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Asymptotic normalization coefficient (ANC): definition

Many-body wave functions at large cluster separations factorize into clusters
times a known shape:

Φ3He(rpd →∞) =
∑
l=0,2

CljφdφpYlm(r̂pd)W−η,l+1
2
(2krpd)/rpd

At long range, nuclear dynamics just set E (→ η, k) and Clj



Relation between ANCs and observables

Clearest case is low-energy direct capture, X + Y −→ Z + γ

At E well below the Coulomb barrier, the initial-state wave function has very
small amplitude in the nuclear interior (has to tunnel), large r dominates
matrix element, σ ∝ C2

lj

Bound states produce negative-energy poles in the scattering amplitude −→
ANCs∝ residues and can sometimes be extracted from analytically-continued
scattering data (1970s)

Most ANC determinations (usually motivated by capture) came from transfer,
knockout, or breakup reactions

These are special cases of “spectroscopic factor” experiments, requiring
demonstrated independence from small-r contributions



ANCs in transfer reactions

ANC or spectroscopic factor experiments are meant to probe the cluster overlap
function

R
JA−1JA
lj (r) ≡

∫
A

[
Ψ
JA−1
A−1 [χYl(r̂)] j

]
†
JA

δ(r − rcc)

r2
ΨJA
A dR

and particularly

Slj ≡
∫
R2
lj(r)r

2dr

cf. Furnstahl’s slides from last week for limitations and ambiguities of Slj

Since Rlj(r → ∞) = CljW−η,l+1
2
(2kr)/r, the ANC Clj can in principle be

isolated in data restricted to large impact parameter

Some of the usual limitations (e.g. optical potentials) apply just as well to Clj
as to Slj

Consistency of Rlj between reaction & structure theory is easier for Clj than
for Slj, provided that you can prove peripherality



Why I was motivated to compute ANCs

Should be useful for astrophysics

Relatively few ANCs have been measured −→ an opportunity for pre- rather
than post-diction

ANCs can be computed from ab initio wave functions, but accurate results are
a challenge (reasons will follow)

ANCs provide a learning problem for computational techniques needed for
scattering/reaction problems



Why quantum Monte Carlo ANCs require effort

GFMC requires all the work of variational Monte Carlo plus more, so for now I
work with VMC wave functions:

ΨT = [3-body operator functions]× [2-body operator functions]
× [scalar functions]× [shell-model-like orbital/spin/isospin structure]

Each piece contains variational parameters, found by minimizing energy as
computed by Monte Carlo integration

The VMC ansatz is very good and allows rather accurate calculations of energies
and other observables (GFMC polishes VMC solutions down to the correct
solution)



Barriers to getting ANCs from quantum Monte Carlo calculations

The VMC wave functions account very well for short-range correlations but
generally get the long-range asymptotics wrong

Correcting the long-range problems without causing other problems is difficult

Clj = rRlj(r)/W−η,l+1
2
(2kr) doesn’t work because long-range shapes are

generally wrong

Points are Rlj from VMC

Overlap is a Monte Carlo integration

Curve is W−η,l+1
2
(2kr)/r

Where do I match them?

Basis methods have the same problem



Integral relation for the ANC

There is a better way than explicit overlaps, ideally suited to QMC methods
(appears in literature of 1960s, 1970s)

The Schrödinger equation

(H − E)ΨA = 0

may be separated into parts internal to ΨA−1 and parts involving the last
particle (distance rcc away) to yield

ΨA = − [Trel + VC +B]−1 (Urel − VC)ΨA

which implies

Clj =
2µ

k~2w
A

∫ M−η,l+1
2
(2krcc)

rcc
Ψ†
A−1χ

†Y †lm(r̂cc) (Urel − VC)ΨAdR

M−η,l+1
2
(2kr) is the “other” Whittaker function, irregular at r →∞



Why is any of this useful?

Clj =
2µ

k~2w
A

∫ M−η l+1
2
(2krcc)

rcc
Ψ†
A−1χ

†Y †lm(r̂cc) (Urel − VC)ΨAdR

The power of this approach lies in the factor (Urel − VC)

It contains the potential, but only terms linking the core to the last particle:

Urel =
∑
i<A

viA +
∑

i<j<A

VijA

At large separation of the last nucleon, Urel → VC , so Urel − VC → 0

Integrand goes to zero at ∼ 7 fm with AV18+UIX

QMC methods are good at integration over the wave function interior, bad at
the exterior

Closely related to Lippman-Schwinger equation (and to Pinkston-Satchler or
Kawai-Yazaki)



ANCs: 3He → dp

s-wave ANC integrand & integral d-wave ANC integrand & integral

Points are Monte-Carlo sampled integrand; solid curves are cumulative integrals

For 3He→ dp, we haveCdps = 2.131(8) fm−1/2 ,Cdpd = −0.0885(7) fm−1/2

C
dp
d converges just where sampling gets sparse in the explicit overlap



Application to the VMC wave functions

I’ve implemented the integral approach to the ANC within the VMC code, building
on Wiringa’s spectroscopic factor routines

I’ve applied the integral method to Wiringa’s latest Argonne v18 + Urbana IX
(AV18+UIX) wave functions for A ≤ 9 in almost every combination of
particle stable A- and (A− 1)-body states

I have to choose a separation energy, either experimental or AV18+UIX, in
evaluating each integral

It quickly became apparent that results match experiment only when the experimental
separation energy is used



8Li→ 7Li + n summarizes the whole project

ANC (fm−1) VMC: AV18+UIX binding VMC: Lab binding Experiment
C2
p1/2 0.029(2) 0.048(3) 0.048(6)

C2
p3/2 0.237(9) 0.382(14) 0.384(38)



The results, 3 ≤ A ≤ 9 one-nucleon removal
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TABLE I. ANCs computed from Eq. (5) for given A-body nuclei, (A − 1)-body residual nuclei, and angular momentum channels lj or
2s+1l. Units are fm−1/2, and f -wave ANCs have been multiplied by 103. Error estimates reflect Monte Carlo statistics only, and columns left
empty are zero by exact symmetries. Asterisks denote first excited states.

A A − 1 s1/2 d3/2 Cd 3/2/Cs 1/2

3H 2H 2.127(8) −0.0979(9) −0.0460(5)
3He 2H 2.144(8) −0.0927(10) −0.0432(5)
4He 3H −6.55(2)
4He 3He 6.42(2)

A A − 1 p1/2 p3/2 f5/2 × 103 f7/2 × 103

7Li 6He 3.68(5)
7Li∗ 6He 3.49(5)
7Li 6Li 1.652(12) 1.890(13) −78(20)
7Li∗ 6Li −0.543(16) −2.54(4)
7Be 6Li −1.87(3) −2.15(3) 63(9)
7Be∗ 6Li 0.559(16) 2.59(5)
8Li 7Li 0.218(6) −0.618(11) 5.2(5) 2.5(15)
8Li∗ 7Li −0.090(3) 0.281(5) −0.6(2)
8B 7Be 0.246(9) −0.691(17) 1.1(2) −1.1(5)
9C 8B −0.309(7) 1.125(12) 1.9(5) −0.5(18)
9Li 8Li 0.308(7) −1.140(13) −4.1(10) 5(3)
9Li 8Li∗ −0.122(3) 0.695(7) −1.1(6)
9Li 8He −5.99(8)
9Be 8Li 5.03(6) 9.50(11) 35(34) 257(112)
9Be 8Li∗ 6.56(5) −6.21(7) 364(40)

A A − 1 2p 4p 2f × 103 4f × 103

7Li 6Li 2.510(18) 0.029(18) −78(20)
7Li∗ 6Li −2.57(5) −0.33(3)
7Be 6Li −2.85(4) −0.04(4) −63(9)
7Be∗ 6Li 2.63(5) 0.34(3)
9Li 8Li∗ −0.599(7) −0.373(7) 1.1(6)
9Be 8Li∗ −0.25(9) −9.03(8) −364(40)

A A − 1 4p 6p 4f × 103 6f × 103

9C 8B 0.868(14) 0.779(12) 0.1(19) −2(1)
9Li 8Li −0.882(15) −0.785(12) 3.3(34) 5.2(19)
9Be 8Li 10.75(12) −0.25(10) 256(117) 42(65)

A A − 1 3p 5p 3f × 103 5f × 103

8Li 7Li −0.283(12) −0.591(12) −0.3(16) −5.8(10)
8Li∗ 7Li 0.220(6) 0.197(5) 0.6(2)
8B 7Be −0.315(19) −0.662(19) −0.6(5) −1.4(4)

with A = 3, 4 have substantially identical ANCs for BH and
Bexpt because the AV18 + UIX interaction was tuned to have
BH $ Bexpt in these systems. Pisa ANCs converted to our
conventions may be found in Ref. [27].)

For A > 4 ANCs, experimental constraints have been
inferred almost entirely from transfer [1–5,7,9,38], knockout
[8], or breakup [6] reactions, and are of generally more recent
vintage than the A ! 4 ANCs. In some cases, components
of different j contribute indistinguishably to differential cross
sections, which then constrain only the sum

∑
j C2

lj . These
cases are indicated in Fig. 3 and shown as the square root of the
sum for comparability of error bars. Our p-shell ANCs are in
broadly good agreement with those inferred from experiment,
particularly for the well-measured A = 8 ground state ANCs

as discussed above. (Our calculations for A = 8 also agree
with prior theoretical estimates of [17,39].) Reference [27]
presented many ANCs computed by applying Eq. (5) with
a simpler potential to harmonic-oscillator wave functions
derived from shell models; about half of our p-shell ANCs
disagree with those calculations by more than 25%.

The most significant differences from previous work are
in the 7Li → n 6Li ANCs. The comparison with experiment
here is difficult because of the wide range of estimates, which
extend from

√∑
C2

lj = 1.26 to 2.82 fm−1/2 just from (d, t)
at varying energy ([7], with full range shown in Fig. 3) and
include other values within that range [38,40]. The effective
ANC of Huang et al. [41], whose capture model successfully
matches 6Li(p, γ )7Be data, is 25% below ours.
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The small f -wave amplitudes are accessible with this method – unknown how
reliable (or measurable), but something new



Readable results, where there are “experimental” data

to

2.13

(full range to 2.0)

Small error bars are VMC statistics

Large ones are “experimental”

Sensitivity to wave function construction
seems weak but hard to quantify

A ≤ 4 clearly dominated by systematics,
also old

With a couple of exceptions, these are the
first ab initio ANCs in A > 4



Comparison with what came before

Timofeyuk has pursued a “hybrid”
approach to the ANC integral for a
long time

Wave functions come from p-shell model,
integral from M3YE potential

Uncertainties have been hard to estimate

Colors denote shell model used in
Timofeyuk 2010

Millener Boyarkina CK816

Attempts to derive ratios of
isobaric-analogue ANCs from those
calculations don’t seem to hold up



Possible extensions (bound states)

Cluster-cluster overlaps (e.g. 7Be→ α 3He) (needs reorganized code)

Application to GFMC solutions (and Illinois three-body force)

Computation of Rlj(r) at all r – method as described is really the large-r limit
of Pinkston-Satchler (or Kawai-Yazaki) overlaps



Many energies have been computed by QMC, but only two widths
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Heights and widths

“The other day I was walking my dog around my
building, on the ledge. Some people are afraid of
heights. I’m afraid of widths.”

– Steven Wright

We have energies for many narrow unbound levels (computed as bound)

Figuring out how to get widths has been difficult

There is an obvious but laborious way – explicit calculation of phase shifts at
many energies, extraction of pole (has been done for 5He states)

Other paths have not panned out (e.g. “decay” rate in GFMC)



Widths as ANCs

Widths are closely related to ANCs, so maybe there’s a cheap way to estimate
them

An unbound wave function at large radius looks like

ψ(r →∞) ∝ Fl(kr) cos δ+Gl(kr) sin δ

so that at resonance (δ = 90◦; as our pseudobound states should have)

ψ(r →∞) = Cljφ1φ2Gl(kr)

The flux per unit time through the surface is |Clj|2v = ~k
µ |Clj|

2, so

Γ '
~2k

µ
|Clj|2

One could also consider Gamow’s decaying complex-energy states (or Kapur-
Peierls) and get the same answer



Widths as ANCs

The relation

ψ(r →∞) = Cljφ1φ2Gl(η, kr)

for resonant states is mathematically almost the same as

ψ(r →∞) = Cljφ1φ2W−η,l+1
2
(2kr)

for bound states

The integral method also applies to resonant states, except that now Fl appears
in the integral instead of M−η,l+1

2

This is used as a mathematical tool to get the asymptotics right in α and p

decays (e.g. Esbensen & Davids (2000) deformed proton emitters, much
Russian literature on α decay)



Testing out the integral relation for Γ

The integral estimate should apply to states that are in some sense narrow

I’ve chosen low-lying states in A ≤ 9 with width mainly/all in nucleon emission

A=7

A=8

A=9

Arrows: uncomputed
channels



The good, the bad, the ugly

Lots of widths come out close to experiment

Widths not close to experiment generally have some unaccounted-for width
(e.g. α or 3-body channel) or isospin mixing (8Be 3+ and 1+ states), or
are broad

Wiringa’s pseudobound 5He states yield wildly unreasonable widths, probably
because they’re very broad



Am I better off with the integral method than I was before?

I could have always made rough estimates of widths using computed Slj

The method to beat is use of the Wigner (causality) limit of the width

This is ΓW = 2γ20Pl(E) with γ20 = 3~2

2µr2

Pl(E) is the barrier penetration factor of dispersion (R-matrix) theory

In terms of the dimensionless reduced width, the formal width is Γ = θ2ΓW

Since θ . 1, it is tempting to identify it with spectroscopic factor, Slj ≈ θ2



Is the width integral better than using the Wigner limit and Slj?

blue: consistent with 90◦ via P-S red: not consistent Note the different scales

For narrow states without open α channels, it’s OK and apparently an improvement

Other cases still OK within a factor of ∼ 2 (whether that’s useful or not)



What next?

α (and other cluster) widths once the code is more-generally written

Tests against scattering calculations to see whether I can get the AV18+UIX
widths this way

GFMC and IL7 (better match to experimental ER)

Similar things are being done as pseudobound approaches to scattering δ(E)

(Horiuchi et al., Kievsky et al., etc.) – maybe some of that can be adapted

Coupled-channel problems will require some way of extracting surface amplitudes
from GFMC, integrals are probably the way to do that

Energy resolutions in the 100 keV range are difficult for GFMC, so the integral
approach will beat phase-shift mapping for really narrow states


