\odot Shear Viscosity - Basics! $E^* = -\eta \frac{\partial u^*}{\partial y}$ $\left(\frac{1}{\sqrt{2}}\right)$ Now diffuses momentum of lower Steam so after some dy { LEAN - $y = 0$ $4 - 6$ $Find:$ Ideal Flyid $\int d\tau^{\alpha x} = \int dy \text{ (e+p) } \omega^x$ Δp^{\times} = $\frac{1}{2}$ = - $\int_{a}^{b} dy$ (e+p) du^x y $\Delta p^x = -(e+p) \frac{\partial u^x}{\partial y} (\Delta y)^2$

Kinetice $ln \rho_{\text{p}} \approx \frac{1}{n\sigma}$ τ
 \sim \bot $n\sigma V_{th}$ S_{\circ} $\omega y^2 \sim \Delta t \left(l_{mfp} \right)^2$ Define the montestum diffusion coefficient $D_{\gamma} \sim \frac{1}{\overline{L}} m f_{\rho}$ S_{σ} $i.e.$ $D_{\gamma} = 4$ η \sim (e+p) v_{th} e_{10} S_{\circ} $(e^{\lambda} \rho)/n \cdot \nu_{th}$ and find $P + 9P$ η $\frac{p_{4y}}{\sigma}$

High temperature QCD (Above Deconfinement) Ptyp And $rac{\alpha_s^2}{\tau^2}$ Ò \mathcal{S} $rac{1}{\alpha_{s}^{2}}$ $\sqrt{2}$

For Hydro need: lmf \leftarrow 1 the system is expanding
like mad importan More 7 After $u^* = (u^0, \vec{u}) = (0, 1)$ t : α time $rac{z}{t}$ $\frac{\rho_{2}}{\epsilon} \approx \frac{V_{1}^{2}}{4} \kappa$ Finid $\frac{Velocity}{\omega} = u^2$

Picture $2/t$ = const ₹ Expansion tates = $2v^2 = 1$ $\frac{1 \, \text{d}v}{v \, \text{d}t} = \frac{2}{v} \, \frac{v}{v}$ t $2=0$ So we have: $\frac{1}{2}$ coll \leftarrow \leftarrow or $\frac{1}{c^{2}(e+p)t}$ <1 t_{o} $Using (e+p)=sT$ $v_{\text{H}}^2 \sim c_1^2$ $\frac{1}{c_s^2}\frac{\eta}{s}$ $\frac{1}{\epsilon}$ $\frac{1}{\epsilon}$ $T\sim$ 300 MeV $\frac{\zeta^2}{\zeta^2} \sim \sqrt{\frac{1}{3}}$ $\tau_{\rm o} \sim \mu_{\rm m}$

 N^{ω} $\left(\frac{\eta/s}{\delta.3}\right)\left(\frac{lfm}{\tau_o}\right)\left(\frac{300 \,MeV}{\tau_o}\right) \ll 1$ 0.36 9000 evidence $\overline{15}$ here. $\tilde{\iota}s$ hydro at \mathcal{L} HIC See Next Slides

From Krishna's Talk

Hydro and Energy loss:

- \sim 1. Characterize energy density with ellipse
	- Elliptic Shape gives elliptic flow

$$
v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle
$$

- 4 2. Around almond shape are *fluctuations*
	- Triangular Shape gives v_3 (Alver)

$$
v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle
$$

- \sim 1. Characterize energy density with ellipse
	- Elliptic Shape gives elliptic flow

$$
v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle
$$

- 4 2. Around almond shape are *fluctuations*
	- Triangular Shape gives v_3

$$
v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle
$$

- \sim 1. Characterize energy density with ellipse
	- Elliptic Shape gives elliptic flow

$$
v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle
$$

- 4 2. Around almond shape are *fluctuations*
	- Triangular Shape gives v_3

$$
v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle
$$

Determining the Shear Viscosity of QGP with Flow:

- \sim 1. Characterize energy density with ellipse
	- Elliptic Shape gives elliptic flow

$$
v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle
$$

- 4 2. Around almond shape are *fluctuations*
	- Triangular Shape gives v_3

$$
v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle
$$

- 1. Characterize energy density with ellipse
	- apo givoo omp - Elliptic Shape gives elliptic flow

$$
v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle
$$

- 8 2. Around almond shape are *fluctuations*
	- .
.. $\frac{1}{\sqrt{2}}$ - Triangular Shape gives v_3 (Alver)

$$
v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle
$$

3. Hot-spots give *correlated* higher harmonics

$$
v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle
$$

3+1 E by E viscous hydro simulations by Schenke *et al*

FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time (alternative individual case (middle) and after the international case of the international case of α . $\frac{1}{2}$ is the transverse plane for one event with $\frac{1}{2}$ (left), and after the individual case (damped most by v FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time Higher harmonics are damped most by viscosity

Hydro Working

Phenix flow data

Hydro Working: (schenke, luzum)

1. Centrality dependence of v_2 and v_3

 $\sim (\ell_{\rm mfp}/L)$

- 2. Relative strength of v_2 and v_3
- 3. $\,p_T$ dependence of viscous corrections

$$
\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}
$$

Phenix flow data

Hydro Working: (schenke, luzum)

1. Centrality dependence of v_2 and v_3

 $\sim (\ell_{\rm mfp}/L)$

- 2. Relative strength of v_2 and v_3
- 3. $\,p_T$ dependence of viscous corrections

$$
\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}
$$

Phenix flow data

Hydro Working: (schenke, luzum)

1. Centrality dependence of v_2 and v_3

 $\sim (\ell_{\rm mfp}/L)$

- 2. Relative strength of v_2 and v_3
- 3. $\,p_T$ dependence of viscous corrections

$$
\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}
$$

Hydro Working

Why I believe that there's hydro at RHIC (and why you should too):

- \checkmark Ideal hydro works kind-of (not for today)
- \checkmark Viscous corrections systematically capture deviations of data from ideal hydro

Makes the bounds $1/4\pi < \eta/s < 4/4\pi$ kind of convincing

Calculating Shear Viscosity @ Kinetics: $(\frac{\partial_{t} + \nu_{p} \cdot \partial_{y}}{\partial x}) + \frac{-C(f)}{\partial y}$ Then $=\int_{k_{1}/k_{2}}^{k_{1}}p_{k_{2}}p_{k}^{k_{2}}\left[\int_{0}^{L}f_{\varphi}\int_{0}^{L_{1}}(1+f_{\varphi})^{2}(1+f_{\varphi})-f_{\varphi}\int_{k_{1}}^{L_{1}}(1+f_{\varphi})^{2}(1+f_{\varphi})\right]$ $C[t]$ $\bigoplus = \begin{cases} d^3p \\ d^3p \end{cases}$ $\frac{1}{p^{k}} \rightarrow p^{\prime} k^{\prime} = \frac{[M]^{2}}{2p^{2k}zp^{\prime}2k^{\prime}}$ e.g. $[M]^{2} = 8g^{4}C_{A}^{2}S^{2}$ $\overline{\mathcal{O}}$ L \overline{k} $\overline{\mathsf{k}}$

Near Equilibrium: temperature variation and flow $\frac{d\vec{u}(x)}{dx}$, $\frac{T(x) = T_a + \delta T(x)}{x}$ (We and $T(x)$ $\frac{10}{9} = \frac{1}{6}$ (p) + 8f $f_{e} = \frac{1}{e^{(E_{p} - \vec{p} \cdot \vec{u}(x))/T(x)} - 1} \approx n_{p} + n_{p} (1 + n_{p}) \left[\frac{\vec{p} \cdot \vec{u}}{T_{p}} + \frac{E_{p} \sin \vec{u}}{T_{p}} \right]$ 2) We want to know off - first viscous correct · Proportional Strains < d'une de l'others (ignore fornon $8f(\rho) = n_{\rho}(1+n) x_{\rho}$ $Sf(\rho) = n_{\rho}(1+n_{\rho}) \hat{p}^{\dagger} \hat{p}^{\dagger} \hat{q} \times x_{1} + y_{1}y_{2}$ Now $T^{i3} = p\, \hat{\xi^{i3}} - \eta \hat{\xi^{i}} \hat{\xi^{i}} = \int_{p}^{p} \xi + \hat{\xi} f$ $\eta = 2 \int_{15}^{1} n_{\rho}(1+n_{\rho}) X(\rho)$

Now $f_{e} = f_{e} \cdot \delta f$ $\left[\frac{\partial_{t} + v_{P} \Omega}{\partial x} \right] f_{e} = C [f_{e} + 8f]$ $C[f_e]=0$ Wark:
1900 Wese Eom to wrete time derives as spatial derives 2 Thermodynamic identities 1 Detailed Balance $n_p n_k (1 + n_p) (n + n_k)$ = P_{g} , $P_{k}'(1+n)(1+n_{k})$ P_{pk} \rightarrow $p'k'$ Find an equation for x (...) $Q_i u^i + p_i^i p_i^j \langle Q_i u_j \rangle = - \int p_k \rightarrow p' k'^i \frac{n_i n_k (1 + n_{i'}) (1 + n_{i'})}{\sqrt{\frac{p_k^i n_i^j (1 + n_{i'}) (1 + n_{i'})}{\sqrt{\frac{p_k^i n_{i'}}{2\$ General Structure: A matrix eqn for x = $\rho^i P^{\delta}$ $\langle \partial_i u_j \rangle = C_{\rho \bar{P}} \gamma_{\bar{P}}$ Numerically invert matrix equ determiner X2

QCD Scattering Hadronic Phase: 40 dE $rac{E}{C_{m}}$ $\overline{\Pi}$ Mostly known experimentally - pretty robust 7 computed by Prakash et al ~ 1992

High temperature: Fitze 10 $\frac{d\sigma}{d\Omega}\propto\frac{q^{4}C_{A}^{2}}{\theta^{4}}=-\text{Coulomb scattering}$ $\frac{\sigma_{tr}}{\tau} \times \int \frac{d\sigma}{d\Omega}$ (1-cosO) $d\Omega$ $\sigma_{\pi} \propto g^4 c_{\pi}^2 \log \Theta_{min}$ $\propto g^4C_A^2 \log T$ So shear viscosity has the form (More next time) $\frac{v}{s} = \frac{1}{\alpha_s^2}F(m_b/r)$ Computed by AMY (Arnold moore Val
 s depends on how regulate -- uncertainty depends on how to get the scale uncertain $\frac{2}{5}$ = 0.22 $\left(\frac{0.5}{\alpha_c}\right)^2$

$$
0.36\left(\frac{\eta/s}{0.3}\right)\left(\frac{1\,\text{fm}}{\tau_o}\right)\left(\frac{300\,\text{MeV}}{T_o}\right)\ll 1
$$

Now interpret soft coulomb scattering: -> gives nise to a random $\frac{1}{x^{2}} + \frac{1}{x^{3}} + \frac{1}{x^{4}} - \frac{1}{x^{4}}$ $2 t v_p 2 8f$ $\begin{array}{c|c} \hline \textbf{v} & \textbf{v} \end{array}$ Approx $x_{p'} = \frac{x}{p} + \frac{7}{9} \frac{\partial x}{\partial p} + \frac{1}{2} \frac{7}{9} \frac{\partial}{9} \frac{\partial x}{\partial p \partial p^3}$ momentum diffusion equ $\frac{2}{3}$ fort $\frac{2}{2p^2}$ of $(1+p)^2$ $\frac{2}{p^3}$ transverse nomentum diffusion coefficient

Here 9 \overline{C} mean 497 length $>$ per = $\int_{\frac{1}{9}k}^{\infty} |m|^{2} n_{k}(1+n_{k}) \times \frac{1}{9}^{2}$ $\frac{q^{2}}{q^{2}}$ $n;$ $\frac{q^{4}C_{A}^{2}T^{3}log(\frac{T}{m_{D}})}{12\pi}$ $\frac{1}{9}$ sot $\frac{1}{9}$ $0.92 \frac{T^3}{6}$

Comments · So it compling is too strong sach that
the Debye sector is non perturbative - at least
we can parametrize @ one number
• Get q from experiment? · Ads?