Fusion Reactions at very low energies. Henning Esbensen

INT-11-2d program, Aug. 8 to Sept. 2, 2011 Interface between structure and reactions for rare isotopes and astrophysics.

- The description is based on the coupled-channels technique. It includes couplings to the low-lying 2⁺ and 3⁻ states in projectile and target, and mutual and two-phonon excitations of these states.
- The influence of transfer is also studied,
 for example, in the fusion of ⁴⁰Ca+⁴⁸Ca, ¹²C+¹³C, and ¹³C+¹³C.
- The analysis of measurements has focused on understanding
 - the hindrance of fusion at extreme subbarrier energies,
 - fusion reactions of interest to astrophysics (e. g. ${}^{12}C+{}^{12}C$),
 - the constraints on the extrapolation to very low energies.

Work supported by U.S. Department of Energy, Office of Nuclear Physics.

Coupled equations.

$$(H_n^{(0)} + E_n - E)\phi_n(r) = -\sum_{n' \neq n} \langle n|\delta V_C + \delta V_N |n'\rangle \phi_{n'}(r).$$

Nuclear interaction of the form $V_N(r - R_1 - R_2 - \delta R)$, where

$$\delta R = \sum_{\lambda\mu} \alpha_{1\lambda\mu} R_1 Y^*_{\lambda\mu}(\hat{r}) + \alpha_{2\lambda\mu} R_2 Y^*_{\lambda\mu}(-\hat{r}).$$

 $\alpha_{\lambda\mu}$: dynamic (or static) surface deformation amplitudes.

Rotating frame approximation: $\hat{r} = \hat{z}$,

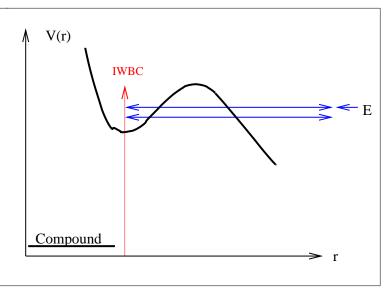
$$Y_{\lambda\mu}(\hat{r}) = \delta_{\mu,0} \sqrt{\frac{2\lambda+1}{4\pi}}$$

Implies that the magnetic quantum number is conserved. There is only one channel for each state with spin I, instead of 2I + 1 or I + 1 channels.

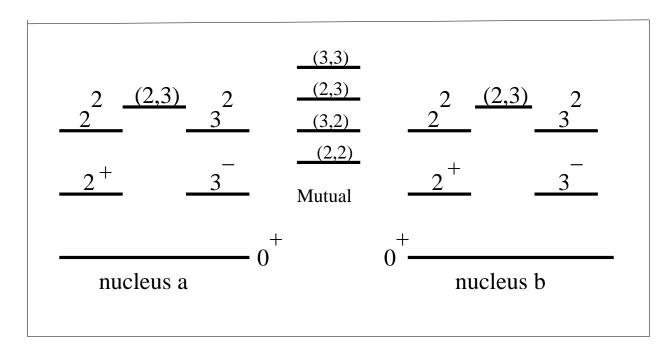
Standard approach.

Include Coulomb couplings δV_C to first order, and nuclear couplings up to second order in δR ,

$$\delta V_N = -U'(r) \,\delta R + \frac{1}{2} \,U''(r) \,\left(\delta R^2 - \langle 0|\delta R^2|0\rangle\right),\,$$


where U(r) is the conventional ion-ion potential

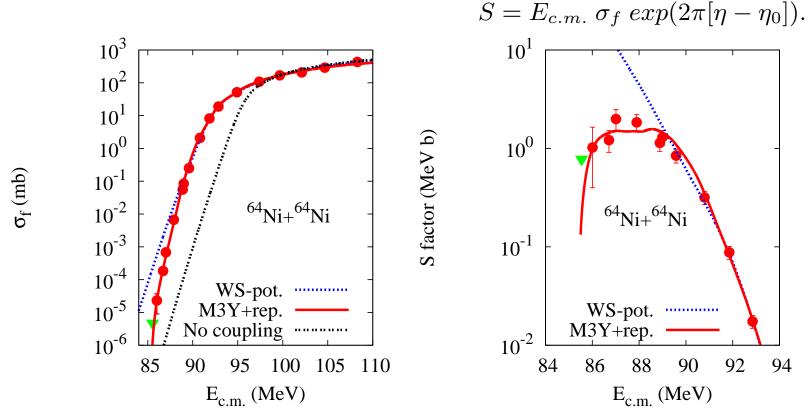
$$U(r) = \frac{16\pi\gamma a R_1 R_2}{R_1 + R_2} \frac{1}{1 + \exp[(r - R_1 - R_2)/a]}.$$


A Proximity type interaction by Broglia and Winther.

Usual scattering boundary conditions at large value of *r*. **FUSION** is determined by **IWBC** (ingoing-wave boundary conditions) that are imposed for overlapping nuclei.

Avoid imaginary potentials if possible.

Standard two-phonon calculation.


No. of channels: 1 (GS) + 4 (1PH) + 4 (2PH) + 6 (Mutual) = 15 channels.

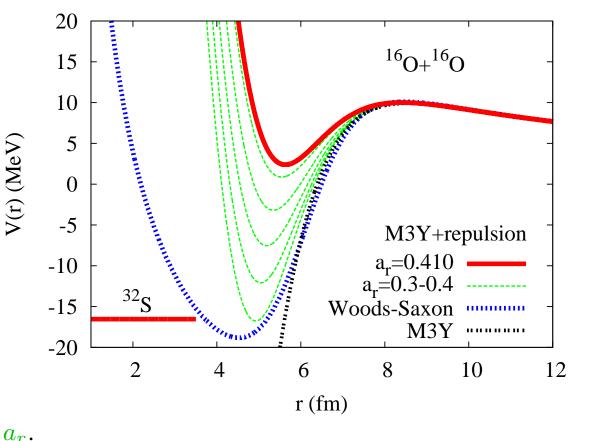
Works quite well for lighter and medium heavy systems, with some exceptions,

- in fusion reactions where transfer plays a role,
- for heavy and soft, or strongly deformed nuclei,
 - become sensitive to high-lying states (multiphonon or high spin states.)

Hindrance of fusion far below the Coulomb barrier.

• Was first recognized at Argonne by Jiang et al., ⁶⁰Ni+⁸⁹Y, PRL 89 (2002), ⁶⁴Ni+⁶⁴Ni, PRL 93 (2004), ⁶⁴Ni+¹⁰⁰Mo, PRC 71 (2005), ²⁸Si+⁶⁴Ni, PL B640 (2006).

- The data are *hindered* compared to coupled-channels calculations that are based on *a conventional Woods-Saxon potential*.
- Right panel: the S factor for fusion has a maximum at low energy.

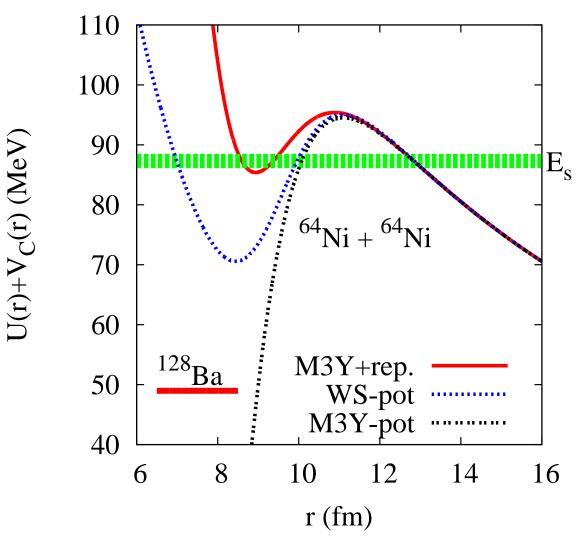

Theoretical description of the fusion hindrance, Mişicu and Esbensen, PRL 96, 112701 (2006); PRC 75, 034606 (2007).

Conventional Woods-Saxon potential (WS), $a \approx 0.65$ fm.

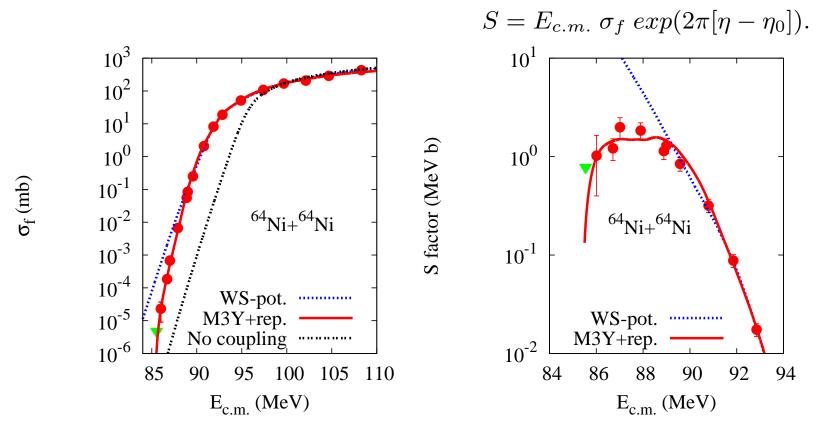
M3Y double-folding potential: $U(\mathbf{r}) = \int d\mathbf{r}_1 d\mathbf{r}_2 \ \rho_1(\mathbf{r}_1) \ \rho_2(\mathbf{r}_2)$ $\times v_{NN}(\mathbf{r} + \mathbf{r}_2 - \mathbf{r}_1). \ v_{NN} =$ M3Y effective NN interaction.

M3Y+repulsion potential:

Supplement with a repulsive term, $v_{NN}^{\text{rep}} = v_r \delta(\mathbf{r} + \mathbf{r_2} - \mathbf{r_1}).$ Use $\rho(r)$ with adjustable diffuseness a_r . v_r is calibrated to give the nuclear incompressibility K = 234 MeV.

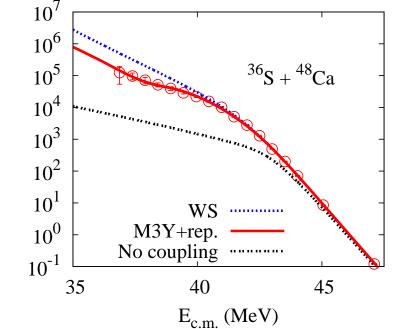

Adjustable parameters: R and a_r . Can produce a shallow pocket and a thicker barrier.

Hindrance of fusion far below the Coulomb barrier.


The hindrance sets in near E_s .

Adjust a_r so pocket is slightly deeper: $a_r = 0.403$ fm.

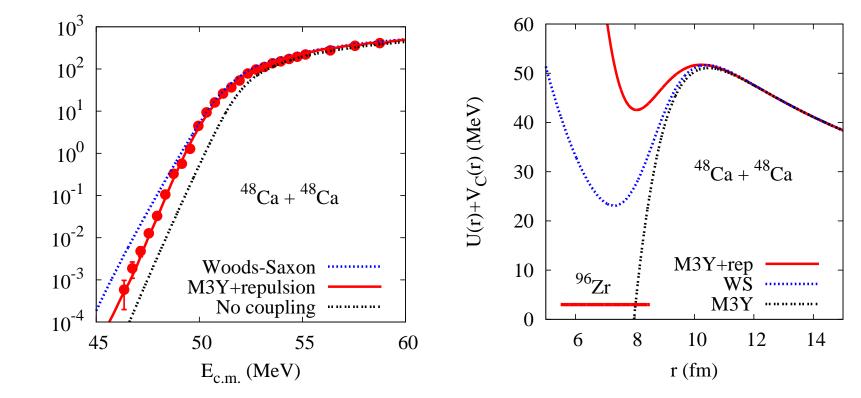
Fusion cross section goes to zero for $E_{cm} \leq E_{pocket}$.


Jiang et al., ⁶⁴Ni+⁶⁴Ni, PRL 93 (2004).

- The data are *hindered* compared to coupled-channels calculations that are based on *a conventional Woods-Saxon potential*.
- Strong hindrance (right panel):
 - the S factor for fusion has a maximum at low energy.

Does fusion hindrance occur in systems with positive Q values? Important issue for extrapolations in astrophysics.

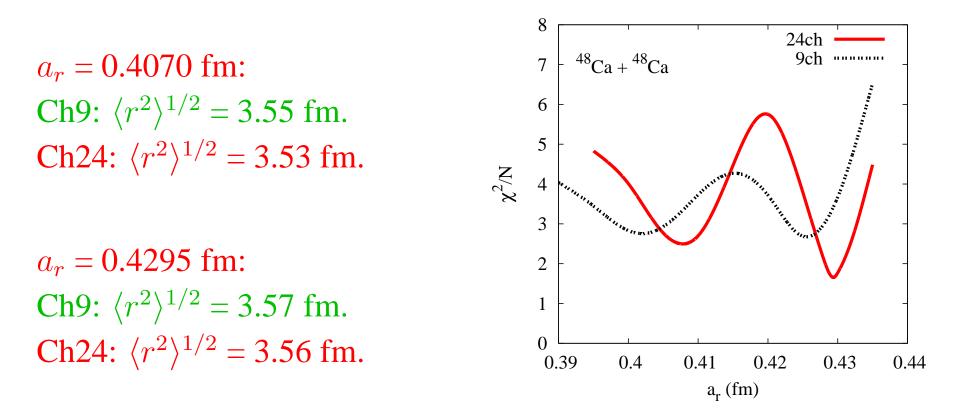
- Confirmed in new experiments at Argonne: ²⁸Si+³⁰Si, PRC 78, 17601 (2008), ²⁷Al+⁴⁵Sc, PRC 81, 24611 (2010). Almost a maximum S factor. S factor (MeV b)
- ${}^{36}\text{S} + {}^{48}\text{Ca}, Q_{qq} = +7.6 \text{ MeV}.$ Stefanini et al., PRC 78, 044607 (2008). Hindrance does occur but not always with a maximum S factor.



- Systematic study of fusion with calcium isotopes: ⁴⁸Ca+⁴⁸Ca, Stefanini et al., PLB 679, 95 (2009), ⁴⁰Ca+⁴⁸Ca, Jiang et al. (incl. Esbensen), PRC 82 (2010), ⁴⁰Ca+⁴⁰Ca, Stefanini et al. (incl. Esbensen, unpublished.)
 - Previously studied by Aljuwair et al. (84-Exp), and Esbensen et al. (89-Theo.)

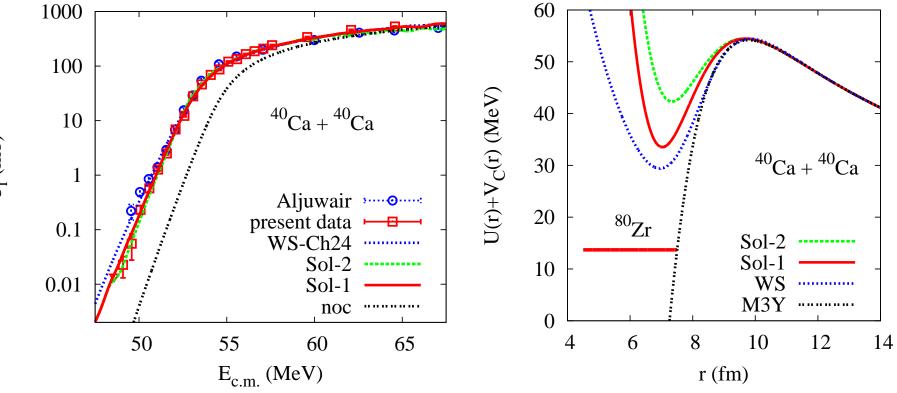
Analysis of ⁴⁸Ca+⁴⁸Ca fusion experiment,

Esbensen, Jiang, and Stefanini, PRC 82, 054621 (2010).

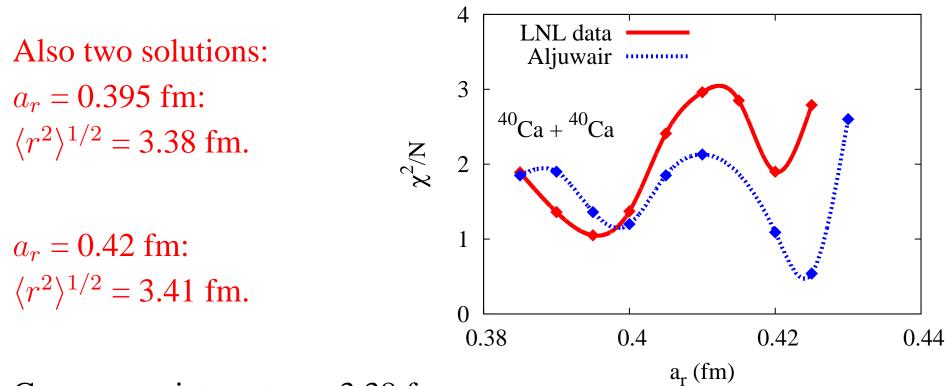

Coupling to the low-lying 2^+ , 3^- , 5^- states, and mutual excitations.

Fusion is a sensitive probe of the surface of nuclei.
 Best fit density of ⁴⁸Ca has the rms-radius = 3.56 fm.
 Compare to point-protons: 3.39 fm, point-nucleons: 3.53 fm.
 Extracted radius is model dependent (dynamic polarization effects.)

 $\sigma_{f}\left(mb\right)$


There are two solutions to the analysis.

Compare: point matter rms = 3.53(3) fm.


Which solution should I choose? The one with the smallest χ^2/N . *Dynamic polarization effect*: fewer channels implies a larger radius. Similar analysis of ⁴⁰Ca+⁴⁰Ca experiment.

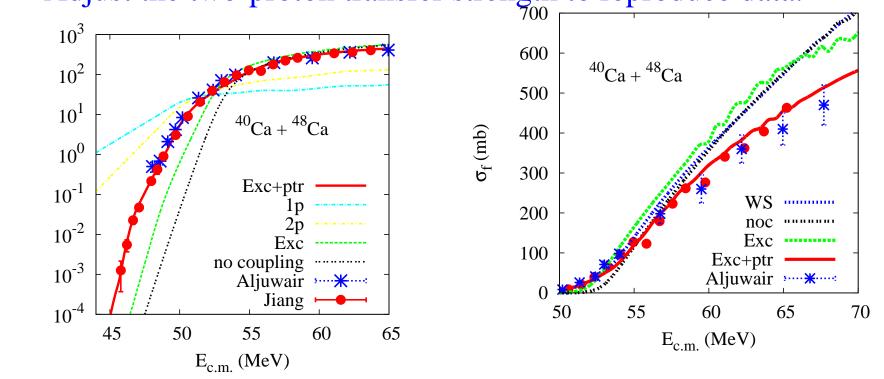
Coupling to the low-lying 2^+ , 3^- , 5^- states, and mutual excitations.

 $\sigma_f \, (mb)$

Also two solutions of the analysis. Stefanini et al. (unpublished)

Compare point-protons: 3.38 fm, Which solution should I choose?

A larger radius is justified by the dynamic polarization effect.


Table 1: Nuclear structure input for ⁴⁰Ca and ⁴⁸Ca. The $B(E\lambda)$ values are from ENDSF, Nat. Nuclear Data Center (BNL). Values marked with * are from Ref. [1]. Eff 2PH: effective parameters for the $(0^+, 2^+, 4^+)$ two-phonon quadrupole excitations.

Nucleus	I^{π}	E_x (MeV)	$B(E\lambda)$ (W.u.)	$\frac{(\beta R)_C}{\sqrt{4\pi}}$ (fm)	$\frac{(\beta R)_N}{\sqrt{4\pi}}$ (fm)
⁴⁰ Ca	2^{+}_{1}	3.905	2.26(14)	0.138*	0.125*
	3-	3.737	27(4)	0.465*	0.315*
	5^{-}	4.491		0.344*	0.175*
	Eff 2PH	5.269	41(5)	0.416	0.416
⁴⁸ Ca	2_1^+	3.832	1.71(9)	0.126*	0.190*
	3-	4.507	5.0(8)	0.250*	0.190*
	5^{-}	5.146		0.049*	0.038*
	Eff 2PH	4.849	4.7(29)	0.15	0.15

[1] Esbensen and Videbaek, PRC 40, 126 (1989), analysis of ${}^{16}O+{}^{A}Ca$ scattering data. Note that ${}^{40}Ca$ is much softer that ${}^{48}Ca$.

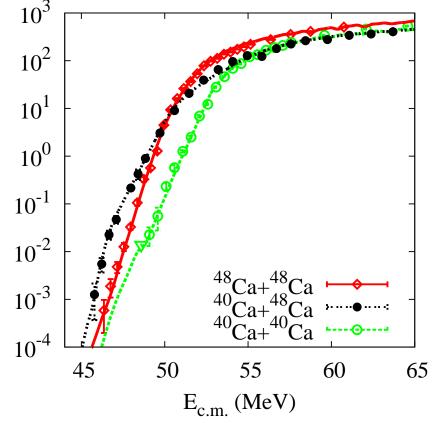
Coulomb and nuclear parameters are not (always) identical.

⁴⁰Ca+⁴⁸Ca experiment, Jiang et al, PRC 82, 041601 (2010).
Include one- and two-proton transfers with positive Q-values.
Adjust the two-proton transfer strength to reproduce data.

Two-proton transfer gives a large enhancement of subbarrier fusion and has "a good effect" (suppression) on fusion at high energies.

 $\sigma_f \, (mb)$

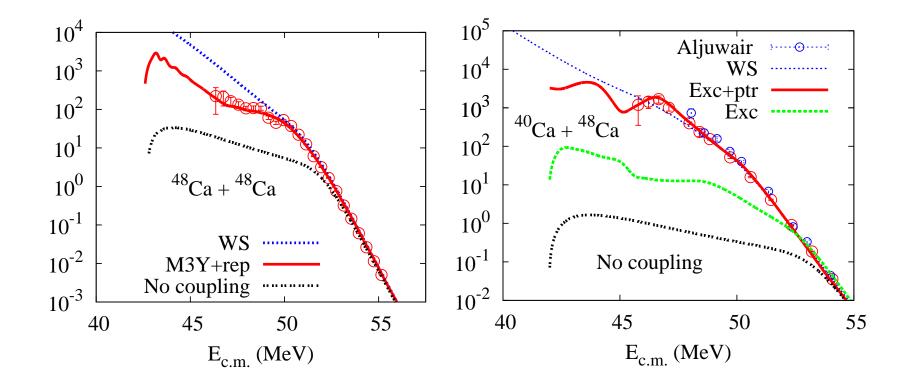
Systematics of the fusion of calcium isotopes.

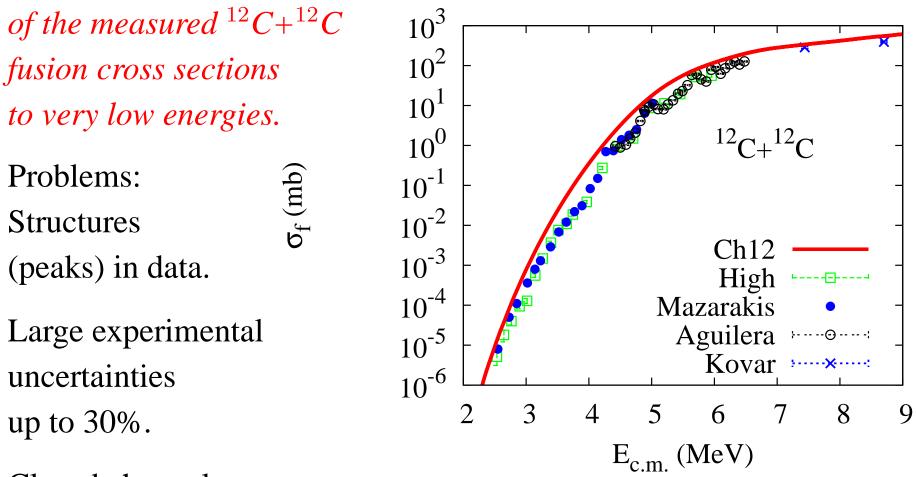

 $\sigma_f\left(mb\right)$

⁴⁸Ca+⁴⁸Ca, Stefanini et al. Phys. Lett. B679, 95 (2009).

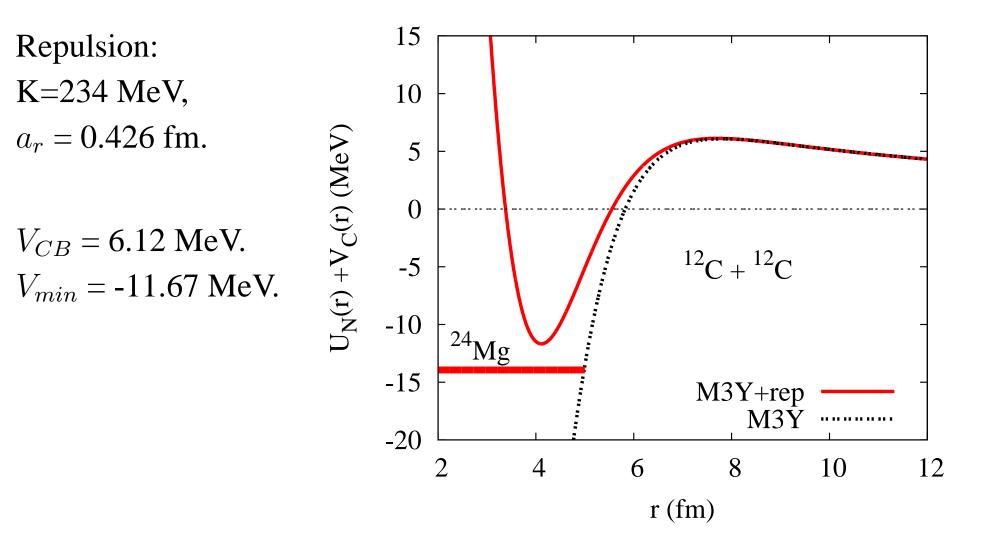
⁴⁰Ca+⁴⁰Ca, Stefanini et al. (unpublished.) ⁴⁰Ca is soft.

Phys. Rev. C 82, 041601 (2010).


⁴⁰Ca+⁴⁸Ca, Jiang et al,


Enhanced compared to the ${}^{48}Ca + {}^{48}Ca$ data.

Large effect of one- and two-proton transfer with positive Q-values on the fusion of the asymmetric ⁴⁰Ca+⁴⁸Ca system. The hindrance sets in at a lower energy.

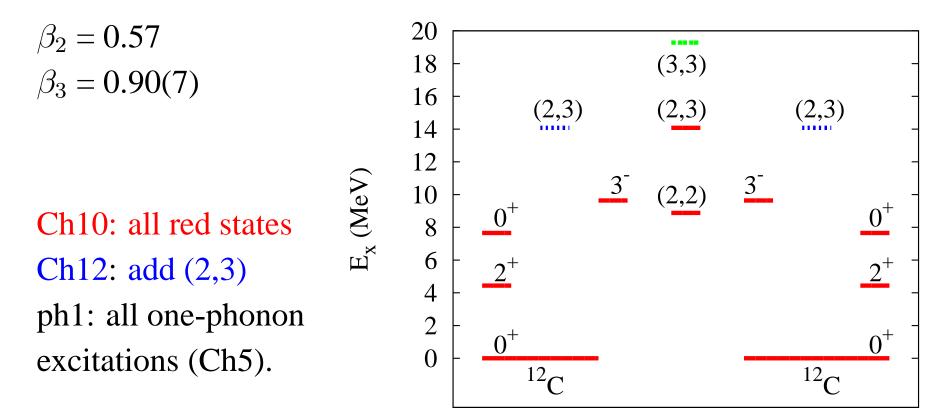

Relatively weak coupling for ⁴⁸Ca+⁴⁸Ca: Hindrance occurs. Strong coupling effects in the fusion of ⁴⁰Ca+⁴⁸Ca due to two-proton transfer and a softer ⁴⁰Ca. *The hindrance sets in at a lower energy.* Coupled-channels calculations of ¹²C+¹²C fusion, H. Esbensen, X. Tang, and C. L. Jiang. *The goal is to put constraints on the extrapolation*

Closed channels:

use decaying states when $E_{c.m.} \leq E_x$ (Whittaker function.)

Entrance channel potential. ¹²C density = *point-proton density*. R = 1.696 fm, a = 0.52 fm.

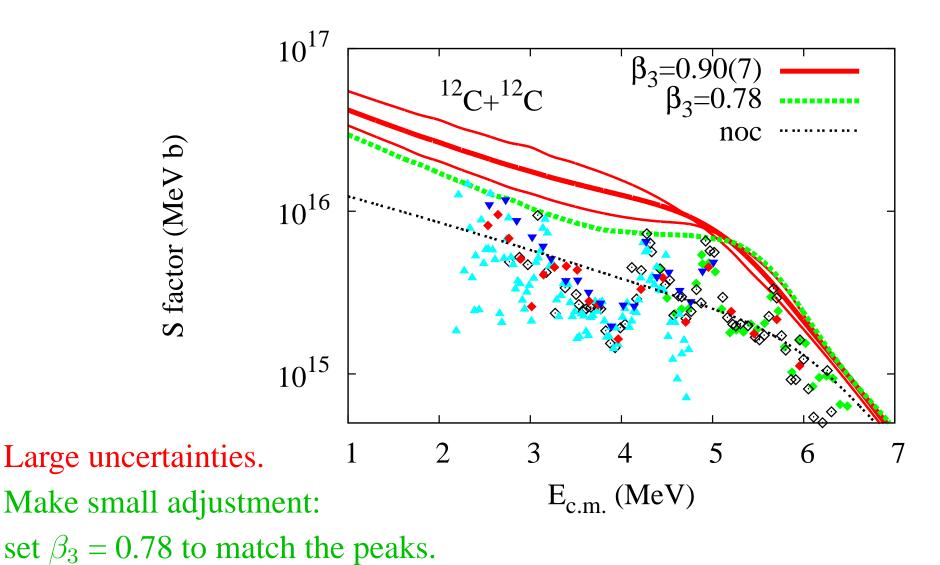
Nuclear structure input.


Table 2: Properties of E2 and E3 transitions to the low-lying states in ¹²C. The intrinsic quadrupole moment was extracted from the lowest E2 transition.

Nucleus	State	E_x (MeV)	Transition	$B(E\lambda)$ (W.u.)	eta_λ^C
12 C	0_{1}^{+}	0		$Q_0 = -19.5 \text{ fm}^2$	0.570
	2^+	4.439	E2: $0_1^+ \to 2^+$	4.65(26)	0.570
	0_{2}^{+}	7.654	E2: $2^+ \to 0_2^+$	8.0(11)	0.236
	3-	9.641	E3: $0_1^+ \to 3^-$	12(2)	0.90(7)

 β_3 extremely large. Matrix element in ¹³C is quenched: $\beta_3^{\text{eff}} = \sqrt{\frac{3}{7}} \beta_3$.

Coupling scheme.


Assume independent modes of excitation.

Ignore the $(3^-, 3^-)$ excitation. The energy is too high. Model of mutual $(2^+, 3^-)$ excitation in same nucleus is questionable. Sensitivity to the mutual $(2^+, 3^-)$ excitation in ${}^{12}C$. Ch12 includes this excitation, one in each nucleus.

Ch10 does not. 10^{17} Ch12 $^{12}C+^{12}C$, $\beta_3=0.90$ Ch1(noc S factor (MeV b) 10¹⁶ 10¹⁵ Need a better 2 3 5 7 6 structure model E_{c.m.} (MeV) of the mutual $(2^+, 3^-)$ excitation.

Sensitivity to $\beta_3 = 0.90 \pm 0.07$ in Ch12 calculations.

Predict extrapolated value: $S(1 \text{ MeV}) = 3.0 \ 10^{16} \text{ MeV}$ b.

Conclusions.

- The fusion hindrance at low energies is *a general phenomenon* the data are suppressed compared to CCC based on conventional WS potentials, they have a steeper logarithmic slope.
- The data can be reproduced by adjusting the M3Y+rep potential. Apart from structure, essentially only two parameters: R and a_r .
- Extracted radii can be slightly larger than expected
 due to dynamic polarization of states not included.
- Large uncertainty in the prediction of the ¹²C+¹²C fusion rate
 due to large β₃-value and large sensitivity to (2⁺, 3⁻) excitation.
- Conjecture: Coupled-channels calculations with IWBC should provide an upper limit for the ¹²C+¹²C fusion. Structures in the data are due to the low level density of the compound system.