

Chiral Two-body Currents and Weak Decays

Javier Menéndez

Institut für Kernphysik, TU Darmstadt and ExtreMe Matter Institute (EMMI)

with Doron Gazit (HUJI) and Achim Schwenk (EMMI/TU Darmstadt)

INT Program "Interfaces between Structure and Reactions for Rare Isotopes and Nuclear Astrophysics" Seattle, 22 August 2011

(日)

Outline

Introduction

Gamow-Teller quenching

Neutrinoless double beta decays

E >

.⊒...>

Introduction

Chiral EFT nuclear weak currents Gamow-Teller quenching Neutrinoless double beta decays Summary and Outlook

Outline

Introduction

- 2 Chiral EFT nuclear weak currents
- 3 Gamow-Teller quenching
- 4 Neutrinoless double beta decays
- 5 Summary and Outlook

→ E → < E →</p>

Nuclear weak decays

Nuclear weak processes play a major role in

- Astrophysics: Stellar evolution, Supernovae, Nucleosynthesis
- Nuclear structure: Gamow-Teller transitions, strength functions, Gamow-Teller resonance...
- Superallowed Fermi transitions: isospin symmetry breaking, CKM matrix unitarity...
- ³H single- β decay: measurement of the neutrino mass (m_{ν})
- Neutrinoless Double Beta Decay $(0\nu\beta\beta)$: lepton number violation, Majorana character of neutrinos, information on m_{ν}

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Gamow-Teller quenching

Theoretical calculations need to "quench" the Gamow-Teller coupling

$$\mathbf{J}_{n,1B} = g_A \,\sigma_n \tau_n^-, \qquad g_A^{\text{eff}} = q g_A, \qquad q \approx 0.75$$

to reproduce experimental lifetimes and strength functions in regions where the spectroscopy is well reproduced

GT quenching and chiral EFT weak currents

This puzzle has been the target of many theoretical efforts: Arima, Rho, Towner, Bertsch and Hamamoto, Wildenthal and Brown...

Revisit in the framework of chiral effective field theory (chiral EFT) Consistent description of nuclear forces and electroweak currents

Chiral EFT NN+3N forces recently applied to β decays:

- ³H β decay Gazit et al. PRL103 102502(2009), with consistent chiral 1B+2B currents
- ¹⁴C β decay Maris et al. PRL106 202502(2011), standard 1B currents

・ロット (雪) () () () ()

Introduction

Chiral EFT nuclear weak currents Gamow-Teller quenching Neutrinoless double beta decays Summary and Outlook

Chiral EFT

- Chiral EFT is a low energy approach to QCD valid for nuclear structure energies
- Enables a systematic basis for strong interactions, expansion in powers of Q/Λ_b $Q \sim m_{\pi}$, typical momentum scale $\Lambda_b \sim 500$ MeV, breakdown scale
- Nucleons interact via pion exchanges and contact interactions
- Provides consistent electroweak nuclear currents
- Short-range couplings are fitted to experiment (once)

Forces and Currents in Chiral EFT

• Systematic expansion: nuclear forces and electroweak currents

くロト (過) (目) (日)

Application: Double beta decay

Double beta decay only appears when single- β decay is energetically forbidden or hindered by large *J* difference

Neutrinoless double beta decay and quenching

 $0\nu\beta\beta$ decay needs also massive Majorana neutrinos ($\nu = \bar{\nu}$) \Rightarrow detection would proof Majorana nature of neutrinos

$$\left(T_{1/2}^{0\nu\beta\beta}\left(0^{+}\rightarrow0^{+}\right)\right)^{-1}=G_{01}\left|M^{0\nu\beta\beta}\right|^{2}\left(\frac{m_{\beta\beta}}{m_{e}}\right)^{2}$$

 $M^{0\nu\beta\beta}$ necessary to identify best candidates for experiment and to obtain neutrino masses and hierarchy with $m_{\beta\beta} = |\sum_{k} U_{ek}^2 m_k|$

Big $M^{0\nu\beta\beta}$ uncertainty due to g_A (quenched?) value: $\left(T^{0\nu\beta\beta}_{1/2}\right)^{-1} \propto g_A^4$ Transferred momenta are high in $0\nu\beta\beta$ decay: $p \sim 100$ MeV Is g_A also effectively quenched at $p \sim m_{\pi}$?

A B > A B >

$0\nu\beta\beta$ candidates: medium-mass nuclei

Only candidates with $Q_{\beta\beta} > 2 \text{ MeV}$	Transition	${\it Q}_{etaeta}$ (MeV)	Ab. (%)
are experimentally interesting	48 Ca $\rightarrow ^{48}$ Ti	4.274	0.2
All the candidates medium-mass nuclei	$^{70}\text{Ge} \rightarrow ^{70}\text{Se}$ $^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2.039 2.996	8 9
	96 Zr $\rightarrow ^{96}$ Mo	3.350	3
	100 Mo $\rightarrow $ 100 Ru 110 Pd $\rightarrow $ 110 Cd	3.034 2.013	10 12
Approximations will be required	$^{116}\text{Cd} \rightarrow ^{116}\text{Sn}$	2.802	7
in the many-body method	124 Sn \rightarrow 124 Te 130 Te \rightarrow 130 Xe	2.288 2.530	6 34
and the weak currents	136 Xe \rightarrow 136 Ba	2.462	9
	150 Nd $\rightarrow ^{150}$ Sm	3.667	6

ヘロア 人間 アメヨア 人口 ア

ъ

Outline

- 2 Chiral EFT nuclear weak currents
 - 3 Gamow-Teller quenching
 - Neutrinoless double beta decays
- 5 Summary and Outlook

→ E → < E →</p>

Chiral weak currents

Chiral EFT currents Park et al. PRC67 055206(2003) Systematically obtain the currents at Q^0 , Q^2 ... order

- Order Q^0 :
 - Fermi term: $J_n^0(p^2) = g_V(0) \tau_n^-$
 - Gamow-Teller term: $\mathbf{J}_{n,1B}(p^2) = g_A(0) \sigma_n \tau_n^-$
- Order Q²:
 - $\frac{1}{m_N}$ terms
 - Loop corrections, pion propagator $\propto p^2$
- Order Q³, two-body currents: J_{2B} (Axial)

Compare to phenomenological currents

Phenomenological weak nuclear currents obtained from symmetry considerations

- Form-factors included via dipole parametrization
- Non-relativistic expansion up to $\frac{1}{m_N}$

Chiral $Q^0 + Q^2$ and phenomenological currents have same structure: $J_{n,1B}^0(p^2) = \tau_n^- [g_V(p^2)],$ $\mathbf{J}_{n,1B}(p^2) = \tau_n^- \left[g_A(p^2)\sigma_n - g_P(p^2)\frac{\mathbf{p}(\mathbf{p}\cdot\sigma_n)}{2m_N} + i(g_M + g_V)\frac{\sigma_n \times \mathbf{p}}{2m_N}\right].$ (Different chiral p^2 and phenomenological dipole-like terms)

Systematic organization of 2B currents difficult in phenom. approach

ヘロン 人間 とくほとく ほとう

Two-body currents in light nuclei

Two-body currents needed to reproduce data in light nuclei:

2B current contributions \sim few % in light nuclei ($Q \sim \sqrt{BEm}$) 2B currents order $Q^3 \Rightarrow$ larger effect in medium-mass nuclei ($Q \sim k_E$)

Normal-ordered one-body current

- In order to estimate their effect on medium-mass nuclei take normal-ordered 1-body approximation with respect to Fermi gas,
- Sum over one nucleon, direct and the exchange terms

- $\Rightarrow \mathbf{J}_{n,2B}^{\text{eff}}$, normal-ordered (effective) one-body current
- Corrections are $\sim (n_{\rm valence}/n_{\rm core})$ in Fermi systems

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two-body currents

 The normal-ordered two-body currents are, neglecting (small) tensor-like terms

$$\mathbf{J}_{n,2B}^{\mathrm{eff}} = -\frac{g_{A\rho}}{m_{N}f_{\pi}^{2}} \sigma_{n} \left[F\left(\rho, c_{3}, c_{4}, c_{D}, \rho\right) \right],$$

$$F(\rho, c_3, c_4, c_D, p) = \frac{c_D}{g_A \Lambda_{\chi}} + \frac{2}{3} c_3 \frac{\mathbf{p}^2}{4m_{\pi}^2 + \mathbf{p}^2} + I(\rho, P) \left(\frac{1}{3} (2c_4 - c_3) + \frac{1}{6m_N}\right)$$

short-range *p* dependent

long-range

- J^{eff}_{n,2B} only modifies the Gamow-Teller one-body current
- This is general for a spin-isospin symmetric reference state, in general there can be an additional orbital dependence

Outline

- 2 Chiral EFT nuclear weak currents
- Gamow-Teller quenching
 - Neutrinoless double beta decays
- 5 Summary and Outlook

★ E → < E →</p>

Two-body currents

- $J_{n,2B}^{eff}$ depends on couplings c_3 , c_4 , c_D and nuclear density ρ
- For density ρ consider the general range 0.10...0.12 fm⁻³
- Couplings c3, c4 taken from NN potentials
 - From the N³LO NN potentials:
 - Entem et al. PRC68 041001(2003), Epelbaum et al. NPA747 362(2005)
 - From the PWA analysis:
 - Rentmeester et al. PRC67 044001(2003)
 - Consider expected modification of couplings at next order: $\delta c_3 = -\delta c_4 \approx 1 \text{ GeV}^{-1}$
 - \Rightarrow Six sets of c_3 , c_4 values considered in total

・ロット (雪) ・ (目)

Long-range 2B currents and quenching

At p = 0 and $c_D = 0$ (long-range part of the currents only) 2B currents suppress 1B currents by q = 0.85...0.66

 \Rightarrow Long-range 2B currents predict g_A quenching

Short-range 2B currents and quenching I

Short-range part (c_D) not so well-known \Rightarrow Adjust c_D according to the empirical quenching required in Gamow-Teller transitions \Rightarrow compare to c_D values obtained by 3N fits

Extreme scenario (big quenching)

2B currents cause all g_A quenching suggested by theoretical calculations $g_A^{\text{eff}} = qg_A$ due to the operator

 \Rightarrow contribution of the 2B currents q = 0.74

< 🗇 🕨

Short-range 2B currents and quenching II

Extreme scenario (small quenching)

2B currents responsible for small part of g_A quenching

suggested by (much debated) strength function experimental extractions in ⁹⁰Zr up to high energies Sasano et al. PRC79 024602(2009), Yako et al. PLB615 193(2005)

 $g_A^{\text{eff}} = qg_A$ mainly due to the many-body method \Rightarrow contribution of the 2B currents q = 0.96

1B+2B currents constrained to GT quenching

We use q = 0.74 and q = 0.96 to constrain c_D

Allowed c_D lead to q values that lie inside the box

c_D from Gamow-Teller quenching

The sets of c_D values we find are

			<i>q</i> = 0.74	q = 0.96
	c_3	$2c_4 - c_3$	c_D from $ ho = 0.10 \dots 0.12 \text{ fm}^3$	
EM	-3.2	14.0	-0.170.70	-2.342.51
$EM + \delta c_i$	-2.2	11.0	0.40* – 0.11	$-1.78^* \ldots - 1.92$
EGM	-3.4	10.2	0.550.04	-1.631.77
EGM+δc _i	-2.4	7.2	1.110.63	-1.061.18
PWA	-4.78	12.7	$0.08 \ldots - 0.44^{*}$	-2.102.26*
$PWA+\delta c_i$	-3.78	9.7	0.64 0.14	-1.531.67

- Using EM c_i's, -0.3 ≤ c_D ≤ -0.1 from ³H BE and β decay fit favors empirical quenching scenario
- *c*_D values from fits to ³H BE and ⁴He radius also compatible with empirical quenching
- Small quenching q = 0.96 cannot be ruled out compatible with ³H BE, ⁴He radius fits in some cases (not EM)

1B+2B Gamow-Teller p dependence

The $\sigma\tau^-$ term, when two-body currents are included, depends on transferred momentum *p* through the $\frac{2}{3}c_3 \frac{\mathbf{p}^2}{4m^2 + \mathbf{p}^2}$ term

Quenching gets weaker at $p \neq 0$ Typically $p \sim 100 \text{ MeV} \sim m_{\pi}$ for $0\nu\beta\beta$ decay

Outline

- Neutrinoless double beta decays

★ E → < E →</p>

$0\nu\beta\beta$ within the Chiral EFT approach

- Phenomenological currents have further uncertainty given by which terms in the current are kept in the calculation
- ⇒ Chiral EFT currents can be systematically expanded: we can perform calculations to order Q⁰, Q², Q³...
- In previous calculations of 0νββ big uncertainty in g^{eff}_A How relevant is it for transferred momenta p ~ 100 MeV?
- \Rightarrow Chiral EFT predicts *p* dependence of *g*_A quenching

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ Ξ →

Calculation of $0\nu\beta\beta$ initial and final states

- Shell Model (SM) code NATHAN Caurier *et al.* RMP77 427(2005) State-of-the-art description of initial and final states by diagonalization of the full valence space
- SM interactions based on G matrices + MBPT (core polarization) with phenomenological monopole modifications (not yet consistent with the chiral currents)
- The valence spaces and interactions used are the following
 - *pf* shell for ⁴⁸Ca KB3 interaction
 - $1p_{3/2}$, $0f_{5/2}$, $1p_{1/2}$ and $0g_{9/2}$ space for ⁷⁶Ge and ⁸²Se gcn.2850 interaction
 - $0g_{7/2}$, $1d_{3/2}$, $1d_{5/2}$, $2s_{1/2}$ and $0h_{11/2}$ space for ¹²⁴Sn, ¹³⁰Te and ¹³⁶Xe gcn.5082 interaction

Calculation of $0\nu\beta\beta$ transition operator

• The transition operator comes from the product of two currents

$$J^{\mu}_n(p^2)J_{m\mu}(p^2)=h^F(p^2)\Omega^F+h^{GT}(p^2)\Omega^{GT}+h^T(p^2)\Omega^T,$$

with Ω^{F} Fermi (1), Ω^{GT} Gamow-Teller ($\sigma_{1}\sigma_{2}$), Ω^{T} Tensor (S_{12})

$$\begin{split} h^{F}(p^{2}) &= h^{F}_{W}(p^{2}), \\ h^{GT}(p^{2}) &= h^{GT}_{aa}(p^{2}) + h^{GT}_{ap}(p^{2}) + h^{GT}_{pp}(p^{2}) + h^{GT}_{mm} \\ h^{T}(p^{2}) &= h^{T}_{ap}(p^{2}) + h^{T}_{pp}(p^{2}) + h^{T}_{mm} \end{split}$$

- Classify according to Chiral EFT expansion
 - Q^0 : $h_{aa}^{GT}(0), h_{vv}^F(0)$
 - Q^2 : $h_{aa}^{GT}(p^2)$, $h_{vv}^F(p^2)$ plus all other terms
 - Q^3 : Now $h_{aa}^{GT}(p^2)$, $h_{ap}^{GT}(p^2)$ have contribution from 2B currents

The $0\nu\beta\beta$ operator

The transition operator for $0\nu\beta\beta$ decay is:

$$M^{0
uetaeta} = -\left(rac{g_V\left(0
ight)}{g_A\left(0
ight)}
ight)^2 M^F + M^{GT} - M^T$$

where $M^{\chi} = \left\langle \mathbf{0}_{f}^{+} \right| \sum_{n,m} \tau_{n}^{-} \tau_{m}^{-} H^{\chi}(r) \Omega^{\chi} \left| \mathbf{0}_{i}^{+} \right\rangle$

and $H^{X}(r) = \frac{2}{\pi} \frac{R}{g_{A}^{2}(0)} \int_{0}^{\infty} f^{X}(qr) \frac{h^{X}(q)}{\left(q + E_{a}^{m} - \frac{1}{2}(E_{i} - E_{i})\right)} q \, dq$

Obtain $M^{0\nu\beta\beta}$ including chiral EFT 1B+2B currents These terms should be included in any calculation of the NMEs (SM, EDF, QRPA, IBM...)

イロト イポト イヨト イヨト

.≣⇒

1B+2B *p* dependence

Check transferred momenta $p \sim m_{\pi}$ dominate the NME, true at different orders *Q* in the calculation

where $M^{0\nu\beta\beta} = \int_0^\infty C(p) dp$

1B+2B Nuclear Matrix Elements

Effect of 2B currents Q^3 ranges from +10% to -35% of the NME (Smaller than -45% expected by $q^2 = 0.74^2$ due to $p \neq 0$)

Outline

- 2 Chiral EFT nuclear weak currents
- 3 Gamow-Teller quenching
 - 4 Neutrinoless double beta decays
- 5 Summary and Outlook

→ E → < E →</p>

Summary and Outlook: 2B weak currents

- Chiral EFT weak currents give two-body contributions at Q³
- 2B currents modify Gamow-Teller ($\sigma \tau^-$) term
 - The long range 2B currents predict g_A quenching
 - *p* dependence of the quenching is also predicted
- Nuclear Matrix Elements for 0νββ decay modified –35...10% by chiral 2B currents
- Outlook
 - Beyond one-body approximation of 2b currents
 - Study other electroweak decays: M1 transitions...
 - Treat consistently interaction and currents (operators)

ヘロト ヘアト ヘヨト ヘ