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as by an energy, just as for unperturbed ones, i.e.
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, (B15a)
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, (B15b)
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ab(ω) ≡ ↑ ω

b

ā

, (B15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (B15d)

Diagrammatic rules to compute irreducible self-energies
are the same as for reducible ones, with the only dif-
ference that dressed propagators (B15) have to be used
instead of unperturbed ones.

2. Self-energies

The present section addresses the derivation of first-
and second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the stan-
dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(B16)
and reads

Σ11 (1)
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∫
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∑

cd

V̄acbd G11
dc(ω

′) , (B17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 8. Inserting the Lehmann
form (37a) of the propagator one obtains
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=
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d Vk

c , (B18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.

Similarly one computes the other normal self-energy
term
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(B19)
which reads
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The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =
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← ω′

a
c d̄

,(B21)
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c̄
ā b

, (B22)
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reading

Σ22 (2′′)
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The first of the anomalous self-energy is
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for what concerns the first contribution, which reads
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for the second contribution yielding
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Collaborators: V. Somà and T. Duguet 
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“reasonable”:                 not necessary convergent BUT accurate enough, 
predictive and useful to an experimental program.	  

To have “reasobale” ab-initio theories 
we STILL need: 
• Proper realistic forces (3NF included) 
• Capability of calculating open shells  
• Learn to extract information  
from measured reactions	



✺ Methods for an ab-initio description of medium-mass nuclei as of 2011

(1) Coupled-cluster [Dean, Papenbrock, Hagen, ...]

(2) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk]

(3) Self-consistent Dyson-Green’s function (SCGF) [Barbieri, Dickhoff]

The	  present	  status	  is:	  

 S/ll	  in	  need	  of	  good	  nuclear	  Hamiltonians	  (3N	  forces	  mostly!)	  

 Only	  structure	  calcula/ons	  and	  limited	  to	  closed-‐shells	  or	  A±1,	  A±2	  
	   	   	   	   	   	   	   	   	  	  (BUT	  calcula/ons	  are	  GOOD!!!)	  	  

However,	  Green’s	  func/ons	  can	  be	  extended	  to:	  ScaNering	  observables	  
	   	   	   	   	   	   	   	   	  	  	  	  	  	   	  	  	  	  	  	  	  	  Open	  shell	  nuclei	  	  



•  Self-consistent Green’s function in closed shells: 

–  Faddeev random-phase approximation (FRPA):  4He benchmark 
              Scattering (N-A) 

•  Open shells: Gorkov-GF formalism 

–  G-SCGF formalism at 2nd order 
–  Preliminary results 

•  Applications: spectroscopic factors 

•  Applications: dispersive optical potentials 
–  S. Waldecker, CB, W. Dickhoff, arXiv:1105.4257 



Concepts of Spectral Funstions 
and 

Many-Body Green’s Functions 



One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 

 …this contains all the structure information probed by nucleon transfer 
(spectral	  func/on): 

[pics. J. Sadoudi]"

Separation energies
and transfer strengths
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15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈ΨA
0 |cα|Ψ

A+1
n 〉〈ΨA+1

n |c†β|Ψ
A
0 〉

E − (EA+1
n − EA

0 ) + iη

+
∑

k

〈ΨA
0 |c

†
β|Ψ

A−1
k 〉〈ΨA−1

k |cα|ΨA
0 〉

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈ΨA
0 |cα|Ψ

A+1
n 〉〈ΨA+1

n |c†β|Ψ
A
0 〉

E − (EA+1
n − EA

0 ) + iη

+
∑

k

〈ΨA
0 |c

†
β|Ψ

A−1
k 〉〈ΨA−1

k |cα|ΨA
0 〉

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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FIG. 6. (Color online) Radial part of the overlap wave functions
between 16O and the bound d5/2 and s1/2 states of 17F.

are based on realistic two-body internucleon reactions, the
energy spectra cannot be accurately reproduced. Therefore, the
model has to be constrained phenomenologically to reproduce
the experimental spectra of the nuclei with A ± 1 nucleons.
Resolving this situation may require the use of multinucleon
forces and more appropriate effective interactions.

The present results show that both the inclusion of all
momentum components of the particle-hole Hilbert space and
a proper treatment of long-range correlations are important
to correctly reproduce the mean field optical potential. The
coupling of single particle strength to long-range excitations is
also responsible for the creation of non-mean-field resonances.
After constraining the prediction for the single particle
energies, the phase shifts for the scattering of protons from
16O were obtained in fair agreement with the experimental
data, except for the background behavior of the of the p
waves. The difficulties for these waves are accompanied by
the issue of explaining the hole spectroscopic factors with
the same parity extracted from (e, e′p) experiments [34]. In
Ref. [14] the latter were linked to the particular structure of the
low-energy spectrum of 16O and further studies along this line

TABLE III. Spectroscopic factors, ANCs (in fm−1/2) and root-
mean-square radii (in fm) for the bound d5/2 and s1/2 orbitals of
17F.

s1/2 d5/2

Zs1/2 Cs1/2 〈r2
s1/2

〉1/2 Zd5/2 Cd5/2 〈r2
d5/2

〉1/2

!",I 0.931 −82.5 5.86 0.913 1.07 4.01
!",I I 0.921 −73.9 5.55 0.909 0.81 3.70

have been initiated in Ref. [12]. It is plausible that the required
improvements will resolve both the problems of spectroscopic
factors and scattering phase shifts. We note that similar issues
are expected to be beyond the requirements for reproducing
most heavier closed shell nuclei [28,35]. Thus, the study of 16O
can be seen as a stringent test case for the present approach.

V. CONCLUSIONS

This work investigates the possibility of describing
nucleon-nucleus scattering employing the many-body self-
energy as an optical potential. This corresponds to applying the
Feshbach projection formalism to an Hilbert space containing
both particle and hole states.

The present results are also a first attempt at computing scat-
tering processes using the many-body Green’s functions and
required to introduce specific phenomenological corrections to
reproduce the single particle spectrum. However, it is shown
that predictions for the scattering of nucleons can be obtained
working also in the particle-hole space. The present work gives
insight into the developments that will be needed to pursue
reliable microscopic calculations of the optical potential. We
feel that the overall quality of the results can be comparable
to other methods applicable at low energies [36,37], when
the missing ingredients that are needed to reproduce the
resonance spectrum are included. Thus, SCGF theory could be
considered a valid candidate for the study of selected reactions
at astrophysical energies.
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FIG. 3. (Color online) Phase shifts obtained from the self-
consistent self-energy of Ref. [14] [Eq. (1)] before (dotted lines)
and after (dashed lines) correcting the depth of !MF,Fadd to reproduce
the quasiparticle (and quasihole) energies. The full lines are obtained
also when the momentum components outside the model space P
are included, Eq. (3a). The s1/2, d3/2, and p3/2 partial waves are
shown. For p3/2, the dot-dashed line was obtained by fitting NI

p3/2

to reproduce the background phase shifts rater than the quasihole
energy. The values of the corrections NI

lj are reported in Table I. The
experimental results are from Refs. [31] (crosses) and [32] (circles).

The background contribution to the phase shifts of the
s1/2 partial wave is described correctly by !MF,Fadd but not
the energy of the bound state. Vice versa, it is possible to
constrain the depth of the potential to reproduce the latter
but the agreement with the experimental phase shifts is

TABLE I. Corrections applied to the depth of the MF potential
!MF,I [Eq. (3a)] and quasiparticle energies obtained in the
calculations of Fig. 3.

lj !MF,Fadd !MF,Fadd !",I E
exp
c.m. (MeV)

Elj
c.m. (MeV)a NI

lj
b NI

lj
b

s1/2 −3.57 0.69 1.05 −0.1
d3/2 1.87 0.72 1.08 4.4
p3/2 −16.61 1.06 1.07 −18.5

0.95 (E
p3/2
c.m. = −15.1)

aNI
lj = 1.

bElj
c.m. ≡ E

exp
c.m., except when specified.

lost. However, both quantities are reproduced if !MF,Box
1 is

included. In this case the correction required in the depth
of the potential, NI

S1/2
= 1.05, is less significant than when

only !MF,Fadd is included. A similar trend is seen for the
d3/2 channel. Reproducing the energy of the single particle
resonance with !MF,Fadd alone requires a sizable change in its
depth, while the observed phase shifts are obtained only after
including the components outside the space P . We observe
that the expansion of Eq. (1) includes only one harmonic
oscillator function for the d3/2 wave and two for s1/2. With
such a restricted space, it is remarkable that the resulting
background phase shifts are still obtained somewhat close to
the experiment.

A different behavior is found for the l = 1 partial waves.
The results for p3/2 are shown in Fig. 3 (the p1/2 case
is analogous). In this case !MF,Fadd produces a spurious
resonance at ∼1 MeV that is not seen experimentally. Fitting
the potential’s depth to constrain the quasihole energies of 15N
generates a more attractive well, thus worsening the situation.
The phase shifts improve upon introducing !MF,Box

1 (full line)
but still show a rise of the background with the c.m. energy,
while the experimental results are practically constant. A
proper choice of NI

p3/2
(and NI

p1/2
) allows to reproduce the

behavior of the phase shifts at the lower energies but results in
underbinding the corresponding orbitals in 16O (see Table I).

The curves of Fig. 3 have been computed without any shift
of the εi+ poles in in Eq. (1b). This gives an idea of the
quality the energy spectra obtained adopting the interaction of
Ref. [20]. No solutions were obtained that could be interpreted
as the d3/2 resonances above 5 MeV. The s1/2 resonance at
∼6 MeV was obtained as a coupling of a proton to the first
excited state of 16O. Analogously, the two lowest resonances
in both p1/2 and p3/2 can be interpreted as quasiparticles
interacting with the first isoscalar 3− and 1− levels of
16O [33].

B. Phase shifts for proton scattering

Figures 4 and 5 compare the phase shifts obtained from both
the self-energies I and II after constraining the quasiparticle
energies and resonances to their experimental values. Table II
shows the values of the constants NI

lj and NII
lj used to obtain

these results.
For the positive parity waves the background phase shifts

are described equally well by both optical potentials. The
potential !",I I can also describe the negative parity waves and
it is more accurate for the p1/2 case, for which the collective
resonances are sharper. In general, the non-MF resonances
were predicted narrower than the experiment. This is probably
related to the lack of momentum components outside the model
space P in Eqs. (1b) and (1c), which were not corrected as for
the MF part of the self-energy.

The values of NI
lj and NII

lj show that much smaller
modifications are needed to force !",I to reproduce the
quasiparticle energies. This is consistent with the more
sophisticate treatment of long-range correlations achieved in
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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with µ independent of N . If the assumption is valid,
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which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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Besides the time dependence and quantum numbers
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ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through
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ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)

4

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
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′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)

4

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t
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′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{
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ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)



✺	  Set	  of	  4	  Green’s	  func/ons	  

[Gorkov	  1958]	  

Gorkov equations



✺	  1st	  order	  ➟	  energy-‐independent	  self-‐energy	  

✺	  2nd	  order	  ➟	  energy-‐dependent	  self-‐energy	  

✺	  Gorkov	  equa/ons	   eigenvalue	  problem	  



with the normalization condition 

Energy independent eigenvalue problem 



➟ Direct connection to observables 

➟ Self-consistent approach 

➟ Improvability (diagrammatic expansion) 

➟ Control over many-body requirements (conserving approximations)  

➟ Possible connection to nuclear reactions (dispersive optical models) 

✺ Drawbacks 

➟ Technically and computationally involved 



Preliminary Gorgov results 



✺ Calculations of 40-48Ca isotopes 

✺ CEA-CCRT massively-parallel high-performance cluster 

➟ Spherical HO basis (no-core): 7 shells, ħω = 22 MeV (very preliminary!) 

➟ Vlow-k from Ch-EFT N3LO potential with cutoff Λ = 2.1 & 2.5 fm-1 

➟ NN interaction only 

➟ ~ 40 000 cores, ~ 300 Tflops total 

➟ Parallelized code 

Essential for converged self-consistent 
second-order calculations 

[Entem and Machleidt 2003]



✺ Systematic along isotopic/isotonic chains has become available 

➟ Overbinding with A: traces need for (at least) NNN forces 

➟ Effect of self-consistency significant; i.e. less bound than MBPT2 

➟ Correlation energy close to CCSD and FRPA (thorough comparison planed) 



Dyson	  1st	  order	  (HF)	   Gorkov	  1st	  order	  (HFB)	  

Dyson	  2nd	  order	   Gorkov	  2nd	  order	  

Static pairing 

Fragmentation

Dynamical fluctuations 



✺ ESPE collect fragmentation of “single-particle” strengths from both N±1 

[Baranger	  1970,	  Duguet,	  CB,	  et	  al.	  2011]	  

➟ Particularly true for low-lying state in open-shell due to pairing 
➟ ESPE not to be confused with quasiparticle peak 

[pics. J. Sadoudi]"

Separation energies
and transfer strengths

Hole states	

(Bound) 
particle states	

Scattering 
states	



✺ ESPE collect fragmentation of “single-particle” strengths from both N±1 

[Baranger	  1970,	  Duguet,	  CB,	  et	  al.	  2011]	  

➟ Particularly true for low-lying state in open-shell due to pairing 
➟ ESPE not to be confused with quasiparticle peak 

Quasiparticle peaks Centroids 



✺ Natural orbit a: ρab[1] = nanat δab 

✺ Associated energy: εanat = haacent 

✺ Dynamical correlations similar for doubly-magic and semi-magic 

✺ Static pairing essential to open-shells 



✺ Three-point mass differences 

➟ Systematic underestimation of experimental gaps 

➟ Missing NNN in Σ11 changes picture qualitatively 



•  Self-Consistent Green’s Functions (SCGF), is a microscopic ab-initio method 
applicable to medium mass nuclei. 

• The greatest advantage is the link to experimental information ( spectroscopy) 

• The bigger challenges are: 
•  Approach open-shells  
• Consistent description of 
      structure and reactions 

•  Three nucleon forces (3NF) are a MUST for accurate predictions  
           of exotic isotopes.   

• SCGF are the optimal choice 
•  extension to Gorkov-formalism 

 Open-shell nuclei 
 Reactions at driplines  
 structure of next 
generation EDF 



V. Somà, T. Duguet 

W.H. Dickhoff, S. Waldecker 

M. Hjorth-Jensen 

D. Van Neck, M. Degroote 

C. Giusti,  F.D. Pacati 

T. Otsuka 

A. Rios 

A. Polls 



Quasiparticle states 
and 

spectroscopic factors 



N3LO	  interac/on	  +	  monopole	  corr.	 [CB,	  M.Hjorth-‐Jensen,	  Pys.Rev.C79,	  064313	  (2009)]	  

νf7/2	νp3/2	

r	  ≡	  p3/2,	  p1/2,	  f5/2	  
f	  ≡	  f7/2	  

N3LO	  needs	  a	  monopole	  
correc/on	  to	  fix	  the	  p-‐h	  
gap:	

kM	  =	  0.4-‐0.7	  MeV	

small	  kM	  	  	  	  	  	  	  	  	  	  	  	  	  	  large	  kM	

Experimental	  Eph	  	  
is	  found	  for	  kM	  =0,57	  



0s 

0p 

1s-0d 

0f-1p 

s-d-g 

…

pf	  

Particle-vibration coupling dominates the 
quenching of spectroscopic factors 
Relative strength among fragments requires 
shell-model approach 
[see, e.g.  Utsuno et al., AIP Conf. Proc. 1120, 81 (2009).  
Tsang et al., Phys. Rev. Lett. 102, 062501 (2009)] 

[CB,	  Phys.	  Rev.	  LeN.	  103,	  202502	  (2009)]	  



Overall quenching of spectroscopic 
factors	   is driven by: 
SRC        ~10% 
part-vibr. coupling  dominant 
“shell-model“     in open shell 

[Phys.	  Rev.	  Le5.	  103,	  202520	  (2009)]	  

S 5
6N

i(r
,ω

) [
fm

-3
M

eV
-1
]	

3  SHELL  
MODEL	

2 PARTICLE-VIBRATION  
COUPLING	

1  SHORT RANGE 
CORRELATIONS	

3	1	
2   +  3	

…with analogous conclusions for 48Ca	  



Optical Potentials Based on the 
Nuclear Self-energy 
(CB, Jennings,   and    Waldecker, CB, Dickhoff)	  

•  Proton-16O scattering 
[CB, B. Jennings, Phys. Rev. C72, 014613 (2005)]!

•  Optical model for the ACa chain  
[S. Waldecker, CB, W. Dickhoff, arXiv:1105.4257]!



[CB, Jennings, Nucl. Phys A758, 395c (2005) 
Phys Rev. C72, 014613 (2005)] 

gII(ω)	

pp/hh-RPA; two-nucleon transfer	

Π(ph)(ω)	

ph-RPA; nuclear response function, 
giant/pygmy resonances, Gamow-Teller 

optical potential 

Dyson 
Eq.	

single-particle motion	

S(r,ω)	
Faddeev-RPA	

[CB, et al., Phys. Rev. A76, 052503 (2007)] 



EF	

A+1	

A-‐1	

E	

mean-‐field	 resonances	  
beyond	  mean-‐field	

The irreducible self-energy is a nucleon-nucleus optical 
potential [see e.g. Mahaux and Sartor, Adv. Nucl. Phys. 20, (1991)] 

 This provides consistent overlaps and scattering 
wave functions 
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retained. To do this the MF self-energy of Ref. [16] was split
in two parts:

!MF,Box
lj (k, k′) = !MF,Box

0,lj (k, k′) + !MF,Box
1,lj (k, k′), (2)

where !MF,Box
0 is the projection onto P and !MF,Box

1 acts
on the excluded space. Two approximations were considered
depending on which MF component to employ insideP . In the
first case (I), !MF,Box

1 was added to Eq. (1a). In doing this, we
note that the G matrix used to compute !MF,Fadd accounts for
the extra binding due to the degrees of freedom of the excluded
space. Since these are reinserted explicitly by !MF,Box

1 , one
should also rescale !MF,Fadd appropriately by a constant, NI .
The second choice (II) consisted of employing both parts of
Eq. (2). Also in this case we kept the possibility of tuning
the depth of the potential. The complete MF contributions
employed in this work are

!MF,I
lj (k, k′) = NI

lj !MF,Fadd
lj (k, k′) + !MF,Box

1,lj (k, k′),
(3a)

!MF,I I
lj (k, k′) = NII

lj !MF,Box
lj (k, k′), (3b)

where the constants NI
lj and NII

lj depend of the specific channel
and will be discussed below. The full self-energy employed in
the calculations is (see Fig. 1)

!
",I (II )
lj (k, k′; ω) = !

MF,I (II )
lj (k, k′) + !

(2p1h),Fadd
lj (k, k′; ω)

+!
(2h1p),Fadd
lj (k, k′; ω). (4)

The Dyson equation can be expressed in a Schrödinger-like
form, where the self-energy takes the place of a nonlocal and
energy dependent optical potential [h̄ = c = 1 and µ is the
reduced mass]

k2

2µ
ψ(k) +

∫ ∞

0
dk′k′2{!"

lj (k, k′; Ec.m.) + V l
Coul.(k, k′)

}
ψ(k′)

= Ec.m. ψ(k), (5)

where V l
Coul.(k, k′) in the Coulomb interaction corresponding

to a uniformly charged sphere of radius Rc = 3.1 fm. This was
added to account for the electromagnetic interaction missing
in the calculations of Refs. [14,16]. Due to the nonlocal
character of !", Eq. (5) is conveniently solved in momentum
space. In doing this, the long distance part of the Coulomb
potential was solved using the Kwon-Tabakin-Lande [22]
procedure for bound states and the Vincent-Phatak [23] one for
scattering.

Above the Fermi level the eigenvalues of Eq. (5) are related
to the spectrum of 17F by En

c.m. = E
17F
n − E

16O
g.s. . Thus, Ec.m. > 0

describes the scattering of protons from 16O while the bound
solutions are the overlaps of the ground state of 16O with
the corresponding bound states 17F. Analogously, below the
Fermi level En

c.m. = E
16O
g.s. − E

15N
n and the eigenstates represent

the overlaps with 15N. The Dyson equation implies that the
bound solutions of Eq. (5) have to be normalized to their
spectroscopic factor according to

Zn
lj =

∫ ∞

0
dk k2|ψn(k)|2 =

[

1 − 〈ψ̃n|
d!"

lj

dω
|ψ̃n〉

∣∣∣∣
ω=En

c.m.

]−1

,

(6)

where ψ̃n(k) is the solution itself normalized to unity and En
c.m.

is the corresponding eigenvalue. The asympotic normalization
for the unbound solutions is related in the usual way to the flux
of incoming particles.

III. RESULTS

Equations (3) and (4) include the relevant physics from
both the calculations of Refs. [14] and [16]. This self-energy
represents a model for the optical potential that acts on
the full ph Hilbert space and can give sensible predic-
tions near the Fermi level. However, the two-body realistic
interactions alone, as used in these works, cannot reproduce
the experimental binding energies and spin-orbit splitting
for nuclei with A ! 3 [24,25]. To obtain these, relativistic
effects or three-body forces are required [26]. In this work
!" was constrained to reproduce the experimental spectrum
in two ways. First, the constants NI

lj and NII
lj that affect the

depth of the optical potential were chosen to reproduce the
corresponding quasiparticle energies. These are the s1/2 and
d5/2 bound states of 17F, its d3/2 resonance and the p1/2 and
p3/2 hole states of 15N. Second, complex resonances that do
not have a mean field character are generated by the dynamic
part of the self-energy. At low energy, most of these couple
to only one pole εi± in Eqs. (1b) and (1c). Therefore, we
have fitted those poles that could be identified with specific
resonances of the A + 1 system (17F) by imposing that Eq. (5)
yields the corresponding experimental energies. We note that
a similar approach was already employed in Ref. [14]. This
is necessary for the particular case of 16O due to the strong
coupling between the single particle spectrum and collective
motions, which suggest the need for an improved description
of the low-energy structure of this nucleus [12] and more
attractive effective interactions [27]. Although, satisfactory
results can already be obtained in similar calculations for
heavier nuclei [28–30].

The influence of this fitting procedure on the results is
discussed in the following. After calibrating Eqs. (1) and (3)
to the spectra of 17F and 15N, the results for the scattering
phase shifts and the bound single particle wave functions are
a prediction of the model.

A. Parameter dependence

To discuss the influence of the different contributions to
Eq. (3), the phase shifts for proton scattering have been
computed employing different truncations of the mean field
self-energy !MF,I . The results are shown in Fig. 3 for three
partial waves. The dotted lines were obtained by retaining
only the original contribution to the self-energy of Ref. [14].
Thus, neglecting !MF,Box

1 in Eq. (3a) and setting NI
lj = 1 for

all cases. The results obtained by constraining these constants
to generate the proper quasiparticle energies is given by the
dashed lines. The full line shows the full results form Eq. (3a),
obtained by including also the !MF,Box

1 term and refitting the
NI

lj . The values for the quasiparticle energies and the constants
NI

lj used are given in Table I.
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The Dyson equation can be expressed in a Schrödinger-like
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energy dependent optical potential [h̄ = c = 1 and µ is the
reduced mass]
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= Ec.m. ψ(k), (5)

where V l
Coul.(k, k′) in the Coulomb interaction corresponding

to a uniformly charged sphere of radius Rc = 3.1 fm. This was
added to account for the electromagnetic interaction missing
in the calculations of Refs. [14,16]. Due to the nonlocal
character of !", Eq. (5) is conveniently solved in momentum
space. In doing this, the long distance part of the Coulomb
potential was solved using the Kwon-Tabakin-Lande [22]
procedure for bound states and the Vincent-Phatak [23] one for
scattering.

Above the Fermi level the eigenvalues of Eq. (5) are related
to the spectrum of 17F by En

c.m. = E
17F
n − E

16O
g.s. . Thus, Ec.m. > 0

describes the scattering of protons from 16O while the bound
solutions are the overlaps of the ground state of 16O with
the corresponding bound states 17F. Analogously, below the
Fermi level En

c.m. = E
16O
g.s. − E

15N
n and the eigenstates represent

the overlaps with 15N. The Dyson equation implies that the
bound solutions of Eq. (5) have to be normalized to their
spectroscopic factor according to
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where ψ̃n(k) is the solution itself normalized to unity and En
c.m.

is the corresponding eigenvalue. The asympotic normalization
for the unbound solutions is related in the usual way to the flux
of incoming particles.

III. RESULTS

Equations (3) and (4) include the relevant physics from
both the calculations of Refs. [14] and [16]. This self-energy
represents a model for the optical potential that acts on
the full ph Hilbert space and can give sensible predic-
tions near the Fermi level. However, the two-body realistic
interactions alone, as used in these works, cannot reproduce
the experimental binding energies and spin-orbit splitting
for nuclei with A ! 3 [24,25]. To obtain these, relativistic
effects or three-body forces are required [26]. In this work
!" was constrained to reproduce the experimental spectrum
in two ways. First, the constants NI

lj and NII
lj that affect the

depth of the optical potential were chosen to reproduce the
corresponding quasiparticle energies. These are the s1/2 and
d5/2 bound states of 17F, its d3/2 resonance and the p1/2 and
p3/2 hole states of 15N. Second, complex resonances that do
not have a mean field character are generated by the dynamic
part of the self-energy. At low energy, most of these couple
to only one pole εi± in Eqs. (1b) and (1c). Therefore, we
have fitted those poles that could be identified with specific
resonances of the A + 1 system (17F) by imposing that Eq. (5)
yields the corresponding experimental energies. We note that
a similar approach was already employed in Ref. [14]. This
is necessary for the particular case of 16O due to the strong
coupling between the single particle spectrum and collective
motions, which suggest the need for an improved description
of the low-energy structure of this nucleus [12] and more
attractive effective interactions [27]. Although, satisfactory
results can already be obtained in similar calculations for
heavier nuclei [28–30].

The influence of this fitting procedure on the results is
discussed in the following. After calibrating Eqs. (1) and (3)
to the spectra of 17F and 15N, the results for the scattering
phase shifts and the bound single particle wave functions are
a prediction of the model.

A. Parameter dependence

To discuss the influence of the different contributions to
Eq. (3), the phase shifts for proton scattering have been
computed employing different truncations of the mean field
self-energy !MF,I . The results are shown in Fig. 3 for three
partial waves. The dotted lines were obtained by retaining
only the original contribution to the self-energy of Ref. [14].
Thus, neglecting !MF,Box

1 in Eq. (3a) and setting NI
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all cases. The results obtained by constraining these constants
to generate the proper quasiparticle energies is given by the
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*Σ (2p1h)R (2h1p)R= + +

FIG. 1. (Color online) Feynman diagrams representation of the
self energy. The first diagram on the right-hand side represents the
Hartree-Fock–like contribution to the mean field. The remaining ones
describe core polarization effects in the particle (2p1h) and hole
(2h1p) part of the spectrum.

diagrammatically in Fig. 1. There, the double lines represent
the exact one-body Green’s function, which contains complete
information on the particle and hole spectral distributions.
The first diagram on the right-hand side is the direct ex-
tension of the Hartree-Fock potential to include the effects
of the fragmentation of strength and represents the nuclear
mean-field (MF) in the presence of correlations. The remaining
contributions split naturally in diagrams containing at least
two-particle–one-hole (2p1h), describing the system of A + 1
particles, or two-hole–one-particle (2h1p), corresponding to
A − 1 particles. The irreducible propagators R(2p1h) and R(2h1p)

account for the core polarization contributions to the optical
potential in the particle and hole spaces, respectively [9]. The
separation of Fig. 1 is exact. In Refs. [11,14], R(2p1h) and R(2h1p)

were computed employing a Faddeev expansion that permits
the direct coupling of the single-particle motion to collective
excitations of the core. These were evaluated in the dressed
random phase approximation (DRPA) [18]. The example of
a diagram that contributes to R(2p1h) is given in Fig. 2. Since
this expansion is based on the fully fragmented single particle
propagator —which is generated from the self-energy itself—
a self-consistent solution is required.

The nuclear self-energy computed in Ref. [14] was obtained
within a model space P corresponding to the harmonic
oscillator wave functions for all orbitals up to the pf shell plus
the g9/2. A parameter b = 1.76 fm was employed. This space

(pp)Γ

(ph)Π

(ph)Π

FIG. 2. (Color online) Example of a diagrammatic contribution
included in the Faddeev expansion for R(2p1h) (see Fig. 1). A
quasiparticle is coupled to the response function !(ph) that describes
the target nucleus. It can also participate in pairing processes, which
are accounted for by the two-body propagator gII,(pp).

appears to be large enough to describe the influence of the low
energy (long-range) excitations on nuclear fragmentation [12].
However, it requires a proper extension for applications to
single particle scattering, as it will be discussed below. The
effect of correlations outside this model space were accounted
for by employing a G matrix as an effective interaction,
which was derived from the Bonn-C potential [19] according
to Ref. [20]. The computation of the G matrix for positive
energies is an outstanding problem which was not attempted
there. Therefore, we employed a fixed starting energy of
−5 MeV in the present work, as the closest reliable choice
to the continuum.

At low energies the optical potential is well approximated
by a real interaction and R(2p1h) and R(2h1p) can be expressed
as discrete sums of poles. Thus, for each given partial wave,
lj, the contributions depicted in Fig. 1 can be expressed as

"MF,Fadd
lj (k, k′) =

∑

nα ,nβ∈P
φα(k) "MF,Fadd

lj ;nα ,nβ
φ∗

β(k′), (1a)

"
(2p1h),Fadd
lj (k, k′) =

∑

nα ,nβ∈P
φα(k)

[
∑

n+

(
mn+

α

)∗
mn+

β

ω − εn+
lj + iη

]

φ∗
β(k′),

(1b)

"
(2h1p),Fadd
lj (k, k′) =

∑

nα ,nβ∈P
φα(k)

[
∑

k−

(
mk−

α

)∗
mk−

β

ω − εk−
lj − iη

]

φ∗
β(k′),

(1c)

where φα(r) are the harmonic oscillator radial functions refer-
ring to single particle quantum numbers α = {nα, lα, jα,mα}
[38], the first sum runs over all the orbits belonging to the
model space and lαjα = lβjβ = lj since 16O has a 0+ isoscalar
ground state.

The superscript “Fadd” indicates that Eqs. (1) represent
the results of Ref. [14]. This is the most sophisticated
calculation available to date for the self-energy at low-energies
that account for the coupling between single nucleons and
collective excitations. However, the expansion over a few
harmonic oscillator states is not optimal for describing the
details of the nuclear surface. Analogously, it misses part of
the large momentum components in the optical potential. This
is particularly critical for the MF component, which describes
the background of the phase shifts. On the contrary, the same
nucleus was studied in Ref. [16] employing a spherical box
basis that includes all the relevant momentum components. An
effective G matrix, derived for nuclear matter and the Bonn-B
potential [19], accounted for the binding due to short-range
and tensor correlations. The self-energy, computed only to
second order in the perturbation series, neglected most of the
collective effects. This approach was applied to obtain the
quasihole wave functions associated to the p states occupied
in 16O, with sufficiently accurate results to describe the shapes
of the (e, e′p) cross sections to those states [21].

In this work, we chose to employ a mixed representation
of the self-energy in which the MF components missing in the
space P were extracted from Ref. [16], while the contributions
beyond MF computed in Ref. [14] [Eqs. (1b) and (1c)] were
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particles, or two-hole–one-particle (2h1p), corresponding to
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account for the core polarization contributions to the optical
potential in the particle and hole spaces, respectively [9]. The
separation of Fig. 1 is exact. In Refs. [11,14], R(2p1h) and R(2h1p)

were computed employing a Faddeev expansion that permits
the direct coupling of the single-particle motion to collective
excitations of the core. These were evaluated in the dressed
random phase approximation (DRPA) [18]. The example of
a diagram that contributes to R(2p1h) is given in Fig. 2. Since
this expansion is based on the fully fragmented single particle
propagator —which is generated from the self-energy itself—
a self-consistent solution is required.

The nuclear self-energy computed in Ref. [14] was obtained
within a model space P corresponding to the harmonic
oscillator wave functions for all orbitals up to the pf shell plus
the g9/2. A parameter b = 1.76 fm was employed. This space
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FIG. 2. (Color online) Example of a diagrammatic contribution
included in the Faddeev expansion for R(2p1h) (see Fig. 1). A
quasiparticle is coupled to the response function !(ph) that describes
the target nucleus. It can also participate in pairing processes, which
are accounted for by the two-body propagator gII,(pp).

appears to be large enough to describe the influence of the low
energy (long-range) excitations on nuclear fragmentation [12].
However, it requires a proper extension for applications to
single particle scattering, as it will be discussed below. The
effect of correlations outside this model space were accounted
for by employing a G matrix as an effective interaction,
which was derived from the Bonn-C potential [19] according
to Ref. [20]. The computation of the G matrix for positive
energies is an outstanding problem which was not attempted
there. Therefore, we employed a fixed starting energy of
−5 MeV in the present work, as the closest reliable choice
to the continuum.

At low energies the optical potential is well approximated
by a real interaction and R(2p1h) and R(2h1p) can be expressed
as discrete sums of poles. Thus, for each given partial wave,
lj, the contributions depicted in Fig. 1 can be expressed as

"MF,Fadd
lj (k, k′) =

∑

nα ,nβ∈P
φα(k) "MF,Fadd

lj ;nα ,nβ
φ∗

β(k′), (1a)

"
(2p1h),Fadd
lj (k, k′) =

∑

nα ,nβ∈P
φα(k)

[
∑

n+

(
mn+

α

)∗
mn+

β

ω − εn+
lj + iη

]

φ∗
β(k′),

(1b)

"
(2h1p),Fadd
lj (k, k′) =

∑

nα ,nβ∈P
φα(k)

[
∑

k−

(
mk−

α

)∗
mk−

β

ω − εk−
lj − iη

]

φ∗
β(k′),

(1c)

where φα(r) are the harmonic oscillator radial functions refer-
ring to single particle quantum numbers α = {nα, lα, jα,mα}
[38], the first sum runs over all the orbits belonging to the
model space and lαjα = lβjβ = lj since 16O has a 0+ isoscalar
ground state.

The superscript “Fadd” indicates that Eqs. (1) represent
the results of Ref. [14]. This is the most sophisticated
calculation available to date for the self-energy at low-energies
that account for the coupling between single nucleons and
collective excitations. However, the expansion over a few
harmonic oscillator states is not optimal for describing the
details of the nuclear surface. Analogously, it misses part of
the large momentum components in the optical potential. This
is particularly critical for the MF component, which describes
the background of the phase shifts. On the contrary, the same
nucleus was studied in Ref. [16] employing a spherical box
basis that includes all the relevant momentum components. An
effective G matrix, derived for nuclear matter and the Bonn-B
potential [19], accounted for the binding due to short-range
and tensor correlations. The self-energy, computed only to
second order in the perturbation series, neglected most of the
collective effects. This approach was applied to obtain the
quasihole wave functions associated to the p states occupied
in 16O, with sufficiently accurate results to describe the shapes
of the (e, e′p) cross sections to those states [21].

In this work, we chose to employ a mixed representation
of the self-energy in which the MF components missing in the
space P were extracted from Ref. [16], while the contributions
beyond MF computed in Ref. [14] [Eqs. (1b) and (1c)] were
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FIG. 1. (Color online) Feynman diagrams representation of the
self energy. The first diagram on the right-hand side represents the
Hartree-Fock–like contribution to the mean field. The remaining ones
describe core polarization effects in the particle (2p1h) and hole
(2h1p) part of the spectrum.

diagrammatically in Fig. 1. There, the double lines represent
the exact one-body Green’s function, which contains complete
information on the particle and hole spectral distributions.
The first diagram on the right-hand side is the direct ex-
tension of the Hartree-Fock potential to include the effects
of the fragmentation of strength and represents the nuclear
mean-field (MF) in the presence of correlations. The remaining
contributions split naturally in diagrams containing at least
two-particle–one-hole (2p1h), describing the system of A + 1
particles, or two-hole–one-particle (2h1p), corresponding to
A − 1 particles. The irreducible propagators R(2p1h) and R(2h1p)

account for the core polarization contributions to the optical
potential in the particle and hole spaces, respectively [9]. The
separation of Fig. 1 is exact. In Refs. [11,14], R(2p1h) and R(2h1p)

were computed employing a Faddeev expansion that permits
the direct coupling of the single-particle motion to collective
excitations of the core. These were evaluated in the dressed
random phase approximation (DRPA) [18]. The example of
a diagram that contributes to R(2p1h) is given in Fig. 2. Since
this expansion is based on the fully fragmented single particle
propagator —which is generated from the self-energy itself—
a self-consistent solution is required.

The nuclear self-energy computed in Ref. [14] was obtained
within a model space P corresponding to the harmonic
oscillator wave functions for all orbitals up to the pf shell plus
the g9/2. A parameter b = 1.76 fm was employed. This space
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FIG. 2. (Color online) Example of a diagrammatic contribution
included in the Faddeev expansion for R(2p1h) (see Fig. 1). A
quasiparticle is coupled to the response function !(ph) that describes
the target nucleus. It can also participate in pairing processes, which
are accounted for by the two-body propagator gII,(pp).

appears to be large enough to describe the influence of the low
energy (long-range) excitations on nuclear fragmentation [12].
However, it requires a proper extension for applications to
single particle scattering, as it will be discussed below. The
effect of correlations outside this model space were accounted
for by employing a G matrix as an effective interaction,
which was derived from the Bonn-C potential [19] according
to Ref. [20]. The computation of the G matrix for positive
energies is an outstanding problem which was not attempted
there. Therefore, we employed a fixed starting energy of
−5 MeV in the present work, as the closest reliable choice
to the continuum.

At low energies the optical potential is well approximated
by a real interaction and R(2p1h) and R(2h1p) can be expressed
as discrete sums of poles. Thus, for each given partial wave,
lj, the contributions depicted in Fig. 1 can be expressed as
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where φα(r) are the harmonic oscillator radial functions refer-
ring to single particle quantum numbers α = {nα, lα, jα,mα}
[38], the first sum runs over all the orbits belonging to the
model space and lαjα = lβjβ = lj since 16O has a 0+ isoscalar
ground state.

The superscript “Fadd” indicates that Eqs. (1) represent
the results of Ref. [14]. This is the most sophisticated
calculation available to date for the self-energy at low-energies
that account for the coupling between single nucleons and
collective excitations. However, the expansion over a few
harmonic oscillator states is not optimal for describing the
details of the nuclear surface. Analogously, it misses part of
the large momentum components in the optical potential. This
is particularly critical for the MF component, which describes
the background of the phase shifts. On the contrary, the same
nucleus was studied in Ref. [16] employing a spherical box
basis that includes all the relevant momentum components. An
effective G matrix, derived for nuclear matter and the Bonn-B
potential [19], accounted for the binding due to short-range
and tensor correlations. The self-energy, computed only to
second order in the perturbation series, neglected most of the
collective effects. This approach was applied to obtain the
quasihole wave functions associated to the p states occupied
in 16O, with sufficiently accurate results to describe the shapes
of the (e, e′p) cross sections to those states [21].

In this work, we chose to employ a mixed representation
of the self-energy in which the MF components missing in the
space P were extracted from Ref. [16], while the contributions
beyond MF computed in Ref. [14] [Eqs. (1b) and (1c)] were
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retained. To do this the MF self-energy of Ref. [16] was split
in two parts:

!MF,Box
lj (k, k′) = !MF,Box

0,lj (k, k′) + !MF,Box
1,lj (k, k′), (2)

where !MF,Box
0 is the projection onto P and !MF,Box

1 acts
on the excluded space. Two approximations were considered
depending on which MF component to employ insideP . In the
first case (I), !MF,Box

1 was added to Eq. (1a). In doing this, we
note that the G matrix used to compute !MF,Fadd accounts for
the extra binding due to the degrees of freedom of the excluded
space. Since these are reinserted explicitly by !MF,Box

1 , one
should also rescale !MF,Fadd appropriately by a constant, NI .
The second choice (II) consisted of employing both parts of
Eq. (2). Also in this case we kept the possibility of tuning
the depth of the potential. The complete MF contributions
employed in this work are

!MF,I
lj (k, k′) = NI

lj !MF,Fadd
lj (k, k′) + !MF,Box

1,lj (k, k′),
(3a)

!MF,I I
lj (k, k′) = NII

lj !MF,Box
lj (k, k′), (3b)

where the constants NI
lj and NII

lj depend of the specific channel
and will be discussed below. The full self-energy employed in
the calculations is (see Fig. 1)

!
",I (II )
lj (k, k′; ω) = !

MF,I (II )
lj (k, k′) + !

(2p1h),Fadd
lj (k, k′; ω)

+!
(2h1p),Fadd
lj (k, k′; ω). (4)

The Dyson equation can be expressed in a Schrödinger-like
form, where the self-energy takes the place of a nonlocal and
energy dependent optical potential [h̄ = c = 1 and µ is the
reduced mass]

k2

2µ
ψ(k) +

∫ ∞

0
dk′k′2{!"

lj (k, k′; Ec.m.) + V l
Coul.(k, k′)

}
ψ(k′)

= Ec.m. ψ(k), (5)

where V l
Coul.(k, k′) in the Coulomb interaction corresponding

to a uniformly charged sphere of radius Rc = 3.1 fm. This was
added to account for the electromagnetic interaction missing
in the calculations of Refs. [14,16]. Due to the nonlocal
character of !", Eq. (5) is conveniently solved in momentum
space. In doing this, the long distance part of the Coulomb
potential was solved using the Kwon-Tabakin-Lande [22]
procedure for bound states and the Vincent-Phatak [23] one for
scattering.

Above the Fermi level the eigenvalues of Eq. (5) are related
to the spectrum of 17F by En

c.m. = E
17F
n − E

16O
g.s. . Thus, Ec.m. > 0

describes the scattering of protons from 16O while the bound
solutions are the overlaps of the ground state of 16O with
the corresponding bound states 17F. Analogously, below the
Fermi level En

c.m. = E
16O
g.s. − E

15N
n and the eigenstates represent

the overlaps with 15N. The Dyson equation implies that the
bound solutions of Eq. (5) have to be normalized to their
spectroscopic factor according to

Zn
lj =

∫ ∞

0
dk k2|ψn(k)|2 =

[

1 − 〈ψ̃n|
d!"

lj

dω
|ψ̃n〉

∣∣∣∣
ω=En

c.m.

]−1

,

(6)

where ψ̃n(k) is the solution itself normalized to unity and En
c.m.

is the corresponding eigenvalue. The asympotic normalization
for the unbound solutions is related in the usual way to the flux
of incoming particles.

III. RESULTS

Equations (3) and (4) include the relevant physics from
both the calculations of Refs. [14] and [16]. This self-energy
represents a model for the optical potential that acts on
the full ph Hilbert space and can give sensible predic-
tions near the Fermi level. However, the two-body realistic
interactions alone, as used in these works, cannot reproduce
the experimental binding energies and spin-orbit splitting
for nuclei with A ! 3 [24,25]. To obtain these, relativistic
effects or three-body forces are required [26]. In this work
!" was constrained to reproduce the experimental spectrum
in two ways. First, the constants NI

lj and NII
lj that affect the

depth of the optical potential were chosen to reproduce the
corresponding quasiparticle energies. These are the s1/2 and
d5/2 bound states of 17F, its d3/2 resonance and the p1/2 and
p3/2 hole states of 15N. Second, complex resonances that do
not have a mean field character are generated by the dynamic
part of the self-energy. At low energy, most of these couple
to only one pole εi± in Eqs. (1b) and (1c). Therefore, we
have fitted those poles that could be identified with specific
resonances of the A + 1 system (17F) by imposing that Eq. (5)
yields the corresponding experimental energies. We note that
a similar approach was already employed in Ref. [14]. This
is necessary for the particular case of 16O due to the strong
coupling between the single particle spectrum and collective
motions, which suggest the need for an improved description
of the low-energy structure of this nucleus [12] and more
attractive effective interactions [27]. Although, satisfactory
results can already be obtained in similar calculations for
heavier nuclei [28–30].

The influence of this fitting procedure on the results is
discussed in the following. After calibrating Eqs. (1) and (3)
to the spectra of 17F and 15N, the results for the scattering
phase shifts and the bound single particle wave functions are
a prediction of the model.

A. Parameter dependence

To discuss the influence of the different contributions to
Eq. (3), the phase shifts for proton scattering have been
computed employing different truncations of the mean field
self-energy !MF,I . The results are shown in Fig. 3 for three
partial waves. The dotted lines were obtained by retaining
only the original contribution to the self-energy of Ref. [14].
Thus, neglecting !MF,Box

1 in Eq. (3a) and setting NI
lj = 1 for

all cases. The results obtained by constraining these constants
to generate the proper quasiparticle energies is given by the
dashed lines. The full line shows the full results form Eq. (3a),
obtained by including also the !MF,Box

1 term and refitting the
NI

lj . The values for the quasiparticle energies and the constants
NI

lj used are given in Table I.
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while I!jmj
(Ω,σ) represents the j-coupled angular-spin

function.
We directly calculate the harmonic-oscillator projec-

tion of the self-energy, which can be written as

Σ"
ab(E) = Σ∞

ab(E) + Σ̃ab(E)

= Σ∞
ab(E) +

∑

r

mr
a(m

r
b)

∗

E − εr ± iη
. (4)

The term with the tilde is the dynamic part of the self-
energy due to long-range correlations calculated in the
FRPA, and Σ∞

ab(E) is the correlated Hartree-Fock term
which acquires an energy dependence through the en-
ergy dependence of the G-matrix effective interaction
(see below). Σ∞

ab(E) is the sum of the strict correlated
Hartree-Fock diagram (which is energy independent) and
the dynamical contributions due to short-range interac-
tions outside the chosen model space. The self-energy can
be further decomposed in a central (0) and a spin-orbit
($s) part according to

Σ!j> = Σ!
0 +

$

2
Σ!

!s , (5a)

Σ!j< = Σ!
0 −

$+ 1

2
Σ!

!s , (5b)

with j>,< ≡ $± 1
2 . The corresponding static terms are de-

noted by Σ∞,!
0 and Σ∞,!

!s , and the corresponding dynamic
terms are denoted by Σ̃!

0 and Σ̃!
!s.

The FRPA calculation employs a discrete single-
particle basis in a large model space which results in a
substantial number of poles in the self-energy (4). Since
the goal is to compare with optical potentials at positive
energy, it is appropriate to smooth out these contribu-
tions by employing a finite width for these poles. We
note that the optical potential was always intended to
represent an average smooth behavior of the nucleon self-
energy [6]. In addition, it makes physical sense to at least
partly represent the escape width of the continuum states
by this procedure. Finally, further spreading of the in-
termediate states to more complicated states (3p2h and
higher excitations that are not included in the present
calculation) can also be accounted for by this procedure.
Thus, before comparing to the DOM potentials, the dy-
namic part of the microscopic self-energy was smoothed
out using a finite, energy-dependent width for the poles

Σ̃!j
na,nb

(E) =
∑

r

mr
na
mr

nb

E − εr ± iη
−→

∑

r

mr
na
mr

nb

E − εr ± iΓ(E)
.

(6)
Solving for the real and imaginary parts we obtain

Σ̃!j
na,nb

(E) =
∑

r

(E − εr)

(E − εr)2 + [Γ(E)]2
mr

na
mr

nb
(7)

+ i

[

θ(EF − E)
∑

h

Γ

(E − εh)2 + Γ(E)2
mh

na
mh

nb

− θ(E − EF )
∑

p

Γ

(E − εp)2 + [Γ(E)]2
mp

na
mp

nb

]

,

where, r implies a sum over both particle and hole states,
h denotes a sum over the hole states only, and p a sum
over the particle states only. For the width, the following
form was used [26]:

Γ(E) =
1

π

a (E − EF )2

(E − EF )2 − b2

with a=12 MeV and b=22.36 MeV. This generates a nar-
row width near EF that increases as the energy moves
away from the Fermi surface, in accordance with obser-
vations.
In the DOM representation of the optical potential the

self-energy is recast in the form of a subtracted dispersion
relation

Σ"
ab(E) = Σ∞

ab, S + Σ̃ab(E)S , (8)

where [27]

Σ∞
abS = Σ"

ab(EF ) , (9)

Σ̃ab(E)S = Σ"
ab(E)− Σ"

ab(EF ) . (10)

For the imaginary potential, this is the same as the above
defined self-energies (4) and it can therefore be directly
compared to the DOM potential. For the real parts we
will employ either the normal or the subtracted form in
the following as appropriate.

B. Volume Integrals

In fitting optical potentials, it is usually found that vol-
ume integrals are better constrained by the experimental
data [6, 28]. For this reason, they have been considered as
a reliable measure of the total strength of a potential. For
a non-local and $-dependent potential of the form (3) it is
convenient to consider separate integrals for each angu-
lar momentum component, Σ!

0(r, r
′) and Σ!

!s(r, r
′), which

correspond to the square brackets in Eq. (3) and decom-
posed according to (5). Labeling the central real part of
the optical potential with V , and the central imaginary
part by W , we calculate:

J!
W (E) = 4π

∫

drr2
∫

dr′r′2Im Σ!
0(r, r

′;E) (11a)

J!
V (E) = 4π

∫

drr2
∫

dr′r′2Re Σ!
0(r, r

′;E). (11b)

We also employ the volume integral of the central real
part at the Fermi energy denoted by J!

F = J!
V (EF ), and

the corresponding averaged quantities

Javg
W (E) =

1

N{!}

∑

!∈{!}

J!
W (E) (12a)

Javg
V (E) =

1

N{!}

∑

!∈{!}

J!
W (E) . (12b)

In Eqs. (12), N{!} is the number of partial waves included
in the average and the sum runs over all values of $ except
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where, r implies a sum over both particle and hole states,
h denotes a sum over the hole states only, and p a sum
over the particle states only. For the width, the following
form was used [26]:

Γ(E) =
1

π

a (E − EF )2

(E − EF )2 − b2

with a=12 MeV and b=22.36 MeV. This generates a nar-
row width near EF that increases as the energy moves
away from the Fermi surface, in accordance with obser-
vations.
In the DOM representation of the optical potential the

self-energy is recast in the form of a subtracted dispersion
relation
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where [27]
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For the imaginary potential, this is the same as the above
defined self-energies (4) and it can therefore be directly
compared to the DOM potential. For the real parts we
will employ either the normal or the subtracted form in
the following as appropriate.

B. Volume Integrals

In fitting optical potentials, it is usually found that vol-
ume integrals are better constrained by the experimental
data [6, 28]. For this reason, they have been considered as
a reliable measure of the total strength of a potential. For
a non-local and $-dependent potential of the form (3) it is
convenient to consider separate integrals for each angu-
lar momentum component, Σ!

0(r, r
′) and Σ!

!s(r, r
′), which

correspond to the square brackets in Eq. (3) and decom-
posed according to (5). Labeling the central real part of
the optical potential with V , and the central imaginary
part by W , we calculate:
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∫
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′;E) (11a)
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∫
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We also employ the volume integral of the central real
part at the Fermi energy denoted by J!

F = J!
V (EF ), and

the corresponding averaged quantities

Javg
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1
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Javg
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In Eqs. (12), N{!} is the number of partial waves included
in the average and the sum runs over all values of $ except

4

if otherwise indicated. We also introduce the notation
Javg
F = Javg

V (EF ).
The correspondence between the above definitions and

the volume integrals used for the (local) DOM potential
in Refs. [8, 9] can be obtained by casting a spherical local
potential U(r) into a non-local form U(r, r′) = U(r)δ(r−
r
′). Expanding this in spherical harmonics gives

U(r, r′) =
∑

!m

U !(r, r′)Y ∗
!m(Ω′)Y!m(Ω) , (13)

with the "-projection

U !(r, r′) =
U(r)

r2
δ(r − r′) , (14)

which is actually angular-momentum independent. The
definition (11) for the volume integrals lead to

J!
U = 4π

∫

dr r2
∫

dr′r′2U !(r, r′) (15)

= 4π

∫

U(r)r2dr =

∫
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approximation

The self-energy is shown in terms of Feynman diagrams
in Fig. 1. The calculations are carried out in two steps
by following the same procedure as in Ref. [17], where
further details can be found. First, a configuration space
is selected that should be as large as possible to account
for the treatment of nuclear collective motion. We then
account for the short-range part of a realistic NN interac-
tion by directly calculating the two-body scattering for
nucleons that propagate outside the model space. The
result is the so-called G-matrix that must be employed
as an energy-dependent effective interaction inside the
chosen space. The contribution from ladder diagrams
from outside the model space are also added to the cal-
culated self-energy and result in an energy-dependent
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correction to Σ∞
ab [see Eq. (4)]. When the correspond-

ing self-energy is calculated, this energy dependence en-
hances the reduction of the spectroscopic strength of oc-
cupied orbits by about 10%. A similar depletion is also
obtained in nuclear-matter calculations with realistic in-
teractions [11] and confirmed by high-energy electron
scattering data [29, 30]. The details of this partition-
ing procedure are presented in Ref. [17]. For the present
discussion, it should be clear that this corresponds to cal-
culating separately the contribution of propagators that
lie outside the model space and then to add it to the final
FRPA results. This does not introduce phenomenologi-
cal parameters and the calculation should be regarded as
a microscopic study based only on the original realistic
interaction.
In addition to the influence of short-range (and tensor)

correlations, it is essential to consider the role of long-
range correlations in which nucleons couple to low-lying
collective states and giant resonances. This is calculated
in the second step inside the model space by employing
the FRPA method. The physics content of the FRPA
is better summarized by looking at its diagrammatic ex-
pansion illustrated in Figs. 2 and 3. The basic ingre-
dients are the particle-hole (ph) polarization propagator,
Παβ,γδ(E), that describes excited states of the A-nucleon
system, and the two-particle propagator, gIIαβ,γδ(E), that
describes the propagation of two added/removed parti-
cles. These propagators are calculated as summations of
ring and ladder diagrams in the random-phase approxi-
mation (RPA). This allows for a proper description of col-
lective excitations in the giant-resonance region when the
model space is sufficiently large. The RPA induces time
orderings as those shown in Fig. 2 for the ph case and
accounts for the presence of two-particle–two-hole and
more complicated admixtures in the ground state, which
are generated by correlations. In FRPA, the R(2p1h)(E)
and R(2h1p)(E) propagators that appear in Fig. 1 are ob-
tained by recoupling Π(E) and gII(E) to single-particle
or hole states, as shown in Fig. 3. This is done by solving
the set of Faddeev equations detailed in Refs. [12, 13].
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cal parameters and the calculation should be regarded as
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orderings as those shown in Fig. 2 for the ph case and
accounts for the presence of two-particle–two-hole and
more complicated admixtures in the ground state, which
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discussion, it should be clear that this corresponds to cal-
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lie outside the model space and then to add it to the final
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cal parameters and the calculation should be regarded as
a microscopic study based only on the original realistic
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In addition to the influence of short-range (and tensor)
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is better summarized by looking at its diagrammatic ex-
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orderings as those shown in Fig. 2 for the ph case and
accounts for the presence of two-particle–two-hole and
more complicated admixtures in the ground state, which
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tained by recoupling Π(E) and gII(E) to single-particle
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ing self-energy is calculated, this energy dependence en-
hances the reduction of the spectroscopic strength of oc-
cupied orbits by about 10%. A similar depletion is also
obtained in nuclear-matter calculations with realistic in-
teractions [11] and confirmed by high-energy electron
scattering data [29, 30]. The details of this partition-
ing procedure are presented in Ref. [17]. For the present
discussion, it should be clear that this corresponds to cal-
culating separately the contribution of propagators that
lie outside the model space and then to add it to the final
FRPA results. This does not introduce phenomenologi-
cal parameters and the calculation should be regarded as
a microscopic study based only on the original realistic
interaction.
In addition to the influence of short-range (and tensor)

correlations, it is essential to consider the role of long-
range correlations in which nucleons couple to low-lying
collective states and giant resonances. This is calculated
in the second step inside the model space by employing
the FRPA method. The physics content of the FRPA
is better summarized by looking at its diagrammatic ex-
pansion illustrated in Figs. 2 and 3. The basic ingre-
dients are the particle-hole (ph) polarization propagator,
Παβ,γδ(E), that describes excited states of the A-nucleon
system, and the two-particle propagator, gIIαβ,γδ(E), that
describes the propagation of two added/removed parti-
cles. These propagators are calculated as summations of
ring and ladder diagrams in the random-phase approxi-
mation (RPA). This allows for a proper description of col-
lective excitations in the giant-resonance region when the
model space is sufficiently large. The RPA induces time
orderings as those shown in Fig. 2 for the ph case and
accounts for the presence of two-particle–two-hole and
more complicated admixtures in the ground state, which
are generated by correlations. In FRPA, the R(2p1h)(E)
and R(2h1p)(E) propagators that appear in Fig. 1 are ob-
tained by recoupling Π(E) and gII(E) to single-particle
or hole states, as shown in Fig. 3. This is done by solving
the set of Faddeev equations detailed in Refs. [12, 13].
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teractions [11] and confirmed by high-energy electron
scattering data [29, 30]. The details of this partition-
ing procedure are presented in Ref. [17]. For the present
discussion, it should be clear that this corresponds to cal-
culating separately the contribution of propagators that
lie outside the model space and then to add it to the final
FRPA results. This does not introduce phenomenologi-
cal parameters and the calculation should be regarded as
a microscopic study based only on the original realistic
interaction.
In addition to the influence of short-range (and tensor)

correlations, it is essential to consider the role of long-
range correlations in which nucleons couple to low-lying
collective states and giant resonances. This is calculated
in the second step inside the model space by employing
the FRPA method. The physics content of the FRPA
is better summarized by looking at its diagrammatic ex-
pansion illustrated in Figs. 2 and 3. The basic ingre-
dients are the particle-hole (ph) polarization propagator,
Παβ,γδ(E), that describes excited states of the A-nucleon
system, and the two-particle propagator, gIIαβ,γδ(E), that
describes the propagation of two added/removed parti-
cles. These propagators are calculated as summations of
ring and ladder diagrams in the random-phase approxi-
mation (RPA). This allows for a proper description of col-
lective excitations in the giant-resonance region when the
model space is sufficiently large. The RPA induces time
orderings as those shown in Fig. 2 for the ph case and
accounts for the presence of two-particle–two-hole and
more complicated admixtures in the ground state, which
are generated by correlations. In FRPA, the R(2p1h)(E)
and R(2h1p)(E) propagators that appear in Fig. 1 are ob-
tained by recoupling Π(E) and gII(E) to single-particle
or hole states, as shown in Fig. 3. This is done by solving
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AV18 interaction.

gested by the FRPA calculations may actually provide a
handle on describing the nuclear charge density for 40Ca
more accurately than was possible in Ref. [36].
A direct comparison of !-averaged FRPA volume in-

tegrals with the corresponding DOM result is made in
Fig. 10. Since the DOM results are calculated from a
local potential, they must be corrected by the effective
mass that governs non-locality [6, 36], before they can be
compared with the FRPA results, which are generated
from non-local potentials. The overall effect of this cor-
rection is to enhance the absorption. Referring to Fig. 10,
one can see that the FRPA exhibits different behavior
above and below EF than is assumed in the DOM. The
FRPA predicts that there is significantly less absorption
below EF than above, whereas according to the assump-
tions made in a DOM fit, the absorption is roughly sym-
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metric above and below up to about 50 MeV away from
EF [6, 8–10]. While this assumption is made in the local
version of the DOM, the transition to a non-local imple-
mentation distorts this assumption of symmetry because
the attendant correction involving the effective mass is
different above and below the Fermi energy as can be
seen in Fig. 10. Since only the absorption above the
Fermi energy is strongly constrained by elastic scatter-
ing data, it is encouraging that the !-averaged FRPA
result is reasonably close to the DOM fit for both nuclei
in the domain where the FRPA is expected to be rele-
vant on account of the size of the chosen model space.
The simplifying assumptions of a symmetric absorption
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gested by the FRPA calculations may actually provide a
handle on describing the nuclear charge density for 40Ca
more accurately than was possible in Ref. [36].
A direct comparison of !-averaged FRPA volume in-
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0 (EF ).

for neutrons in 40Ca, employing the AV18 interaction
and are separated in partial waves up to �=5. The vari-
ation of J�

V with respect to J�
F = J�

V (EF ) obtained from

Σ∞,�
0 (EF ), also decreases with increasing � (Fig. 4), This

reflects a similar reduction of the imaginary parts, J�
W , to

which J�
V are linked through the dispersion relation. The

effect may be partly explained by the truncated model
space, since the higher �-channels also have fewer orbits.
On the other hand, the horizontal lines in Fig. 4, which
are the contributions of Σ∞,�

0 to J�
F = J�

V (EF ), clearly
suggest that most of this decrease must arise from the �-
dependence implied by the non-locality of the potential.
Such an �-dependence suggests that it may be impor-
tant to include non-local features in DOM potentials. In
Fig. 5 the volume integrals J�

F = J�
V (EF ) are shown ex-

cluding the contribution of the dynamic part. Note that
because the proton potential is not as deep as that of the
neutrons, the volume integral will be smaller for protons
than for neutrons. When the calculation is done with-
out the Coulomb potential, the volume integrals for the
protons are comparable to those for the neutrons.

This effect of non-locality can be illustrated by taking
e.g. the energy dependence of the volume contribution
of a DOM potential [9] and replacing the radial form fac-
tor by a non-local potential. The radial parameters of
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FIG. 5. (Color online) Angular momentum dependence for
the volume Integrals J�

F = J�
V (EF ) of Σ

∞,�(EF ) excluding the
contribution of the dynamic part of the self-energy. For each
�, results for protons are given by solid diamonds and neu-
trons by solid circles. Proton potentials are considerably less
attractive due to the Coulomb energy. When the Coulomb
interaction is suppressed (open diamonds) the proton results
are close to the neutron results. The results shown are for
40Ca using the AV18 interaction.

such a non-local potential employed here correspond to
the non-local Hartree-Fock potential of Ref. [36]. Such a
non-local potential is of the form proposed by Perey and



•  absorption away from EF is enhanced by the tensor force 

•  little effects from charge exchange (e.g. p-48Ca <-> n-48Sc) 

Jw: integral over the imaginary opt. pot (overall absorption)	

tensor	  
	  force	

	  Full	  FRPA	  result	  (w/	  av18)	  
	  Charge-‐exchange	  d.o.f.	  suppressed	  
	  Tensor	  force	  suppressed [S. Waldecker, CB, W. Dickhoff, arXiv:1105.4257]	  
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dence of spectroscopic factors observed in knockout and
transfer reactions [14, 38–43].

The Javg
W for the three different Ca isotopes are shown

in the top panels of Fig. 13. These results predict an
opposite behavior of the protons and neutrons above
EF , with the proton (neutron) potential increasing (de-
creasing) when more neutrons are added, qualitatively
in agreement with expectations from the Lane potential
model [44]. A recent DOM analysis based on several
isotopes, including the Ca and Sn chains, employs a sim-
ilar trend for the volume integrals [10]. However, the
same analysis suggests different behavior of the imagi-
nary surface contributions: neutron surface absorption
appears to be rather independent of asymmetry, while
variations are much stronger for protons and for chains
of isotopes tends to increase with asymmetry. The sep-
aration between volume and surface effects is an arti-
fact of the functional form chosen for the optical model
and such a separation cannot be carried out uniquely in
a fully microscopic approach like the present FRPA. In
general, one can argue that most of the physics at scat-
tering energies below 50 MeV is dominated by surface
effects which are well-covered by the FRPA, whereas vol-

ume effects pertain to higher energies, less well-covered
by the FRPA chosen model space. At energies below
the Fermi surface, the overall absorption of both proton
and neutron does not show much variations with chang-
ing asymmetry. Since the DOM analysis employs less
data from energies below EF , this result must be further
tested in future work. Current DOM implementations
assume that surface absorption is similar above and be-
low the Fermi energy, which is clearly not suggested by
the FRPA results.

The above pattern, in which one type of nucleon be-
comes more correlated when increasing the number of its
isotopic partners, is a rather general feature in nuclear
systems that is also found for asymmetric nucleonic mat-
ter [45, 46]. FRPA calculations of stable and drip-line
nuclei show that this effect results in an asymmetry de-
pendence of spectroscopic factors similar to that observed
in knockout reactions, although the overall change from
drip line to drip line is rather modest [14]. We note,
however, that there also exist other mechanisms that can
affect this quenching besides the coupling to the giant
resonance region, including a strong correlation to the ph
gap [17] and effects of the continuum at the drip lines [43].
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dence of spectroscopic factors observed in knockout and
transfer reactions [14, 38–43].

The Javg
W for the three different Ca isotopes are shown

in the top panels of Fig. 13. These results predict an
opposite behavior of the protons and neutrons above
EF , with the proton (neutron) potential increasing (de-
creasing) when more neutrons are added, qualitatively
in agreement with expectations from the Lane potential
model [44]. A recent DOM analysis based on several
isotopes, including the Ca and Sn chains, employs a sim-
ilar trend for the volume integrals [10]. However, the
same analysis suggests different behavior of the imagi-
nary surface contributions: neutron surface absorption
appears to be rather independent of asymmetry, while
variations are much stronger for protons and for chains
of isotopes tends to increase with asymmetry. The sep-
aration between volume and surface effects is an arti-
fact of the functional form chosen for the optical model
and such a separation cannot be carried out uniquely in
a fully microscopic approach like the present FRPA. In
general, one can argue that most of the physics at scat-
tering energies below 50 MeV is dominated by surface
effects which are well-covered by the FRPA, whereas vol-

ume effects pertain to higher energies, less well-covered
by the FRPA chosen model space. At energies below
the Fermi surface, the overall absorption of both proton
and neutron does not show much variations with chang-
ing asymmetry. Since the DOM analysis employs less
data from energies below EF , this result must be further
tested in future work. Current DOM implementations
assume that surface absorption is similar above and be-
low the Fermi energy, which is clearly not suggested by
the FRPA results.

The above pattern, in which one type of nucleon be-
comes more correlated when increasing the number of its
isotopic partners, is a rather general feature in nuclear
systems that is also found for asymmetric nucleonic mat-
ter [45, 46]. FRPA calculations of stable and drip-line
nuclei show that this effect results in an asymmetry de-
pendence of spectroscopic factors similar to that observed
in knockout reactions, although the overall change from
drip line to drip line is rather modest [14]. We note,
however, that there also exist other mechanisms that can
affect this quenching besides the coupling to the giant
resonance region, including a strong correlation to the ph
gap [17] and effects of the continuum at the drip lines [43].


