Microscopic calculation of the ³**He(**α**,**γ**)**⁷**Be capture reactionin the FMD approach**

Thomas Neff

"Interfaces betweenstructure and reactions"

INT, Seattle

Aug 17, ²⁰¹¹

Overview

Effective Nucleon-Nucleon interaction: Unitary Correlation Operator Method

R. Roth, T. Neff, H. Feldmeier, Prog. Part. Nucl. Phys. 65 (2010) 50

- **• Short-range Correlations and Effective Interaction**
- **• NCSM calculations**

Many-Body Method:

Fermionic Molecular Dynamics

- **• Model**
- **•** ³**He(**^α**,**γ**)**⁷**Be Radiative Capture Reaction**

T. Neff, Phys. Rev. Lett. 106, ⁰⁴²⁵⁰² (2011)

Nuclear ForceUnitary Correlation Operator Method

Argonne V18 (T=0)

spins aligned parallel or perpendicular to therelative distance vector

• strong repulsive core: nucleons can not get closer than **[≈]** ⁰.⁵ fm

➼ **central correlations**

• strong dependence on the orientation of the spins dueto the tensor force

➼ **tensor correlations**

Nuclear ForceUnitary Correlation Operator Method

Argonne V18 (T=0)

spins aligned parallel or perpendicular to therelative distance vector

• strong repulsive core: nucleons can not get closer than **[≈]** ⁰.⁵ fm

➼ **central correlations**

- **•** strong dependence on the orientation of the spins dueto the tensor force
- ➼ **tensor correlations**

the nuclear force will induce**strong short-range correlations** in the nuclear wave function

Universality of short-range correlations

One-body densities

• one-body densities calculated from exact wave functions for AV8' interaction

- coordinate space densities reflect different sizes and densities of ²H, ³H, ³He, 4 He and the 0 $_2^+$ $_2^+$ state in ⁴He
- **•** similar high-momentum tails in the momentum densities

Feldmeier, Horiuchi, Neff, Suzuki, arXiv:1107.4956

Universality of short-range correlations

Two-body densities

- **•** normalize two-body density in coordinate space at ^r=1.0 fm
- **•** normalized two-body densities in coordinate are identical at short distances for all nuclei
- **•** use the **same** normalization factor in momentum space high momentum tails agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, arXiv:1107.4956

Unitary Correlation Operator Method UCOM

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state

$$
C = C_{\Omega} C_{r} = \exp[-i \sum_{i < j} g_{\Omega,ij}] \exp[-i \sum_{i < j} g_{r,ij}] \quad , \quad C^{\dagger} C = 1
$$

• correlation operator should conserve the symmetries of the Hamiltonian and should beof finite-range, correlated interaction **phase shift equivalent** to bare interaction by construction

Correlated Operators

• correlated operators will have contributions in higher cluster orders

$$
\mathcal{Q}^{\dagger} \mathcal{Q} \mathcal{Q} = \hat{\mathcal{Q}}^{[1]} + \hat{\mathcal{Q}}^{[2]} + \hat{\mathcal{Q}}^{[3]} + \dots
$$

• two-body approximation: correlation range should be small compared to mean particledistance

Correlated Interaction

$$
\mathcal{L}^{\dagger}(\mathcal{I}+\mathcal{V})\mathcal{L}=\mathcal{I}+\mathcal{V}_{\text{UCOM}}+\mathcal{V}_{\text{UCOM}}^{[3]}+\ldots
$$

\bullet **Central and Tensor Correlations**

$$
\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega
$$
\n
$$
\mathbf{c} = \mathbf{C}_\Omega \mathbf{C}_r
$$
\n
$$
\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p}_r \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}
$$

Central and Tensor Correlations

$$
\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega
$$
\n
$$
\mathbf{c} = \mathbf{C}_\Omega \mathbf{C}_r
$$
\n
$$
\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p}_r^{\mathbf{r}} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}
$$

Central Correlations

$$
\mathcal{L}_r = \exp\left\{-\frac{i}{2}\{p_r s(r) + s(r)p_r\}\right\}
$$

► probability density shifted out of the ^repulsive core

Central and Tensor Correlations

C**∼=**C**∼**ΩC**∼**r

$$
\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega
$$

$$
\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p}_r^{\mathbf{r}} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}
$$

Central Correlations

$$
\mathcal{L}_r = \exp\left\{-\frac{i}{2}\{p_r s(r) + s(r)p_r\}\right\}
$$

► probability density shifted out of the repulsive core

Tensor Correlations

$$
\mathcal{L}_{\Omega} = \exp \left\{-i \mathcal{G}(r) \left\{ \frac{3}{2} (\boldsymbol{\sigma}_1 \cdot \mathbf{p}_{\Omega}) (\boldsymbol{\sigma}_2 \cdot \mathbf{r}) + \frac{3}{2} (\boldsymbol{\sigma}_1 \cdot \mathbf{r}) (\boldsymbol{\sigma}_2 \cdot \mathbf{p}_{\Omega}) \right\} \right\}
$$

r

p

p*r*

pΩ

► tensor force admixes other angular
momonta momenta

Central and Tensor Correlations

C**∼=**C**∼**ΩC**∼**r

$$
\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega
$$

$$
\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p}_r^{\mathbf{r}} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}
$$

Central Correlations

$$
C_r = \exp\left\{-\frac{i}{2}\{p_r s(r) + s(r)p_r\}\right\}
$$

► probability density shifted out of the repulsive core

Tensor Correlations

$$
\mathcal{L}_{\Omega} = \exp \left\{-i \mathcal{G}(r) \left\{ \frac{3}{2} (\boldsymbol{\sigma}_1 \cdot \mathbf{p}_{\Omega}) (\boldsymbol{\sigma}_2 \cdot \mathbf{r}) + \frac{3}{2} (\boldsymbol{\sigma}_1 \cdot \mathbf{r}) (\boldsymbol{\sigma}_2 \cdot \mathbf{p}_{\Omega}) \right\} \right\}
$$

r

p

p*r*

pΩ

► tensor force admixes other angular
momonta momenta

Correlations and Energies Unitary Correlation Operator Method

Correlations and Energies Unitary Correlation Operator Method

central correlator C**∼r** shifts density out of the repulsive core **tensor correlator** C**∼Ω** aligns density with spinorientation

Neff and Feldmeier, Nucl. Phys. **A713** (2003) ³¹¹

Unitary Correlation Operator Method

Two-body Densities

- **•** two-body densities calculated from 0ħΩ ⁴He and correlated density operators
- **•** UCOM20 correlators derived fromλ**≈**1.5 fm**−**1 SRG interaction reproducecoordinate space two-body density and high-momentum components very well
- **•** high-momentum components dominated by tensor correlations
- **•** long-range correlations should fill up momentum space two-body density abovethe Fermi momentum

Feldmeier, Horiuchi, Neff, Suzuki, arXiv:1107.4956

Correlated Interaction in Momentum Space Unitary Correlation Operator Method

3 ${}^{3}S_{1}$ bare

bare interaction has **strong off-diagonal** matrix elements connectingto high momenta

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. ^Rev. ^C **⁷²**, ⁰³⁴⁰⁰² (2005)

Correlated Interaction in Momentum Space Unitary Correlation Operator Method

bare interaction has **strong off-diagonal** matrix elements connectingto high momenta

correlated interaction is **more attractive**at low momenta

off-diagonal matrix elements connecting low- and

 high- momentum states are **stronglyreduced**

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. ^Rev. ^C **⁷²**, ⁰³⁴⁰⁰² (2005)

3 3 S $_1$ - 3 $^{3}D_{1}$ bare

Correlated Interaction in Momentum Space Unitary Correlation Operator Method

bare interaction has **strong off-diagonal** matrix elements connectingto high momenta

correlated interaction is **more attractive**at low momenta

off-diagonalmatrix elements

connecting low- and high- momentum states are **stronglyreduced**

3 3 S $_1$ - 3 $^{3}D_{1}$ bare

No-Core Shell Model Calculations UCOM(SRG)

- **•** convergence much improved compared to bare interaction
- **•** effective interaction in two-body approximation converges to different energy thenbare interaction
- transformed interaction can be tuned to obtain simultaneously (almost) exact ³He and ⁴He binding energies

NCSM ⁶**Li/**⁷**Li ground state energy UCOM(SRG)**

• tuned interaction also works reasonably well for heavier nuclei

NCSM ⁷**Li spectrum UCOM and SRG**

NCSM ⁶**Li/**⁷**Li radii UCOM(SRG)**

- **•** radii converge worse than energies
- **•** harmonic oscillator basis not well suited to describe tails of weakly bound nuclei

Halos, Clusters, . . . FMD

Al-Khalili, Nunes, J. Phys. ^G **²⁹**, R89 (2003)

Fermionic

Slater determinant

$$
|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle\right)
$$

• antisymmetrized^A-body state

Feldmeier, Schnack, ^Rev. Mod. Phys. **⁷²** (2000) ⁶⁵⁵ Neff, Feldmeier, Nucl. Phys. **A738** (2004) ³⁵⁷

Fermionic Molecular Dynamics FMD

Fermionic

Slater determinant

$$
|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle\right)
$$

• antisymmetrized^A-body state

Molecular

single-particle states

$$
\langle \mathbf{x} | q \rangle = \exp\left\{-\frac{(\mathbf{x} - \mathbf{b})^2}{2a}\right\} \otimes \left| \chi^{\dagger}, \chi^{\dagger} \right\rangle \otimes \left| \xi \right\rangle
$$

- **•** Gaussian wave-packets in phase-space (complex parameter **b** encodes mean position and mean momentum), spin is free, isospin is fixed
- **•** width is an independent variational parameter for each wave packet
- **•** use one or two wave packets for each single particle state

Feldmeier, Schnack, ^Rev. Mod. Phys. **⁷²** (2000) ⁶⁵⁵ Neff, Feldmeier, Nucl. Phys. **A738** (2004) ³⁵⁷

Fermionic Molecular Dynamics FMD

Fermionic

Slater determinant

$$
|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle\right)
$$

• antisymmetrized^A-body state

Molecular

single-particle states

$$
\langle \mathbf{x} | q \rangle = \exp\left\{-\frac{(\mathbf{x} - \mathbf{b})^2}{2a}\right\} \otimes \left| \chi^{\dagger}, \chi^{\dagger} \right\rangle \otimes \left| \xi \right\rangle
$$

- **•** Gaussian wave-packets in phase-space (complex parameter **b** encodes mean position and mean momentum), spin is free, isospin is fixed
- **•** width is an independent variational parameter for each wave packet
- **•** use one or two wave packets for each single particle state

Feldmeier, Schnack, ^Rev. Mod. Phys. **⁷²** (2000) ⁶⁵⁵ Neff, Feldmeier, Nucl. Phys. **A738** (2004) ³⁵⁷

Antisymmetrization

Fermionic

Slater determinant

$$
|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle\right)
$$

• antisymmetrized^A-body state

Molecular

single-particle states

$$
\langle \mathbf{x} | q \rangle = \exp\left\{-\frac{(\mathbf{x} - \mathbf{b})^2}{2a}\right\} \otimes \left| \chi^{\dagger}, \chi^{\dagger} \right\rangle \otimes \left| \xi \right\rangle
$$

- **•** Gaussian wave-packets in phase-space (complex parameter **b** encodes mean position and mean momentum), spin is free, isospin is fixed
- **•** width a is an independent variational parameter for each wave packet
- **•** use one or two wave packets for each single particle state

see also **AntisymmetrizedMolecular Dynamics**

Antisymmetrization

Horiuchi, Kanada-En'yo, Kimura, . . .

Feldmeier, Schnack, ^Rev. Mod. Phys. **⁷²**Neff, Feldmeier, Nucl. Phys. **A738** (2004) ³⁵⁷

(One-body) Kinetic Energy

 qk  ^T**∼** $|q_l\rangle = \langle a_k \mathbf{b}_k | \mathcal{I}$ $\big| \, a_l {\bf b}_l \, \rangle \langle$ $\langle \chi_k|\chi_l\rangle\langle$ $\langle \, \xi_k \, \big| \, \xi_l \, \rangle$

$$
\langle a_k \mathbf{b}_k | \mathcal{I} | a_l \mathbf{b}_l \rangle = \frac{1}{2m} \left(\frac{3}{a_k^{\star} + a_l} - \frac{(\mathbf{b}_k^{\star} - \mathbf{b}_l)^2}{(a_k^{\star} + a_l)^2} \right) R_{kl}
$$

(Two-body) Potential

➼ fit radial dependencies by (a sum of) Gaussians G **(** $\mathbf{x}_1 - \mathbf{x}_2$ **)** = exp $\begin{cases} 1 \end{cases}$ **−(x**1**−x**2 **)** 2 $\left\{ \frac{-\mathbf{x}_2^2}{2k} \right\}$

 α_{klmn} **=**α k *⋆* m $a_k^{\star} + a_m$ **+** a_l *⋆* n $a_l^{\star} + a_n$ *⋆⋆⋆*

$$
\rho_{klmn} = \frac{a_m \mathbf{b_k}^{\star} + a_k^{\star} \mathbf{b}_m}{a_k^{\star} + a_m} - \frac{a_n \mathbf{b_l}^{\star} + a_l^{\star} \mathbf{b_l}}{a_l^{\star} + a_n}
$$

$$
R_{km} = \langle a_k \mathbf{b_k} | a_m \mathbf{b}_m \rangle
$$

➼ Gaussian integrals

$$
\langle a_k \mathbf{b}_k, a_l \mathbf{b}_l | \mathcal{G} | a_m \mathbf{b}_m, a_n \mathbf{b}_n \rangle = R_{km} R_{ln} \left(\frac{\kappa}{\alpha_{klmn} + \kappa} \right)^{3/2} \exp \left\{ -\frac{\rho_{klmn}^2}{2(\alpha_{klmn} + \kappa)} \right\}
$$

➼ analytical formulas for matrix elements

C**∼**† **(**T**∼+**V**∼)**C**∼=**T**∼+** $+\sum_{\epsilon\tau}$ ST $\hat{V}_c^{ST}(r)$ + 1 2 $\overline{\mathfrak{p}}$ r **∼**2 $\int_{0}^{2} \hat{V}_{p^2}^{ST}(r) + \hat{V}_{p^2}^{ST}(r) \hat{p}$ r **∼**2 **+** $\hat{V}_{l^2}^{ST}(r)$ <u>l</u> 2**+**X T \hat{V} T s**(** r **) l ∼· ^s ∼+**Vˆ T $\frac{1}{2}$ _{2} (r) **]** 2 **l ∼· ^s ∼+** $+\sum_{\tau}$ T \hat{V} \hat{V} T t **(** r **)** S **∼**12 $2(\mathbf{r}, \mathbf{r}) + \hat{V}$ Ttrp_Ω**(r)** p r **∼**S **∼**12 $p_2(\mathbf{r}, \mathbf{p}_\mathbf{\Omega}) + \hat{V}$ Ttll **(** r **)** S **∼**12 **(l**, **l)+**T tpΩpΩ**(** r **)** S**∼**12**(pΩ**, **p^Ω) ⁺** Vˆ T ²tpΩpΩ**(** r **) l ∼**2 S**∼**12**(pΩ**, **pΩ)** one-body kinetic energy **central** potentials**spin-orbit** potentials**tensor** potentialsbulk of tensor force mapped onto central part of correlated interactiontensor correlations also change the spin-orbit

part of the interaction

Nucl. Phys. **A745** (2004) ³

Mean-Field Calculations FMD

Minimization

• minimize Hamiltonian expectation value with respect to all singleparticle parameters q_k

$$
\min_{\{q_k\}} \frac{\langle Q| \underline{H} - \underline{\mathcal{T}}_{cm} | Q \rangle}{\langle Q | Q \rangle}
$$

- **•** this is ^a Hartree-Fock calculation in our particular single-particle basis
- **•** the mean-field may break the symmetries of the Hamiltonian

Thomas Neff — Interfaces between structure and reactions, INT, 08/17/11

FMD

Projection and Multiconfiguration Mixing

Projection

- **•** Slater determinant may break symmetries of Hamiltonian
- **•** restore symmetries by projection on parity, linear andangular momentum

$$
P^{\pi} = \frac{1}{2}(1 + \pi \Box)
$$

$$
P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}(\Omega) R(\Omega)
$$

$$
P^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3x \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}
$$

FMD

Projection and Multiconfiguration Mixing

Projection

- **•** Slater determinant may break symmetries of Hamiltonian
- **•** restore symmetries by projection on parity, linear andangular momentum

Creating Basis States

- **•** full **Variation after Angular Momentumand Parity Projection** (VAP) for spins of lowest states
- **•** constrain radius, dipole, quadrupole or octupole moments to generate additonal basis states
- **•** For heavier nuclei (sd-shell) only Projection after Variation possible

$$
P^{\pi} = \frac{1}{2}(1 + \pi \Pi)
$$

$$
P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}(\Omega) R(\Omega)
$$

$$
P^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3x \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}
$$

FMD

Projection and Multiconfiguration Mixing

Projection

- **•** Slater determinant may break symmetries of Hamiltonian
- **•** restore symmetries by projection on parity, linear andangular momentum

Creating Basis States

- **•** full **Variation after Angular Momentumand Parity Projection** (VAP) for spins of lowest states
- **•** constrain radius, dipole, quadrupole or octupole moments to generate additonal basis states
- **•** For heavier nuclei (sd-shell) only Projection after Variation possible

Multiconfiguration Mixing Calculations

• diagonalize Hamiltonian in set of projected intrinsic states

$$
\left\{\left|Q^{(a)}\right\rangle, \quad a=1,\ldots,N\right\}
$$

$$
P^{\pi} = \frac{1}{2}(1 + \pi \Pi)
$$

$$
P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}(\Omega) R(\Omega)
$$

$$
P^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3x \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}
$$

$$
\sum_{K'b} \langle Q^{(a)} | H_{\sim K K'}^{p} P^{P=0} | Q^{(b)} \rangle \cdot c_{K'b}^{\alpha} =
$$

$$
E^{j^{\pi} a} \sum_{K'b} \langle Q^{(a)} | P_{\sim K K'}^{p} P^{P=0} | Q^{(b)} \rangle \cdot c_{K'b}^{\alpha}
$$

- **•** angular momentum projection lowers kinetic energy by delocalizing clusters
- **•** correlation energies can be very significant

one of the key reactions in the solar pp-chains

 $\mathbf{UCOM}(\mathbf{SRG}) \alpha = \mathbf{0.20} \; \mathbf{fm^4} - \lambda \approx \mathbf{1.5} \; \mathbf{fm^{-1}}$

Many-Body Approach:

Fermionic Molecular Dynamics

- **• Internal region: VAP configurations with radius constraint**
- **• External region: Brink-type cluster configurations**
- **• Matching to Coulomb solutions: Microscopic** ^R**-matrix method**

Results:

- **•** ⁷Be **bound and scattering states**
- **• Astrophysical** ^S**-factor**

Potential models (Kim et al. 1982, Mohr 2009, . . .)

- ⁴He and ³He are considered as point-like particles
- **•** interacting via an effective nucleus-nucleus potential fitted to bound stateproperties and phase shifts
- **•** ANCs calculated from ab initio wave functions (Nollett 2001, Navratil et al. 2007)

Microscopic Cluster Model (Tang et al. 1981, Langanke 1986, Kajino 1986...)

- **•** antisymmetrized wave function built with ⁴He and ³He clusters
- **•** some attempts to include polarization effects by adding other channels like ⁶Li plus proton
- **•** interacting via an effective nucleon-nucleon potential, adjusted to describebound state properties and phase shifts

Our Aim

- **•** fully microscopic wave functions with cluster configurations at large distances and additional polarized ${\sf A}\text{-}$ body configurations in the interaction region
- **•** using ^a realistic effective interaction

Boundary conditions

• Match relative motion of clusters at channel radius to Whittaker/Coulombfunctions with the **microscopic** ^R**matrix** method of the Brussels group D. Baye, P.-H. Heenen, P. Descouvemont

R $3/2^-$ 7/2 Frozen configurations

• antisymmetrized wave function built

with ⁴He and ³He FMD clusters up to

channel radius $a=12$ fm

Polarized configurations

• FMD wave functions obtained by VAP on

1/2⁻, 3/2⁻, 5/2⁻, 7

Slater determinants and RGM wave functions

- **•** Divide model space into internal and external region at channel radius
- **•** In internal region wave function is described microscopically with FMD Slater determinants
- **•** In external region wave function is considered as ^a system of two point-like clusters
- **•** (Microscopic) cluster wave function Slater determinant

$$
\left| Q^{ab}(\mathbf{R}) \right\rangle = \frac{1}{\sqrt{c_{ab}}} A \left\{ \left| Q^{a}(-\frac{m_{b}}{m_{a} + m_{b}} \mathbf{R}) \right\rangle \otimes \left| Q^{b}(\frac{m_{a}}{m_{a} + m_{b}} \mathbf{R}) \right\rangle \right\}
$$

• Projection on total linear momentum decouples intrinsic motion, relative motion of clusters and total center-of-masss

$$
\left|Q^{ab}(\mathbf{R});\mathbf{P}=0\right\rangle = \int d^3r \,\tilde{\Gamma}(\mathbf{r}-\mathbf{R})\right|\Phi^{ab}(\mathbf{r})\,\rangle\otimes\left|\,\mathbf{P}_{cm}=0\,\right\rangle
$$

using RGM basis states

$$
\langle \rho, \xi_a, \xi_b | \Phi^{ab}(\mathbf{r}) \rangle = \frac{1}{\sqrt{c_{ab}}} A \{ \delta(\rho - \mathbf{r}) \Phi^a(\xi_a) \Phi^b(\xi_b) \}
$$

RGM norm kernel

$$
n^{ab}(\mathbf{r}, \mathbf{r}') = \langle \Phi^{ab}(\mathbf{r}) | \Phi^{ab}(\mathbf{r}') \rangle
$$

Slater determinants and RGM wave functions

•^Relative motion in Slater determinant described by Gaussian

$$
\tilde{\Gamma}(\mathbf{r}-\mathbf{R}) = \left(\frac{\beta_{\text{rel}}}{\pi^2 a_{\text{rel}}}\right)^{3/4} \exp\left(-\frac{(\mathbf{r}-\mathbf{R})^2}{2a_{\text{rel}}}\right)
$$

with

$$
a_{\text{rel}} = \frac{a_a A_b + a_b A_a}{A_a A_b}, \quad \beta_{\text{rel}} = \frac{a_a a_b}{a_a A_b + a_b A_a}
$$

• Overlap of full wave function with RGM cluster basis

$$
\psi(\mathbf{r}) = \int d^3 r' \, n^{1/2}(\mathbf{r}, \mathbf{r}') \langle \, \Phi(\mathbf{r}') | \, \Psi \, \rangle
$$

• Match asymptotics to Whittaker or Coulomb functions

$$
\psi_{b}(r) = A \frac{1}{r} W_{-\eta, L+1/2}(2\kappa r)
$$

$$
\psi_{\text{scatt}}(r) = \frac{1}{r} \left\{ I_L(\eta, kr) - e^{2i\delta} O_L(\eta, kr) \right\}
$$

with

$$
\kappa = \sqrt{-2\mu E_b}, \quad k = \sqrt{2\mu E}, \quad \eta = \mu \frac{Z_a Z_b e^2}{k}
$$

Thomas Neff — Interfaces between structure and reactions, INT, 08/17/11

Bound states

- **•** centroid of bound state energies well described if polarized configurations included
- **•** tail of wave functions tested by chargeradii and quadrupole moments

solid lines – polarized configurations in interaction region included

• Scattering phase shifts well described, polarization effects important

E [MeV]dashed lines – frozen configurations only

Phase shift analysis:

Spiger and Tombrello, PR **¹⁶³**, ⁹⁶⁴ (1967)

s**-,** ^d**- and** ^ƒ **-wave Scattering States** ³He(α , γ)⁷Be

dashed lines – frozen configurations only – solid lines – FMD configurations in interaction region included

- **•** polarization effects important
- **•** ^s and ^d-wave scattering phase shifts well described
- **•** ⁷/2**[−]** resonance too high, ⁵/2**[−]** resonance roughly right, consistent with no-core shell model calculations

Nara Singh et al., PRL **⁹³**, ²⁶²⁵⁰³ (2004) Bemmerer et al., PRL **⁹⁷**, ¹²²⁵⁰² (2006) Confortola et al., PRC **⁷⁵**, ⁰⁶⁵⁸⁰³ (2007) Brown et al., PRC **⁷⁶**, ⁰⁵⁵⁸⁰¹ (2007) Di Leva et al., PRL **¹⁰²**, ²³²⁵⁰² (2009)

- **•** dipole transitions from ¹/2**⁺**, ³/2**⁺**, ⁵/2**⁺** scattering states into ³/2**[−]**, ¹/2**[−]** bound states
- ► FMD is the only model that describes well the energy dependence and normalization of
new high quality data new high quality data
- ➼ fully microscopic calculation, bound and scattering states are described consistently

Overlap Functions and Dipole Matrixelements ³He**(**α, ^γ**)**⁷Be

- **•** Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius $a=12$ fm
- **•** Dipole matrix elements calculated from overlap functions reproduce full calculationwithin 2%
- **•** cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

- **•** low-energy S-factor dominated by s-wave capture
- at 2.5 MeV equal contributions of s- and d-wave capture
- **•** FMD results differ from Kajino results mainly with respect to s-wave capture
- **•** related to short-range part of wave functions ?

- **•** isospin mirror reaction of ³He**(**α, ^γ**)**⁷Be
- **•** ⁷Li bound state properties and phase shifts well described
- ► FMD calculation describes energy dependence of Brune *et al.* data but cross section is
Narger by about 15% larger by about 15%

S-Factors consistent ? 3 He**(**α, ^γ**)**⁷Be **and**3H**(**α, ^γ**)**⁷Li

- **•** FMD calculation agrees with normalization and energy dependence of 3He**(**α, ^γ**)**⁷Be data
- **•** FMD calculation agrees with energy dependence but not normalization of 3H**(**α, ^γ**)**⁷Li data
- **•** similar inconsistency observed in other models

dashed lines – frozen configurations only, solid lines – polarized configurations included

- **•** UCOM(SRG) interaction
- **•** FMD VAP (1/2**⁺**, ³/2**[−]**, ¹/2**−**) plus radius constraint configurations in interaction region
- ➼ polarization effects very small in ^S-wave scattering
- ➼ splitting between ³/2**[−]** and ¹/2**[−]** states too small consistent with GFMC (two-body interaction only) and NCSM results

⁴**He-**⁴**He scattering**

- **•** UCOM(SRG) interaction
- **•** FMD VAP (0**⁺**, ²**⁺**, ⁴**⁺**) plus radius constraint configurations in interaction region
- ► polarization effects shift S- and D-wave resonances by about 1 MeV

Summary

Unitary Correlation Operator Method

- **•** Explicit description of short-range central and tensor correlations
- Realistic low-momentum interaction V_{UCOM}
- **•** NCSM calculations with UCOM

Fermionic Molecular Dynamics

- **•** Microscopic many-body approach using Gaussian wave-packets
- **•** Projection and multiconfiguration mixing

³**He(**^α**,**γ**)**⁷**Be Radiative Capture**

- **•** Bound states, resonance and scattering wave functions
- **•** S-Factor: energy dependence and normalization
- **•** Analyzed in terms of overlap functions
- **•** Inconsistency of 3 He(α, γ)⁷Be and 3 H(α, γ)⁷Li data ?

Thanks to my collaborators:

Hans Feldmeier (GSI), Wataru Horiuchi (RIKEN), Karlheinz Langanke (GSI), Robert Roth (TUD), Yasuyuki Suzuki (Niigata), Dennis Weber (GSI)