars (neutron star structure), and for fundamental properties of strong interacting systems (transition to new phases of the matter).

Why HIC?

- Probing the in-medium nuclear interaction in regions away from saturation.
- Reaction observables sensitive to the symmetry term of the nuclear equation of state.
- High density symmetry term probed from isospin effects on heavy ion reactions at relativistic energies.

In this talk:

- HIC at intermediate energies 400*AMeV*-2*AGeV*.
- Investigation of particle ratios: Probes for the symmetry energy density dependence. In-medium effects in inelastic cross sections & Kaon potential choices.

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram

Equation of State (EOS)

The nuclear matter thermodynamical properties are described by an equation of state.

The nuclear EOS gives the **binding energy** E/A or the **pressure** P of the system per nucleon, as a function of the **baryon density** or the **temperature**.

$$E(\rho, T) = E_{th}(\rho, T) + E_c(\rho, T = 0) + E_0$$

 $E_{th}(\rho, T)$: thermic energy, consists of a kinetic and a dynamic term. $E_c(\rho, T = 0)$: compression energy at T = 0. E_0 : binding energy at T = 0 and ρ_0 .

Incompressibility:
$$K = 9\rho_0^2 (\frac{\partial^2 E}{\partial \rho_B^2})|_{\rho_B = \rho_0}$$

Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

Equation of State (EOS)

The nuclear matter thermodynamical properties are described by an equation of state.

The nuclear EOS gives the **binding energy** E/A or the **pressure** P of the system per nucleon, as a function of the **baryon density** or the **temperature**.

$$E(\rho, T) = E_{th}(\rho, T) + E_c(\rho, T = 0) + E_0$$

 $\begin{array}{l} \displaystyle E_{th}(\rho,\,T): & \mbox{thermic energy, consists of a kinetic and a dynamic term.} \\ \displaystyle E_c(\rho,\,T=0): & \mbox{compression energy at } T=0. \\ \displaystyle E_0: & \mbox{binding energy at } T=0 & \mbox{and } \rho_0. \end{array}$

Incompressibility:
$$K = 9\rho_0^2 (\frac{\partial^2 E}{\partial \rho_B^2})|_{\rho_B = \rho_0}$$

At ρ_{sat} : well defined by studies on stable nuclei.

High ρ_B : is predicted by the theoretical models and is adjusted to fit the HIC data.

Constraints from HIC: Multiplicities and Flows of n and p .

uantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

Symmetry Energy

The EOS depends on the asymmetry parameter $\alpha = \frac{N-Z}{N+Z}$:

$$E(\rho_B, \alpha) \equiv \frac{\epsilon(\rho_B, \alpha)}{\rho_B} = E(\rho_B, 0) + \frac{E_{sym}(\rho_B)\alpha^2}{\epsilon_{sym}(\rho_B)\alpha^2}$$

Thus, it gives a definition of the symmetry energy:

$$\begin{split} \mathbf{E}_{sym} &\equiv \frac{1}{2} \frac{\partial^2 \mathbf{E}(\rho_B, \alpha)}{\partial \alpha^2} |_{\alpha=0} = \frac{1}{2} \rho_B \frac{\partial^2 \epsilon}{\partial \rho_{B3}^2} |_{\rho_{B3}=0} \\ \mathcal{K}_{sym} &= 9\rho_0^2 (\frac{\partial^2 \mathbf{E}_{sym}}{\partial \rho_B^2}) |_{\rho_B=\rho_0} \end{split}$$

The symmetry energy describes the difference between the binding energy of the symmetric matter and that of the pure neutron matter. Introduction Quantum Hadrodynamics (QHD)

Summary & Outlook

Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

Symmetry Energy

The EOS depends on the asymmetry parameter $\alpha = \frac{N-Z}{N+Z}$:

$$E(\rho_B, \alpha) \equiv \frac{\epsilon(\rho_B, \alpha)}{\rho_B} = E(\rho_B, 0) + \frac{E_{sym}(\rho_B)\alpha^2}{\epsilon_{sym}(\rho_B)\alpha^2}$$

Thus, it gives a definition of the symmetry energy:

$$\begin{split} \mathbf{E}_{sym} &\equiv \frac{1}{2} \frac{\partial^2 E(\rho_B, \alpha)}{\partial \alpha^2} |_{\alpha=0} = \frac{1}{2} \rho_B \frac{\partial^2 \epsilon}{\partial \rho_{B3}^2} |_{\rho_{B3}=0} \\ \mathcal{K}_{sym} &= 9 \rho_0^2 (\frac{\partial^2 E_{sym}}{\partial \rho_B^2}) |_{\rho_B=\rho_0} \end{split}$$

The symmetry energy describes the difference between the binding energy of the symmetric matter and that of the pure neutron matter.

Different behavior even at saturation point.

High ρ_B , discrepancies between the models increases.

Constraints from HIC: Multiplicities and Differential flows of n and p. Pion flows and Isospin ratios π^-/π^+ , K^0/K^+ .

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

• Gas phase: RHIC $T \approx 10 - 100 MeV$.

• Liquid phase: $T \approx 10 MeV$.

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

- Quark-gluon
 plasma: Ultra RHIC
 T > 100MeV
- Gas phase: RHIC $T \approx 10 100 MeV$.
- Liquid phase: $T \approx 10 MeV$.

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

• Initial stage. Nuclei at ground state. $P = 0, T = 0, \rho = \rho_0$.

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram **Spacetime evolution**

- Compression. Sequential N-N binary collisions. Incoming matter of the target & the projectile is **mixed** & **compressed** forming a short-lived stage of nuclear matter of high ρ_B that depends on the EOS. E = 1AGeV, $T \approx 30 - 60MeV$, $\rho_B \approx 2 - 3\rho_0$.
- Initial stage. Nuclei at ground state. P = 0, T = 0, ρ = ρ₀.

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

- Expansion. Expansion of the density energy. $T, \rho \downarrow$. Hot matter interacts with the cold matter of the spectator. $E_{beam} > 10AGeV \Rightarrow QGP_{limit}, P$ lower than $P_{hadronic phase}$.
- Compression. Sequential N-N binary collisions. Incoming matter of the target & the projectile is mixed & compressed forming a short-lived stage of nuclear matter of high ρ_B that depends on the EOS.

$$\begin{split} E &= 1 A GeV, \ T \approx 30 - 60 MeV, \\ \rho_B &\approx 2 - 3 \rho_0. \end{split}$$

 Initial stage. Nuclei at ground state. P = 0, T = 0, ρ = ρ₀.

Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Nuclear Equation of state Symmetry Energy Phase diagram Spacetime evolution

- Freeze-out. Low $\rho_B \Rightarrow$ no further interaction.
- Expansion. Expansion of the density energy. *T*, *ρ* ↓.
 Hot matter interacts with the cold matter of the spectator.
 *E*_{beam} > 10AGeV ⇒ QGP_{limit}, *P* lower than *P*_{hadronic} phase.
- Compression. Sequential N-N binary collisions. Incoming matter of the target & the projectile is mixed & compressed forming a short-lived stage of nuclear matter of high ρ_B that depends on the EOS.

$$\begin{split} E &= 1 A GeV, \ T \approx 30 - 60 MeV, \\ \rho_B &\approx 2 - 3 \rho_0. \end{split}$$

 Initial stage. Nuclei at ground state. P = 0, T = 0, ρ = ρ₀.

Meson exchange model Asymmetric Nuclear Equation of State

The NN Interaction is described by the exchange of mesons. SCALAR (attraction): σ , δ (isospin dependence). VECTOR (repulsion): ω , ρ (isospin dependence).

Meson exchange model Asymmetric Nuclear Equation of State

Proto

The NN Interaction is described by the exchange of mesons. SCALAR (attraction): σ , δ (isospin dependence). VECTOR (repulsion): ω , ρ (isospin dependence).

Lagrangian density

$$\mathcal{L} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - U(\sigma) + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\overline{\rho}_{\mu}\cdot\overline{\rho}^{\mu} - \frac{1}{4}\overline{R}_{\mu\nu}\overline{R}^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\overline{\delta}\cdot\partial^{\mu}\overline{\delta} - m_{\delta}^{2}\overline{\delta}^{2}) + \overline{\psi}(-g_{\omega}\omega_{\mu} - g_{\rho}\gamma\vec{\tau}\cdot\overline{\rho}_{\mu} + g_{\sigma}\sigma + g_{\delta}\vec{\tau}\cdot\vec{\delta})\psi$$

Lagrangian density of: the free nucleons, the σ meson with $U(\sigma) = \frac{1}{2}m_{\sigma}^2\sigma^2 + \frac{1}{3}g_2\sigma^3 + \frac{1}{4}g_3\sigma^4$, the ω meson with the field tensor $\Omega_{\mu\nu} \equiv \partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu}$, the ρ meson with the field tensor $\vec{R}_{\mu\nu} \equiv \partial_{\mu}\vec{\rho_{\nu}} - \partial_{\nu}\vec{\rho_{\mu}}$, the δ meson and of their interaction.

Meson exchange model Asymmetric Nuclear Equation of State

The nuclear EOS for asymmetric nuclear matter in the QHD picture:

$$\mathcal{E} = \sum_{i=n,\rho} 2 \int \frac{\mathrm{d}^3 k}{(2\pi)^3} E_i^{\star}(k) + U(\Phi) + \frac{1}{2} f_V \rho_B^2 + \frac{1}{2} f_\rho \rho_{B3}^2 + \frac{1}{2} f_\delta \rho_{S3}^2$$

The nuclear Symmetry energy in the QHD picture :

Exploring the isovector equation of state at high densities with HIC

Vlasov term Collision term

Relativistic transport equation

Relativistic Boltzmann-Uehling-Uhlenbeck (RBUU)

$$\begin{split} [p_{\mu i}^* \partial_x^\mu + \left(g_\omega p_{\nu i}^* F_i^{\mu\nu} + m_i^* (\partial_x^\mu m_i^*)\right) \partial_\mu^{p^*}] f_i(x, p^*) = \\ \frac{g}{(2\pi)^3} \int \frac{d^3 p_2^*}{p_2^{*0}} \frac{d^3 p_3^*}{p_3^{*0}} \frac{d^3 p_4^*}{p_4^{*0}} W(p^*, p_2^*, p_3^*, p_4^*) \\ \{f_3 f_4 [1-f] [1-f_2] - ff_2 [1-f_3] [1-f_4] \} \end{split}$$

- Vlasov term. Temporal evolution of the system, which is described by the phase-space distribution function $f(x, p^*)$, under the influence of a mean field (m_i^*, p_i^*) .
- **Collision term.** Transition rate W, is expressed by the differential cross section $\left(\frac{d\sigma}{d\Omega(s,\Theta)}\right)$,

$$W(p^*, p_2^*, p_3^*, p_4^*) = (p^* + p_2^*)^2 \frac{d\sigma}{d\Omega} \delta^4(p^* + p_2^* - p_3^* - p_4^*)$$

where Θ is the scattering angle in the cms frame and s the square of the total energy, $s=(p^*+p_2^*)^2$.

Test

particles

Nucleus

/lasov term Collision term

Test particle method

Representation of the phase-space distribution function by a number of test particles.

Gaussian test particles

$$g(p^* - p_i^*(\tau)) = \alpha_p e^{(p^* - p_i^*(\tau))^2 / \sigma_p^2} \delta\left[p_{\mu}^* p_i^{*\mu}(\tau) - m_i^{*2}\right]$$

Distribution function

$$\begin{split} f(x,p^*) &= \quad \frac{1}{N(\pi\sigma\sigma_{\rho})} \sum_{i=1}^{A\cdot N} \int_{-\infty}^{+\infty} d\tau \ e^{R_{i\mu}(x)R_{i}^{\mu}(x)/\sigma^{2}} e^{(p^*-p_{i}^{*}(\tau))^{2}/\sigma_{\rho}^{2}} \\ &\times \delta[(x_{\mu}-x_{i\mu}(\tau))u_{i}^{\mu}(\tau)]\delta\left[p_{\mu}^{*}p_{i}^{*\mu}(\tau)-m_{i}^{*2}\right] \end{split}$$

Test particles equations of motions

$$\begin{split} \frac{d}{d\tau} x_i^{\mu} &= \frac{p_i^*(\tau)}{m_i^*(x_i)}, \\ \frac{d}{d\tau} p_i^{*\mu} &= \frac{p_{i\nu}^*(\tau)}{m_i^*(x_i)} F_i^{\mu\nu}(x_i(\tau)) + \partial^{\mu} m_i^*(x_i) \end{split}$$

/lasov term Collision term

Collision term

$$\begin{split} \mathcal{I}_{c} &= \frac{g}{(2\pi)^{3}} \int \frac{d^{3} p_{2}^{*}}{p_{2}^{*0}} \frac{d^{3} p_{3}^{*}}{p_{4}^{*0}} \frac{d^{3} p_{4}^{*}}{p_{4}^{*0}} W(p^{*}, p_{2}^{*}, p_{3}^{*}, p_{4}^{*}) \\ \{f(x, p_{3}^{*})f(x, p_{4}^{*})[1 - f(x, p^{*})][1 - f(x, p_{2}^{*})] - f(x, p_{2}^{*})f(x, p_{2}^{*})[1 - f(x, p_{3}^{*})][1 - f(x, p_{4}^{*})]\} \end{split}$$

- Transition rate: $W = (2\pi)^4 \delta^4 (k + k_2 - k_3 - k_4) (m^*)^4 |T|^2.$
- Two particles collide if: $d < d_0 = \sqrt{\frac{\sigma_{tot}}{\pi}}.$

Elastic channels

 $0 NN \iff NN$

$$\rightarrow N\Delta \iff N\Delta$$

$$lackslash$$
 $\Delta\Delta \Longleftrightarrow \Delta\Delta$

Vaia D. Prassa

Exploring the isovector equation of state at high densities with HIC

Inelastic channels							
	_ <u>.</u> .			-			
	Ingoing	Outgoing	Isospin				
	channel	Channel	coefficients	_			
	nn	$p\Delta^{-}$	1	•			
		$n\Delta^0$	2/3				
	np	$p\Delta^0$	1/3				
		$n\Delta^+$	2/3				
	рр	$p\Delta^+$	1/3				
		$n\Delta^{++}$	1				
Decay width:							
,							
$\Gamma(q) = ilde{\Gamma} \; rac{q^3 R^2}{1+q^2 R^2} z(q), \; \; z(q) = rac{q_r^2 + \delta^2}{q^2 + \delta^2}$							
Resonance decay probability P ,							
$P = 1 - \exp\left[-\frac{\Gamma(M)\Delta t}{\gamma\hbar c}\right]$							

Cross sections Kaon-nucleon potentia

Elastic Baryon-Baryon collisions

In-medium effects: Dirac-Brueckner.

Suppression of cross sections at $E_{beam} < 300 A MeV$ and high ρ_B .

At high $E_{\rm lab},$ the $\sigma_{\rm eff}$ approaches asymptotically $\sigma_{\rm free}$

Fuchs et al. Phys. Rev. C64 (2001), 024003.

<mark>Cross sections</mark> Kaon-nucleon potentia

<mark>Cross sections</mark> Kaon-nucleon potentia

State	I ₃	Decay channel	Weights
Δ^{-}	-3/2	$n\pi^-$	1
Δ^0	-1/2	$p\pi^-$	1/3
		$n\pi^0$	2/3
Δ^+	+1/2	$p \pi^0$	2/3
		$n \pi^+$	1/3
Δ^{++}	+3/2	$p \pi^+$	1

Cross sections Kaon-nucleon potential

Centrality dependence

Au + Au collision at 1AGeV. A_{part} : number of participants in a collision.

Overestimation of data.

Cross sections Kaon-nucleon potentia

Centrality dependence

Au + Au collision at 1AGeV. A_{part} : number of participants in a collision.

Overestimation of data.

Transverse momentum spectra

Au + Au collision at 1*AGeV*, at mid-rapidity (-0.2 < $y^0 < 0.2$).

Very good agreement with data.

<mark>Cross sections</mark> Kaon-nucleon potentia

<mark>Cross sections</mark> Kaon-nucleon potentia

<mark>Cross sections</mark> Kaon-nucleon potentia

Rapidity distribution of K^+

Ni + Ni collision at 1.93AGeV.

 σ_{eff} : reduction of $K^+ \implies$ towards a better agreement with data.

Cross sections Kaon-nucleon potential

Yield ratios: Determination of the E_{sym} behavior.

 π^{-}/π^{+} : partially affected from the in-medium cross sections. K^{0}/K^{+} : appears **robust** against the in-medium cross sections.

V. Prassa et al, Nucl. Phys. A789, 311-333 (2007)

Introduction Quantum Hadrodynamics (QHD) Transport theory Particle Production Summary & Outlook Kaons equation of motion Kaon in-medium energy $\left[(\partial^{\mu} + iV_{\mu})^2 + m_{K}^{*2} \right] \phi_{K}(x) = 0$ $E_{K}(\mathbf{k}) = k_{0} = \sqrt{\mathbf{k}^{2} + m_{K}^{*2}} + V_{0}$ Chiral perturbation theory potential $V_{\mu} = \frac{3}{8f_{-}^{*2}}j_{\mu}$ - NL ChPT $m_K^* = \sqrt{m_K^2 - rac{\Sigma_{KN}}{f^2}
ho_s + V_\mu V^\mu}$ $K_{\rm K}({\rm k=0})/{\rm m}_{\rm K}$ 1.2 OBE One boson exchange model potential V^{μ} = $\frac{1}{3}f^*_{\omega}j^{\mu}$ $m_K^* = \sqrt{m_K^2 + \frac{m_K}{3}g_{\sigma N}\sigma}$ $\rho_{\rm B}/\rho_0$

Vaia D. Prassa

Exploring the isovector equation of state at high densities with HIC

Cross sections Kaon-nucleon potentia

Rapidity distribution: Dependence on the V_K

Central Au + Au@1AGeV. Reduction in the whole rapidity region. OBE: less stopping.

Combination of V_K and σ_{eff} : further reduction.

Cross sections Kaon-nucleon potentia

Exploring the isovector equation of state at high densities with HIC

Cross sections Kaon-nucleon potentia

Rapidity distributions of K^+

 $\begin{array}{l} \textit{Ni} + \textit{Ni@1.93AGeV} \ \textit{b} < 4\textit{fm}. \\ \textbf{ChPT:} \ \sigma_{\textit{free}} \ \text{good agreement with exp. data.} \\ \sigma_{\textit{eff}}: \ \textit{underestimation of the exp. data.} \\ \textbf{OBE:} \ \sigma_{\textit{free}} \ \text{good agreement with exp. data.} \\ \sigma_{\textit{eff}}: \ \textit{on the exp. data.} \end{array}$

Cross sections Kaon-nucleon potentia

Centrality dependence K^+

Au + Au@1AGeV collision.

Underestimation of the experimental data. OBE: closer to the exp.data.

V. Prassa et al, Nucl.Phys. A832 88-99 (2010)

Rapidity distributions of K^+

 $\begin{array}{l} \textit{Ni} + \textit{Ni}@1.93AGeV \ b < 4fm. \\ \textit{ChPT: } \sigma_{free} \ \text{good agreement with exp. data.} \\ \sigma_{eff}: \ \text{underestimation of the exp. data.} \\ \textit{OBE: } \sigma_{free} \ \text{good agreement with exp. data.} \\ \sigma_{eff}: \ \text{on the exp. data.} \end{array}$

Cross sections Kaon-nucleon potentia

Temporal evolution of K^0/K^+

Central Au + Au@1AGeV. OBE: reduction K^0/K^+ . Favors K^+ production. ChPT: raise. Favors K^0 production.

IOBE: raise K^0/K^+ . **IChPT**: sharp drop.

Cross sections Kaon-nucleon potentia

IOBE: $NL\rho \approx 3\%$, while $NL\rho\delta \approx 5\%$.

Temporal evolution of K^0/K^+

Central Au + Au@1AGeV. OBE: reduction K^0/K^+ . Favors K^+ production. ChPT: raise. Favors K^0 production.

IOBE: raise K^0/K^+ . **IChPT**: sharp drop.

Summary

• Effective N-N cross sections:

Dirac Brueckner Hartree Fock.

- Pions: reduction of production. At mid-rapidity good agreement with the data.
- π^-/π^+ : depends on the effective inelastic cross sections.
- Kaons: more affected ($\approx 30\%$).
- K^0/K^+ almost unchanged (large mean free path).

• Kaon-nucleon potential

- Chiral Perturbation Theory, ChPT.
- One-Boson-Exchange, OBE.
 - Reduction of kaon production.
 - Good agreement with the data (particularly with OBE).
 - ChPT: K^0/K^+ depends on the parametrization of the EOS.
 - OBE: K^0/K^+ more robust against the EOS parametrization.

Outlook

- Inclusion of momentum dependence.
 - T. Gaitanos, et al. Nucl.Phys. A828, 9-28 (2009).
- Improvement of NN-interactions.

THANK YOU FOR YOUR ATTENTION

Collaborations:

M. Di Toro, M. Colonna LNS, Catania

H. H. Wolter LMU, Muenchen

Theo Gaitanos U. Giessen

G. A. Lalazissis U. Thessaloniki

xkcd.com/242/