Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

INT Program INT-11-2d Interfaces between structure and reactions for rare isotopes and nuclear astrophysics INT, Seattle (Aug. 15-19, 2011)

Speaker: Volker E. Oberacker, Vanderbilt University Co-authors: A. S. Umar, Vanderbilt University J. A. Maruhn, Univ. Frankfurt P.-G. Reinhard, Univ. Erlangen

Research supported by: US Department of Energy, Division of Nuclear Physics German BMBF

Our main goal: microscopic description of fusion reactions involving exotic neutron-rich nuclei

- 1. Unrestricted TDHF calculations above the fusion barrier deep-inelastic and capture / fusion reactions
- 2. Density-constrained TDHF calculations: microscopic calculation of heavy-ion potentials calculate fusion / capture cross sections below and above the barrier
- 3. Dynamic microscopic study of excitation energy E*(t)

$^{96}Zr + ^{132}Sn$, $E_{cm} = 250 \text{ MeV}$, b = 4 fm (deep-inelastic) TDHF, SLy4 interaction, 3-D lattice (50*42*30 points)

Animation: ${}^{96}Zr + {}^{132}Sn$, $E_{cm} = 250$ MeV, b = 4 fm

TDHF, SLy4 interaction, 3-D lattice (50*40*30 points)

96 Zr + 132 Sn, E_{cm} = 250 MeV, b = 2 fm (capture) TDHF, SLy4 interaction, 3-D lattice (50*40*30 points)

Animation: 96 Zr + 132 Sn, E_{cm} =250 MeV, b = 2 fm

TDHF, SLy4 interaction, 3-D lattice (50*40*30 points)

Total cross sections for capture (unrestricted TDHF)

8/17/11

2. Density-constrained TDHF calculations

- microscopic calculation of heavy-ion potentials
- use with barrier tunneling (Incoming Wave Boundary Condition)
- calculate fusion (capture) cross sections below and above the barrier

 results for ^{132,124}Sn + ⁹⁶Zr (HRIBF exp.) and for ^{132,124}Sn + ^{48,40}Ca (recent HRIBF exp.)

 Previous work

 Umar & Oberacker,
 PRC 74, 021601(R) (2006)
 PRC 74, 061601 (R) (2006)

 PRC 76, 014614 (2007)
 PRC 77, 064605 (2008)

 EPJA 39, 243 (2009)
 Umar, Maruhn, Itagaki & Oberacker,
 PRL 104, 212503 (2010)

Calculation of heavy-ion potential with DC-TDHF method

V(R) contains dynamical entrance channel effects (neck formation, particle transfer, surface vibrations, giant resonances)

Dynamical Effective Mass from TDHF

$$E_{\text{c.m.}} = \frac{1}{2}M(R)\dot{R}^2 + V(R)$$

$$TDHF$$

$$DC-TDHF$$

$$M(R) = \frac{2\left[E_{\text{c.m.}} - V(R)\right]}{\dot{R}^2}$$

8/17/11

mass parameter for ¹³²Sn+⁴⁸Ca: strong E_{cm}-dependence

8/17/11

Volker Oberacker, Vanderbilt

12

Formalism for coordinate-dependent mass: point transformation to constant mass

$$H(R,P) = \frac{P^2}{2B(R)} + V(R)$$

original Hamiltonian

$$d\bar{R} = \left(\frac{B(R)}{\mu}\right)^{\frac{1}{2}} dR$$

point transformation to new coordinate with constant reduced mass

$$\bar{R} = f(R) \iff R = f^{-1}(\bar{R})$$
 in

integrate last equation

$$V(R) = V(f^{-1}(\overline{R})) \equiv U(\overline{R})$$

transformed heavy-ion potential, corresponding to constant reduced mass

$$H(\bar{R},\bar{P}) = \frac{\bar{P}^2}{2\mu} + U(\bar{R})$$

transformed Hamiltonian

transformed heavy-ion potential for ¹³²Sn+⁴⁸Ca:

8/17/11

Comparison with phenomenological models

Comparison: neutron-rich vs. stable system

Fusion / capture cross section for two spherical nuclei

$$\sigma_f(E_{\rm c.m.}) = \frac{\pi\hbar^2}{2\mu E_{\rm c.m.}} \sum_{\ell=0}^{\infty} (2\ell+1)T_\ell(E_{\rm c.m.}) \quad \text{total}$$

otal fusion cross section

Schrödinger equation for transformed radial coordinate

solve Schrödinger equation numerically, with Incoming Wave Boundary Condition (IWBC)

$$\rightarrow T_{\ell}(E_{\rm c.m.})$$

Total fusion cross section for ¹³²Sn+⁴⁸Ca

8/17/11

Exp. fusion cross sections (HRIBF 2011) J.F. Liang, Proceedings of Fusion 11 conference, St. Malo (France)

Scaling used for exp. data

Introduce 2 scaling parameters

$$R_0 = A_1^{1/3} + A_2^{1/3}$$
 $B_0 = Z_1 Z_2 / R_0$

Scaling of fusion cross section

$$\sigma \rightarrow \sigma/R_0^2$$

Scaling of center-of-mass energy

$$E_{c.m.} \rightarrow E_{c.m.} / B_0$$

Fusion cross sections: theory vs. experiment

Excitation energy E* (DC-TDHF)

TDHF / DC-TDHF for heavy systems with fission competition Comparison of the reactions ^{132,124}Sn + ⁹⁶Zr

Unrestricted TDHF above the barrier: capture cross sections

DC-TDHF (below and above barrier): interaction barriers (nuclear surfaces touch) microscopic heavy-ion potentials, fusion barriers deep-inelastic and capture cross sections investigate E* at capture point, compare to E*= E_{cm} + Q_{og}

Central collision, dynamic quadrupole moment Q₂₀(t)

Oberacker, Umar, Maruhn & Reinhard, PRC 82, 034603 (2010)

Interaction barriers and heavy-ion potential barriers, dependence on isospin $T_z=\frac{1}{2}(Z-N)$

	interaction barrier and position		heavy-ion potential barrier and position	
Reaction	V _I [MeV]	R _I [fm]	V _F [MeV]	R _F [fm]
¹³² Sn+ ⁹⁶ Zr	195	14.77	211.4 (at E _{cm} =230 MeV) 215.0 (at E _{cm} =300 MeV)	13.03 12.56
¹²⁴ Sn+ ⁹⁶ Zr	204	14.05	210.6 (at E _{cm} =230 MeV) 213.7 (at E _{cm} =300 MeV)	13.06 12.59

Conclusion: interaction barriers differ substantially, but heavy-ion potential barriers are fairly similar

Heavy neutron-rich system: strong E_{cm} -dependence

Oberacker, Umar, Maruhn & Reinhard, PRC 82, 034603 (2010)

Volker Oberacker, Vanderbilt

8/17/11

¹³²Sn+⁹⁶Zr (solid lines) vs. ¹²⁴Sn+⁹⁶Zr (dashed lines)

Oberacker, Umar, Maruhn & Reinhard, PRC 82, 034603 (2010)

8/17/11

Volker Oberacker, Vanderbilt

Capture and deep-inelastic cross sections Unrestricted TDHF and DC-TDHF

8/17/11

Comparison of exp. capture-fission cross section to theor. capture cross section

Theory:

Oberacker, Umar, Maruhn & Reinhard, PRC 82, 034603 (2010)

theor. interpretation of low-energy data: quasi-elastic and deep-inelastic rather than capture-fission

exp. data (HRIBF): Vinodkumar et al., PRC 78, 054608 (2008)

Capture and deep-inelastic cross sections Unrestricted TDHF and DC-TDHF

8/17/11

Comparison of exp. capture-fission cross section to theor. capture cross section

8/17/11

Excitation energy E* (DC-TDHF) Oberacker, Umar, Maruhn & Reinhard, PRC 82, 034603 (2010)

E* vs. internuclear distance R solid lines: ¹³²Sn + ⁹⁶Zr dashed lines: ¹²⁴Sn + ⁹⁶Zr

E* at capture point vs. E_{cm}

Conclusions

- Microscopic description of heavy-ion reactions (DC-TDHF) only input: Skyrme N-N interaction, no adjustable parameters
 - → heavy-ion interaction potential V(R), cross sections for capture and deep-inelastic reactions
 - \rightarrow dynamic excitation energy $E^{*}(t)$
- applied to reactions of ^{132,124}Sn + ⁹⁶Zr, ^{132,124}Sn + ^{48,40}Ca (HRIBF)
 V(R) shows strong E_{cm} dependence, significant changes in width of potential barrier
- investigated E* at capture point, compared to E*= E_{cm} + Q_{gg}

In Future:

- systematic study of heavy-ion potential barriers vs. $T_z = (Z-N)/2$
- excitation energy division between the two fragments

Open Problems and Challenges

- Improved energy-density functionals parameter fits should include deformed and neutron-rich nuclei
- Include pairing (TDHF does not, densities may be unrealistic)

 a) very challenging: TDHFB code for 2 nuclei on 3-D lattice (exists only for 1 nucleus in time-dep. external field)
 b) simplification: start from TDHFB equation, derive formalism for TDHF with time-dep. BCS-pairing amplitudes u_k(t)
 - c) easy: use frozen BCS pairing amplitudes of projectile and target