Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

The effect of core excitation if the scattering of two-body halo nuclei

Antonio M. Moro

Universidad de Sevilla

Interfaces between structure and reactions for rare isotopes and nuclear astrophysics

Seattle 16th August 2011 – 1 / 31

Outline:

- 1. Benchmark calculations for CDCC vs Faddeev.
 - d+¹²C at 56 MeV: elastic scattering and exclusive breakup.
- 2. Application to the scattering of two-body halo nuclei.
 - ¹⁹C+p at 70 MeV: CDCC vs Faddeev
 - Effect of core excitation.

Part I: The effect of core excitation in the scattering of weakly bound nuclei

(work done with A. Deltuva, E. Cravo, F.M. Nunes and A. Fonseca)

Example: ¹¹Be+p \rightarrow (¹⁰Be + n) + p

- Three-body wf expanded in projectile (¹¹Be) internal states
- Breakup treated as single-particle excitations to n+¹⁰Be continuum
- Continuum is discretized in energy bins and truncated in energy and angular momentum
- Provides elastic and elastic breakup, but not transfer.

CDCC versus Faddeev

• The *exact* solution of a three-body scattering problem is formally given by the Faddeev equations.

- The CDCC method can be derived as an approximated solution of the Faddeev equations in a trucated model space (Austern, Yahiro, Kawai, PRL63 (1989) 2649)
- For light systems, Faddeev equations can be now solved, so a comparison with CDCC is possible.

CDCC versus Faddeev

BENCHMARK CALCULATIONS FOR CDCC VS FADDEEV

- Systems:
 - ♦ d+ 12 C @ E_d =56 MeV
 - ♦ d+⁵⁸Ni @ E_d=80 MeV
- Faddeev: Alt, Grass, Sandas (AGS) formulation
 - Solves Faddeev eqs in momentum space
 - Coulomb included by means of screening procedure

CDCC vs Faddeev: elastic scattering

 $d+^{12}C$ at 56 MeV

d+⁵⁸Ni at 80 MeV

CDCC and Faddeev are in perfect agreement!

CDCC vs Faddeev: exclusive breakup x-sections

N. Matsuoka et al., Nucl. Phys. A 391, 357 (1986).

Application of the CDCC formalism: d+ ¹²C

Observables for exclusive breakup: proton angular distribution

A.Deltuva, A.M.M., E.Cravo, F.M.Nunes, A.C.Fonseca, PRC76, 064602 (2007)

Application of the CDCC formalism: $d + {}^{12}C$

Observables for exclusive breakup: proton energy distribution for fixed θ_n and θ_p

Part II: The effect of core excitation in the scattering of weakly bound nuclei

(work done with R. Crespo)

Exclusive breakup measurements of halo nuclei

Example: ¹⁹C+p at RIKEN (Satou *et el.*, PLB660 (2008) 320

Excitation energy can be reconstructed from core-neutron coincidences (*invariant mass method*)

Exclusive breakup measurements of halo nuclei

Example: ¹⁹C+p at RIKEN (Satou *et el.*, PLB660 (2008) 320

Excitation energy can be reconstructed from core-neutron coincidences (*invariant mass method*)

Experimental data

Therefore Microscopic DWBA calculations, support a $1/2^+ \rightarrow 5/2^+$ mechanism Satou et el., PLB660 (2008) 320.

¹⁹C spectrum

¹⁹C+p within a three-body reaction model

• 19 C states treated as s.p. configurations with the 18 C in the g.s.

•
$${}^{19}C(1/2^+) = |{}^{18}C(0^+) \otimes \nu 2s_{1/2} \rangle$$

•
$${}^{19}C(5/2^+) = |{}^{18}C(0^+) \otimes \nu 1d_{5/2} \rangle$$

- Reaction mechanism
 ⇒ CDCC and Faddeev (AGS) methods.
- Interactions:
 - n^{-18} C: WS potential
 - $p-{}^{18}$ C: global optical potential (Watson *et al*, PR182 (1969) 182)
 - p n: central Gaussian potential reproducing the deuteron gs and ${}^{3}S_{1}$ phase-shifts

Comparison of calculations with the data

✓ Faddeev and CDCC provide consistent results

- **X** The calculations reproduce the magnitude, but not the shape.
 - Pair interactions?
 - Structure model?

Effect of the p-n interaction

Faddeev calculations with the realistic CD-Bonn interaction shows that the p-n Gaussian potential is too simple

Effect of the p-n interaction

Faddeev calculations with the realistic CD-Bonn interaction shows that the p-n Gaussian potential is too simple

A simple single-particle excitation mechanism cannot explain the data!

Structure model

Shell-model spectroscopic factors (WBP) for ${}^{19}C = {}^{18}C + n$

	Core state	$2s_{1/2}$	$1d_{5/2}$	$1d_{3/2}$
$^{19}\mathrm{C}(1/2^+_1)$ g.s.	0^{+}_{1}	0.58	_	_
	2_{1}^{+}	—	0.47	0.0085
	0_{2}^{+}	0.32	—	_
	2^{+}_{2}	—	0.018	0.086
	3_{1}^{+}	_	1.52	_
	()	()	()	()

	Core state	$1d_{5/2}$	$1d_{3/2}$	$2s_{1/2}$
$^{19}\mathrm{C}(5/2^+_2)$ resonance	0_{1}^{+}	0.035	_	_
	2_{1}^{+}	0.29	0.0087	0.61
	0_{2}^{+}	0.25	—	—
	2^{+}_{2}	0.37	0.0053	0.0077
	3_{1}^{+}	0.094	0.11	0.37
	()	()	()	()

Structure model

- Shell-model calculations predict a significant admixture of core excitation in both states.
- These core excited admixtures should be taken into account in the structure model and in the reaction model

Structure model

- Shell-model calculations predict a significant admixture of core excitation in both states.
- These core excited admixtures should be taken into account in the structure model and in the reaction model

- Faddeev: core-excitation not included in present implementations.
- CDCC: Summers et al, PRC74 (2006) 014606 Extended version of CDCC with core excitation (XCDCC)

DWBA amplitude with core excitation

• DWBA amplitude with core degrees of freedom:

$$A^{JM,J'M'} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}(\vec{r},\vec{\xi}) | \hat{V}_T | \chi_i^{(+)}(\vec{R}) \Psi_{JM}(\vec{r},\vec{\xi}) \rangle$$

• Transition operator

$$\hat{V}_T = V_{vt}(\vec{R}_{vt}) + V_{ct}(\vec{R}_{ct}, \vec{\xi}) - U_{\text{aux}}(\vec{R})$$

Rotor model for the ¹⁹C nucleus

• ¹⁸C+n states calculated in a deformed potential:

$$V_{vc}(r,\vec{\xi}) \simeq V_{vc}^{(0)}(r) + \sum_{\lambda>0,\mu} V_{ct}^{(\lambda)}(r) Y_{\lambda\mu}(\hat{r}) Y_{\lambda\mu}^*(\hat{\xi})$$

• Internal (projectile) states:

$$\Psi_{JM}(\vec{r},\vec{\xi}) = \sum_{\ell,j,I} R^J_{\ell,j,I}(r) \left[[Y_\ell(\hat{r}) \otimes \chi_s]_j \otimes \Phi_I(\vec{\xi}) \right]_{JM}$$

State	$ 0^+ \otimes s_{1/2}\rangle$	$ 0^+ \otimes d_{5/2}\rangle$	$ 2^+ \otimes s_{1/2}\rangle$	$ 2^+ \otimes d_{5/2}\rangle$
Ground state	73%	_	_	24%
$5/2^+$ resonance	—	26%	74%	\ll

Scattering amplitude

Multipole expansion for the core-target potential

 $V_{ct}(\vec{R}_{ct},\vec{\xi}) \simeq V_{ct}^{(0)}(R_{ct}) + V_{ct}^{(\lambda)}(R_{ct})Y_{\lambda\mu}(\hat{r}_{ct})Y_{\lambda\mu}^{*}(\hat{\xi})$

• Scattering amplitude

$$A_{if} = A_{if}^{(val)} + A_{if}^{(core)}$$

• Valence excitation amplitude:

$$A_{if}^{(val)} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}(\vec{r},\vec{\xi}) | V_{vc}(\vec{r}) + V_{ct}^{(0)}(R_{ct}) - U_{aux}(\vec{R}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}(\vec{R},\vec{\xi}) \rangle$$

• Core excitation amplitude:

$$A_{if}^{(core)} = \langle \chi_f^{(-)}(\vec{R}) \Psi_{J'M'}^f(\vec{r},\vec{\xi}) | V_{ct}^{(\lambda)}(R_{ct}) Y_{\lambda\mu}(\hat{r}_{ct}) Y_{\lambda\mu}^*(\hat{\xi}) | \chi_i^{(+)}(\vec{R}) \Psi_{JM}^i(\vec{r},\vec{\xi}) \rangle$$

Evaluation of the core contribution (no-recoil)

• Consider the free scattering amplitude for a core-target inelastic scattering:

 $A_{ct}(IM_{I}, IM_{I}') = \langle \chi^{(-)}(\vec{R}_{ct}) \Phi_{I'M_{I}'}(\vec{\xi}) | V_{ct}^{(\lambda)}(R_{ct}) Y_{\lambda\mu}(\hat{R}_{ct}) Y_{\lambda\mu}^{*}(\hat{\xi}) | \Phi_{IM_{I}}(\vec{\xi}) \chi^{(+)}(\vec{R}_{ct}) Y_{\lambda\mu}(\hat{R}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) | \Phi_{IM_{I}}(\vec{\xi}) \chi^{(+)}(\vec{R}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) | \Phi_{IM_{I}}(\vec{\xi}) \chi^{(+)}(\vec{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) | \Phi_{IM_{I}}(\vec{\xi}) \chi^{(+)}(\vec{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) | \Phi_{IM_{I}}(\vec{\xi}) | \Phi_{IM_{I}}(\vec{\xi}) \chi^{(+)}(\vec{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) Y_{\lambda\mu}(\hat{K}_{ct}) | \Phi_{IM_{I}}(\vec{\xi}) \chi^{(+)}(\vec{K}_{ct}) | \Phi_{IM_{I}}(\vec{\xi}) | \Phi_{IM_{I}}($

• In the no-recoil approximation ($\vec{R}_{ct} \approx \vec{R}$):

$$A_{if}^{(core)}(JM \to J'M') = \frac{\langle J'M'|JM\lambda\mu\rangle}{\langle I'M_c'|IM_c\lambda\mu\rangle} \sum_{\alpha,\alpha'} \langle R_{\alpha'}|R_{\alpha}\rangle G_{\alpha,\alpha'}^{(\lambda)}A_{ct}(IM_c \to I'M_c')$$

$$\alpha \equiv \{\ell, s, j, I\}$$

$$G_{\alpha, \alpha'}^{(\lambda)} \equiv \delta_{j, j'} (-1)^{\lambda + j + J' + I} \hat{J} \hat{I'} \begin{cases} J' & J & \lambda \\ I & I' & j \end{cases}$$

Application to ${}^{19}C+p \rightarrow {}^{18}C+n+p$

- ¹⁸C treated in a rotor model with $I = 0^+, 2^+$ states
- ¹⁸C+n and ¹⁸C+p calculated with a deformed potential
- Breakup calculated in first order (Born approximation)
- Recoil effects ignored.

Application to ${}^{19}C+p \rightarrow {}^{18}C+n+p$

The core-excitation mechanism gives a significant contribution to the cross section.

improved description of the shape.

Conclusions

- For elastic and (exclusive) breakup observables, the CDCC method has proven to be a very accurate approximation to the full Faddeev equations.
- For the scattering of a core+neutron system on a proton target, the breakup is very sensitive to the p-n interaction ⇒ needs to be incorporated in existing implementations of the CDCC method.
- Core excitation plays a very important role in the resonant breakup of halo nuclei with deformed core.

Application to ${}^{19}C+p \rightarrow {}^{18}C+n+p$

Core excitation in¹¹**Be+p**

¹⁹C spectrum from shell-model calculations

From Elekes et al, PLB 614 (2005) 174)

Benchmark calculations for ¹¹Be+p

- Can we understand the ¹¹Be+p elastic and transfer (p, d) data within a three-body model (p+n¹⁰Be)?
- DBU vs TC: what approach is more appropriate for inclusive breakup cross sections?

CDCC versus Faddeev: ¹¹**Be + p elastic scattering**

- Good agreement between Faddeev and DBU (CDCC)
- Significant disagreement with data! ⇒ interactions?

CDCC vs Faddeev: transfer to bound states

 $^{11}\text{Be} + p \rightarrow ^{10}\text{Be} + d$

