Interfaces between structure and reactions for rare isotopesand nuclear astrophysics

The effect of core excitation if the scattering of two-body halonuclei

Antonio M. Moro

Universidad de Sevilla

Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

Seattle 16th August ²⁰¹¹ – ¹ / ³¹

Outline:

- 1. Benchmark calculations for CDCC vs Faddeev.
	- \bullet d+¹²C at 56 MeV: elastic scattering and exclusive breakup.
- 2. Application to the scattering of two-body halo nuclei.
	- \bullet ¹⁹C+p at 70 MeV: CDCC vs Faddeev
	- Effect of core excitation.

Part I: The effect of core excitation in the scattering of weakly bound nuclei

(work done with A. Deltuva, E. Cravo, F.M. Nunes and A. Fonseca)

Example: 11 Be+p \rightarrow (10 Be + n) + p

- Three-body wf expanded in projectile (^{11}Be) internal states
- Breakup treated as single-particle excitations to $n+10$ Be continuum
- Continuum is discretized in energy bins and truncated in energy and angular momentum
- Provides elastic and elastic breakup, but not transfer.

CDCC versus Faddeev

● The exact solution of a three-body scattering problem is formally given by the Faddeev equations.

- The CDCC method can be derived as an approximated solution of the Faddeev equations in ^a trucated model space (Austern,Yahiro,Kawai, PRL63 (1989) 2649)
- For light systems, Faddeev equations can be now solved, so a comparison with CDCC is possible.

CDCC versus Faddeev

BENCHMARK CALCULATIONS FOR CDCC VS $\mathsf{FADDEEV}$

- Systems:
	- \triangleleft d+¹²C @ E_d =56 MeV
	- \triangleleft d+ 58 Ni @ E_d =80 MeV
- Faddeev: Alt, Grass, Sandas (AGS) formulation
	- ✦ Solves Faddeev eqs in momentum space
	- ✦ Coulomb included by means of screening procedure

CDCC vs Faddeev: elastic scattering

 $d+^{12}C$ at 56 MeV d+⁵⁸Ni at ⁸⁰ MeV110100Exp. (56 MeV) No continuumFaddeev10 $^{\rm 0}$ CDCC-BU/dΩ) /dΩ) **COOL** 10(dσ/dΩ)/(dσ_R (dσ/dΩ)/(dσ_R \bullet ¹⁰-1 ဧ Exp. (80.0 MeV) \circ \bullet Exp. (79.0 MeV)1Ō 10^{-2} Faddeev \bullet $\overline{\circ}$ CDCC-BU No continuum 10^{3} $\frac{1}{0}$ $\overline{90}$ 120 0 30 60 900.1 ¹²⁰ ¹⁵⁰ ¹⁸⁰0 30 60 90 $\theta_{\rm c.m.}$ $\theta_{_{\rm C.m.}}^{}$ (deg)

☞ CDCC and Faddeev are in perfect agreement!

CDCC vs Faddeev: exclusive breakup x-sections

N. Matsuoka et al., Nucl. Phys. **^A ³⁹¹**, ³⁵⁷ (1986).

Application of the CDCC formalism: d+ ¹² **C**

Observables for exclusive breakup: proton angular distribution

A.Deltuva, A.M.M., E.Cravo, F.M.Nunes, A.C.Fonseca, PRC76, 064602 (2007)

Application of the CDCC formalism: d+ ¹² **C**

Observables for exclusive breakup: proton energy distribution for fixed θ_n $_n$ and θ_p

Part II: The effect of core excitation in the scattering of weakly bound nuclei

(work done with R. Crespo)

Exclusive breakup measurements of halo nuclei

Example: ¹⁹C+p at RIKEN (Satou et el., PLB660 (2008) ³²⁰

☞ Excitation energy can be reconstructed from core-neutron coincidences (invariant mass method)

Exclusive breakup measurements of halo nuclei

Example: ¹⁹C+p at RIKEN (Satou et el., PLB660 (2008) ³²⁰

☞ Excitation energy can be reconstructed from core-neutron coincidences (invariant mass method)

Experimental data

ଙ Microscopic DWBA calculations, support a $1/2^+ \rightarrow 5/2^+$ mechanism Satou et
et . PLB660 (2008) 320 el., PLB660 (2008) 320.

¹⁹**^C spectrum**

¹⁹**C+p within ^a three-body reaction model**

 \bullet ¹⁹C states treated as s.p. configurations with the ¹⁸C in the g.s.

$$
\bullet \ {}^{19}\mathrm{C}(1/2^+) = |{}^{18}\mathrm{C}(0^+) \otimes \nu 2s_{1/2}\rangle
$$

$$
\bullet \, {}^{19}\text{C}(5/2^+) = |{}^{18}\text{C}(0^+) \otimes \nu 1d_{5/2}\rangle
$$

- \bullet Reaction mechanism \Rightarrow CDCC and Faddeev (AGS) methods.
- ● Interactions:
	- \triangleleft $n-$ ¹⁸C: WS potential
	- $\triangleleft p-$ ¹⁸C: global optical potential (Watson *et al*, PR182 (1969) 182)
	- $\triangleq p n$: central Gaussian potential reproducing the deuteron gs and ${}^{3}S_{1}$ phase-shifts

Comparison of calculations with the data

 \blacktriangleright Faddeev and CDCC provide consistent results

- **The calculations reproduce the magnitude, but not the shape.**
	- ✦Pair interactions?
	- ✦Structure model?

Effect of the p-n interaction

Faddeev calculations with the realistic CD-Bonn interaction shows that the p-nGaussian potential is too simple

Effect of the p-n interaction

Faddeev calculations with the realistic CD-Bonn interaction shows that the p-nGaussian potential is too simple

☞ ^A simple single-particle excitation mechanism cannot explain the data!

Structure model

Shell-model spectroscopic factors (WBP) for ${}^{19}{\rm C} = {}^{18}{\rm C} + n$

Structure model

- ☞ Shell-model calculations predict ^a significant admixture of core excitation in both states.
- ☞ These core excited admixtures should be taken into account in the structure model and in the reaction model

Structure model

- ☞ Shell-model calculations predict ^a significant admixture of core excitation in both states.
- ☞ These core excited admixtures should be taken into account in the structure model and in the reaction model

- Faddeev: core-excitation not included in present implementations.
- CDCC: Summers et al, PRC74 (2006) 014606 Extended version of CDCC with core excitation (XCDCC)

DWBA amplitude with core excitation

● DWBA amplitude with core degrees of freedom:

$$
A^{JM,J'M'} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}(\vec{r},\vec{\xi}) | \hat{V}_T | \chi_i^{(+)}(\vec{R}) \Psi_{JM}(\vec{r},\vec{\xi}) \rangle
$$

● Transition operator

$$
\hat{V}_T = V_{vt}(\vec{R}_{vt}) + V_{ct}(\vec{R}_{ct}, \vec{\xi}) - U_{\text{aux}}(\vec{R})
$$

Rotor model for the ¹⁹**^C nucleus**

 \bullet ¹⁸C+n states calculated in a deformed potential:

$$
V_{vc}(r,\vec{\xi}) \simeq V_{vc}^{(0)}(r) + \sum_{\lambda>0,\mu} V_{ct}^{(\lambda)}(r) Y_{\lambda\mu}(\hat{r}) Y_{\lambda\mu}^*(\hat{\xi})
$$

● Internal (projectile) states:

$$
\Psi_{JM}(\vec{r},\vec{\xi}) = \sum_{\ell,j,I} R_{\ell,j,I}^J(r) \left[\left[Y_{\ell}(\hat{r}) \otimes \chi_s \right]_j \otimes \Phi_I(\vec{\xi}) \right]_{JM}
$$

Scattering amplitude

● Multipole expansion for the core-target potential

 $V_{ct}(\vec{R}$ $\boldsymbol{\mathfrak u}_{ct},$ ~ $\langle \vec{\xi} \rangle \simeq V_{ct}^{(0)}(R_{ct}) + V_{ct}^{(\lambda)}(R_{ct}) Y_{\lambda\mu}(\hat{r}_{ct}) Y_{\lambda\mu}^*(\hat{\xi})$

● Scattering amplitude

$$
A_{if} = A_{if}^{(val)} + A_{if}^{(core)}
$$

● *Valence* excitation amplitude:

$$
A_{if}^{(val)} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}(\vec{r}, \vec{\xi}) | V_{vc}(\vec{r}) + V_{ct}^{(0)}(R_{ct}) - U_{\text{aux}}(\vec{R}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}(\vec{R}, \vec{\xi}) \rangle
$$

● Core excitation amplitude:

$$
A_{if}^{(core)} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r}, \vec{\xi}) | V_{ct}^{(\lambda)}(R_{ct}) Y_{\lambda \mu}(\hat{r}_{ct}) Y_{\lambda \mu}^*(\hat{\xi}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r}, \vec{\xi}) \rangle
$$

Evaluation of the core contribution (no-recoil)

● Consider the free scattering amplitude for a core-target inelastic scattering:

 $A_{ct}(IM_I,IM_I')=\langle\chi^{(-)}(\vec{R}_{ct})\Phi_{I'M_I'}(\vec{\xi})|V_{ct}^{(\lambda)}(R_{ct})Y_{\lambda\mu}(\hat{R}_{ct})Y_{\lambda\mu}^*$ $(\hat{\xi})|\Phi_{IM_{I}}(\vec{\xi})\chi^{(+)}(\vec{R}_{ct})$

 $\bullet\,$ In the no-recoil approximation $(\vec{R}_{ct}\approx\vec{R})$:

$$
A_{if}^{(core)}(JM \to J'M') = \frac{\langle J'M'|JM\lambda\mu\rangle}{\langle I'M'_c|IM_c\lambda\mu\rangle} \sum_{\alpha,\alpha'} \langle R_{\alpha'}|R_{\alpha}\rangle G_{\alpha,\alpha'}^{(\lambda)}A_{ct}(IM_c \to I'M'_c)
$$

$$
\alpha \equiv \{ \ell, s, j, I \}
$$

$$
G_{\alpha, \alpha'}^{(\lambda)} \equiv \delta_{j, j'} (-1)^{\lambda + j + J' + I} \hat{J} \hat{I}' \left\{ \begin{array}{ccc} J' & J & \lambda \\ I & I' & j \end{array} \right\}
$$

.
.
.

Application to ¹⁹**C+p** [→] ¹⁸**^C +n +p**

- \bullet ¹⁸C treated in a rotor model with $I = 0^+, 2^+$ states
- \bullet ¹⁸C+n and ¹⁸C+p calculated with a deformed potential
- ●Breakup calculated in first order (Born approximation)
- ●Recoil effects ignored.

Application to ¹⁹**C+p** [→] ¹⁸**^C +n +p**

☞The core-excitation mechanism gives ^a significant contribution to the cross section.

☞improved description of the shape.

Conclusions

- For elastic and (exclusive) breakup observables, the CDCC method has proven to be ^a very accurate approximation to the full Faddeev equations.
- For the scattering of a core+neutron system on a proton target, the breakup is very sensitive to the p-n interaction \Rightarrow needs to be incorporated in
existing implementations of the CDCC method existing implementations of the CDCC method.
- Core excitation plays a very important role in the resonant breakup of halo nuclei with deformed core.

Application to ¹⁹**C+p** [→] ¹⁸**^C +n +p**

Core excitation in ¹¹**Be+p**

¹⁹**^C spectrum from shell-model calculations**

From Elekes et al, PLB ⁶¹⁴ (2005) 174)

Benchmark calculations for 11 Be+p $\,$

- Can we understand the 11 Be+p elastic and transfer (p, d) data within a three-body model $(p+n^{10}Be)$?
- DBU vs TC: what approach is more appropriate for inclusive breakup cross sections?

CDCC versus Faddeev: ¹¹**Be ⁺ ^p elastic scattering**

- ●Good agreement betwen Faddeev and DBU (CDCC)
- Significant disagreement with data! \Rightarrow interactions?

CDCC vs Faddeev: transfer to bound states

 11 Be + p \rightarrow 10 Be + d

