

C.A. Bertulani

Reactions at Intermediate Energies

Claudio Conti (Itapeva) Mesut Karakoc (Commerce) Wenhui Long (Lanzhou) Kazu Ogata (Osaka)

INT, Seattle

August 17, 2011

Rutherford is (was) wrong

Aguiar, Aleixo, Bertulani, PRC 42, 2180 (1990)

$$\begin{split} L &= L^{LO} + L^{NLO} + L^{N^{2}LO} + \cdots \\ L^{LO} &= \frac{1}{2} \mu c^{2} \left(\frac{v}{c}\right)^{2} - \frac{Z_{1} Z_{2} e^{2}}{r} \\ L^{NLO} &= \frac{\mu^{4} c^{2}}{8} \left[\frac{1}{m_{1}^{3}} - \frac{1}{m_{2}^{3}}\right] \left(\frac{v}{c}\right)^{4} - \frac{\mu^{2} Z_{1} Z_{2} e^{2}}{2m_{1} m_{2} r} \left[\left(\frac{v}{c}\right)^{2} + \left(\frac{\mathbf{v} \cdot \mathbf{r}}{cr}\right)^{2}\right] \\ L^{N^{2}LO} &= \frac{\mu c^{2}}{512} \left(\frac{v}{c}\right)^{6} + \frac{Z_{1} Z_{2} e^{2}}{16r} \\ \times \left[\frac{1}{8} \left\{\left(\frac{v}{c}\right)^{4} - 3\left(\frac{v_{r}}{c}\right)^{4} + 2\left(\frac{v_{r} v}{c}\right)^{2}\right\} + \frac{Z_{1} Z_{2} e^{2}}{\mu c^{2} r} \left\{3\left(\frac{v_{r}}{c}\right)^{2} - \left(\frac{v}{c}\right)^{2}\right\} + \frac{4Z_{1}^{2} Z_{2}^{2} e^{4}}{\mu^{2} c^{4} r^{2}} \end{split}$$

Coulomb excitation: orbital integrals with retardation

Aleixo, Bertulani, NPA 505, 448 (1989)

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{elast} \times P_{exc}$$
$$= \sum_{\pi\lambda\mu} |S(\pi\lambda\mu)|^2 |M_{fi}(\pi\lambda,-\mu)|^2$$

$$M_{fi}(\pi\lambda\mu) = \langle f | \text{EMOperator}(\lambda\mu) | i \rangle$$
$$S(\pi\lambda\mu) = \text{orbital integrals}$$

Deviations from non-relativistic

& from relativistic

7

 40 S (100 MeV/nucleon) + Au E_x = 0.89 MeV

We all know that:

 Relativitiy obviously important at GANIL, GSI, MSU and RIKEN

(we are talking <u>dynamics</u>)

 'Rather' easy to include for Coulomb interaction (transformation properties of E/M fields well known)

How about nuclear interaction?

- Transformation properties of nucleus-nucleus potentials not exactly known
- Solution has to be based on QFT (QM + relativity)
- Can we save our DWBA, CC, or CDCC knowledge for something practical?

Clue: Proton-nucleus scattering at intermediate energies¹⁰

- meson exchange, two-nucleon interaction
- mean field approximation, U_0 (ω exchange), U_s (2π exchange)

$$\left[E - V_C - U_0 - \beta \left(mc^2 + U_S\right)\right]\Psi = -i\hbar c\alpha \cdot \nabla \Psi$$

Continuum (CDCC)

$$\left| \varphi_{b} \right\rangle = \left| E_{b}, J_{b} M_{b} \right\rangle$$
$$\left| \varphi_{jJM}^{(c)} \right\rangle = \int \Gamma_{j} (E) \left| E, JM \right\rangle dE$$

continuum

threshold

$$\int \Gamma_i(E) \Gamma_j(E) dE = \delta_{ij}$$

continuum discretization

$$V_{\alpha\beta}(\mathbf{R}) = \left\langle \phi_{\alpha}(\mathbf{r}) \middle| U(\mathbf{R},\mathbf{r}) \middle| \phi_{\beta}(\mathbf{r}) \right\rangle$$

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 - E\right]\chi_{\alpha}(\mathbf{R}) = -\sum_{\beta=0}^N V_{\alpha\beta}(\mathbf{R})\chi_{\beta}(\mathbf{R})$$

Coupled-channels

Bertulani, Canto, NPA 539, 163 (1992) ¹¹Li+²⁰⁸Pb (100 MeV/nucleon) Relativistic-CDCC

Bertulani, PRL 94, 072701 (2005)

$$\left[\nabla^2 + k^2 - U\right]\Psi(\mathbf{R},\mathbf{r}) = 0$$

$$\Psi(\mathbf{R},\mathbf{r}) = \sum_{\alpha} S_{\alpha}(\mathbf{b},z) e^{ik_{\alpha}z} \phi_{\alpha}(\mathbf{r}),$$
$$\mathbf{R} = (\mathbf{b},z)$$

 $U = V_0 (2E - V_0)$

$$U \approx 2V_0 E$$
$$\nabla^2 S << ik_z \partial_z S$$

$$iv\partial_{z}S_{\alpha}(\mathbf{b},z) = \sum_{\beta} V_{\alpha\beta}(\mathbf{b},z)S_{\beta}(\mathbf{b},z) e^{i(k_{\beta}-k_{\alpha})z}$$
$$f_{\alpha}(\mathbf{Q}) = -\frac{ik}{2\pi}\int d\mathbf{b} \ e^{i\mathbf{Q}\cdot\mathbf{b}} \left[S_{\alpha}(\mathbf{b},z=\infty) - \delta_{\alpha,0}\right]$$
$$\mathbf{Q} = \mathbf{K}_{\perp}' - \mathbf{K}_{\perp} \qquad \alpha = jlJM$$

 V_0 = time - like component of 4 - vector

Relativistic CDCC = Lorentz invariant

Pb(⁸B,p⁷Be) at 50 MeV/nucleon

Pb(⁸B,p⁷Be) at 83 MeV/nucleon

Transition: low to high energies Eikonal scattering waves $\hat{S}_i(K_i, \vec{R})$ $\psi^{E-CDCC} = \sum \hat{\phi}_i(\vec{r}) \ \hat{S}_i(b,z) \exp(i\vec{K}_i \cdot \vec{R})$ $K_i = \sqrt{2\mu_R (E - \varepsilon_i) / \hbar},$ **Energy conservation** Boundary condition $\hat{S}_i(b,z) \xrightarrow{z \to -\infty} \delta_{i,0}$ $\frac{i\hbar^2 K_i}{\mu_{\rm p}} \frac{d}{dz} \hat{S}_i^{(b)}(z) = \sum_{i'} \mathsf{F}_{ii'}^{(b)}(z) \ \hat{S}_{i'}^{(b)}(z) e^{i(K_{i'} - K_i)z}$ $\Delta \hat{S}_i(b,z) \cong 0$

Eikonal scattering amplitude transformed into QM form

$$f_{i,0}^{E} = \sum_{L} f_{L}^{E} \equiv \sum_{L} \frac{2\pi}{iK_{i}} \sqrt{\frac{2L+1}{4\pi}} i^{m} Y_{Lm}(\Omega) [S_{i,0}^{b(L;i)} - \delta_{i,0}]$$

<u>Hybrid scattering amplitude</u> is given by

$$f_{i,0}^{\rm H} \equiv \sum_{L=0}^{L_{\rm C}} f_L^{\rm Q} + \sum_{L=L_{\rm C}+1}^{L_{\rm max}} f_L^{\rm E}$$

Ogata., et al, PRC68, 064609 (2003)

Relativistic CDCC

Form factor of non-rel. E-CDCC

$$F_{c'c}^{(b)}(Z) = \left\langle \Phi_{c'} | U_{1A} + U_{2A} | \Phi_{c} \right\rangle_{\mathbf{r}} e^{-i(m-m')\phi} = \sum_{\lambda} F_{c'c}^{(b);\lambda}(Z)$$

Lorentz tranform of form factor and coordinates

$$F_{c'c}^{(b);\lambda}(Z) \to f_{\lambda,m'-m}\gamma F_{c'c}^{(b)\lambda}(\gamma Z)$$

$$f_{\lambda,m'-m}^{\text{Coul}} = \begin{cases} 1/\gamma & (\lambda=1, m'-m=0) \\ \gamma & (\lambda=2, m'-m=\pm 1) \\ 1 & (\text{otherwise}) \end{cases}$$

$$f_{\lambda,m'-m}^{\mathrm{nucl}} = 1$$

Assumptions

- ✓ Point charges for 1, 2 and A
- ✓ Neglecting far-field ($r_i > R$) contribution
- ✓ Correction to nuclear form factor

Ogata, Bertulani, PTP 121 (2009), 1399 PTP, 123 (2010) 701

Reaction

²⁰⁸Pb(⁸B, ⁷Be+p) at 250 A MeV and 100 A MeV ²⁰⁸Pb(¹¹Be, ¹⁰Be+n) at 250 A MeV and 100 A MeV

Projectile wave function and distorting potential Standard Woods-Saxon

Modelspace

$${}^{8}\text{B}$$

I_{max}= 3
N_s=20, N_{p-d}=10 ,
N_f=5
 ϵ_{max} =10 MeV
r_{max}= 200 fm
R_{max}= 500 fm
N_{ch} = 138

$$I_{max} = 3$$

$$N_{s,p} = 20, N_d = 10,$$

$$N_f = 5$$

$$\epsilon_{max} = 10 \text{ MeV}$$

$$r_{max} = 200 \text{ fm}$$

$$R_{max} = 450 \text{ fm}$$

$$N_{ch} = 166$$

11**D**

⁸B or ¹¹Be ²⁰⁸Pb R, K (L)

Pb(⁸B, p⁷Be) at 250 MeV/nucleon

Pb(⁸B,p⁷Be) at 250 MeV/nucleon

Relativistic MF nucleus-nucleus potential

Long, Bertulani, PRC 83, 024907 (2011).

 σ , ω , ρ and γ exchange

$$E = \int d^{3}r \sum_{a} \overline{\psi}_{a} (-i\gamma \cdot \nabla + M) \psi_{a}$$

+ $\frac{1}{2} \sum_{\phi=\sigma,\omega,\rho,\gamma} \int d^{3}r d^{3}r' \sum_{ab} \overline{\psi}_{a}(\mathbf{r}) \overline{\psi}_{b}(\mathbf{r}') \Gamma_{\phi}(\mathbf{r},\mathbf{r}') D_{\phi}(\mathbf{r}-\mathbf{r}') \psi_{a}(\mathbf{r}) \psi_{b}(\mathbf{r}')$

$$\Gamma_{\phi}(\mathbf{r},\mathbf{r}') = -g_{\sigma}(\mathbf{r})g_{\sigma}(\mathbf{r}')$$

$$\Gamma_{\omega}(\mathbf{r},\mathbf{r}') = -(g_{\omega}\gamma^{\mu})_{\mathbf{r}} \cdot (g_{\omega}\gamma_{\mu})_{\mathbf{r}'}$$

$$\Gamma_{\rho}(\mathbf{r},\mathbf{r}') = -(g_{\rho}\gamma^{\mu}\vec{\tau})_{\mathbf{r}} \cdot (g_{\rho}\gamma_{\mu}\vec{\tau})_{\mathbf{r}'}$$

$$\Gamma_{\gamma}(\mathbf{r},\mathbf{r}') = \frac{e^{2}}{4} [\gamma^{\mu}(1-\tau_{z})]_{\mathbf{r}} \cdot [\gamma_{\mu}(1-\tau_{z})]_{\mathbf{r}'}$$

$$\nabla = 1 e^{m_{\phi}|\mathbf{r}-\mathbf{r}'|}$$

$$D_{\phi} = \frac{1}{4\pi} \frac{e^{m_{\phi} |\mathbf{r} - \mathbf{r}|}}{|\mathbf{r} - \mathbf{r}|}$$
$$D_{\gamma} = \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

Lorentz transform

$$x_p = x_t + b,$$
 $y_p = y_t$
 $z_p = \gamma(z_t + R\cos\theta)$

$$E(A_t, A_p, \mathbf{v}) = E(A_t) + E(A_p, \mathbf{v}) + \mathsf{E}(A_t, A_p, \mathbf{v})$$

$$\mathsf{E}(A_{t}, A_{p}, \mathbf{v}) = \sum_{\phi=\sigma, \omega, \rho, \gamma} \int d^{3}r \int d^{3}r' \sum_{ab} \overline{\psi}_{t, a}(\mathbf{r}) \overline{\psi}_{p, b}(\mathbf{r}') \Gamma_{\phi}(\mathbf{r}, \mathbf{r}') D_{\phi}(\mathbf{r} - \mathbf{r}') \psi_{t, a}(\mathbf{r}) \psi_{p, b}(\mathbf{r}')$$

Ex: σ and ω contributions

$$\mathsf{E}_{\sigma} = -\frac{1}{\gamma} \int d^{3}r_{t} \int d^{3}r'_{p} g_{\sigma}(\mathbf{r}_{t}) \rho_{s,t}(\mathbf{r}_{t}) D_{\sigma}(\mathbf{r} - \mathbf{r}') \rho_{s,p}(\mathbf{r}'_{p}) g_{\sigma}(\mathbf{r}'_{p})$$

$$\mathsf{E}_{\omega} = \int d^{3}r_{t} \int d^{3}r'_{p} g_{\omega}(\mathbf{r}_{t}) \rho_{b,t}(\mathbf{r}_{t}) D_{\omega}(\mathbf{r} - \mathbf{r}') \rho_{b,p}(\mathbf{r}'_{p}) g_{\omega}(\mathbf{r}'_{p})$$

$$\rho_s(\mathbf{r}) = \sum_a \overline{\psi}_a(\mathbf{r}) \psi_a(\mathbf{r}), \qquad \rho_b(\mathbf{r}) = \sum_a \overline{\psi}_a(\mathbf{r}) \gamma^0 \psi_a(\mathbf{r})$$

Projectile densities boosted to the target frame

Results for ${}^{12}C + {}^{12}C$

Contribution of different fields

Dependence on energy and impact parameter

Medium effects in σ_{NN}

$$\left\langle \mathbf{k} | G | \mathbf{k}_{0} \right\rangle = \left\langle \mathbf{k} | V_{NN} | \mathbf{k}_{0} \right\rangle - \int \frac{d^{3}k'}{\left(2\pi\right)^{3}} \frac{\left\langle \mathbf{k} | V_{NN} | \mathbf{k}' \right\rangle Q(\mathbf{k}') \left\langle \mathbf{k}' | G | \mathbf{k}_{0} \right\rangle}{E(\mathbf{k}') - E_{0} - i\varepsilon}$$

$$E(\mathbf{P},\mathbf{k}) = e(\mathbf{P}+\mathbf{k}) + e(\mathbf{P}-\mathbf{k})$$

e = single-particle energies

 $E_0 = E$ on-shell

$$Q(\mathbf{P},\mathbf{k}) = 1$$
, if $k_{1,2} > k_F$
= 0, otherwise $\mathbf{k}_{1,2} = \mathbf{P} \pm \mathbf{k}$

In real calculations:

$$\overline{Q}(P,k) = \frac{\int d\Omega Q(\mathbf{P},\mathbf{k})}{\int d\Omega}$$

$$e(p) = T(p) + v(p)$$

$$v(p) = \langle p|v|p \rangle = \operatorname{Re} \sum_{q \leq k_{E}} \langle pq|G|pq - qp \rangle$$

- e depends on vv depends on G
- G depends on v
- Solve self-consistently (Brueckner theory)

Geometric approximation + LDA

CB, Phys. Rep. (1991), JPG 27, L67 (2001) CB, De Conti, PRC C 81, 064603 (2010)

$$\overline{\sigma}_{NN}(E) = \int \frac{d^3 k_1 d^3 k_2}{\left(4\pi k_{1F}^3 / 3\right) \left(4\pi k_{2F}^3 / 3\right)} \frac{2q}{k} \sigma_{NN}(q) \frac{\Omega_{Pauli}}{4\pi}$$

$$\Omega_{Pauli} = 4\pi - 2(\Omega_a + \Omega_b - \overline{\Omega}) = analytic$$

Hussein, Rego, Bertulani, Phys. Rep. 201 (1991) 279

Nucleus-nucleus elastic and inelastic scattering

Elastic Scattering with ME in σ_{NN}

Chulkov, Bertulani, Korshenninikov NPA 587, 291 (1995)

Final state core-target scattering

Coulomb reacceleration

Bertulani, Hansen, PRC C70, 034609 (2004)

Data: Banu et al, PRC 84, 015803 (2011)

Karakoc, Bertulani, to be published

OUT OF TIME