The Spin Ices

- The Spin Ices are the insulating compounds $(Ho, Dy)₂(Ti, Sn)₂O₇$ where the magnetic ions (Ho,Dy) sit on a pyrochlore lattice
- Low energy degrees of freedom are spins with a strong easy axis anisotropy that points in the local [111] direction (locally Ising – 4 different orientations).
- The spins are classical and interact dominantly via their dipolar interaction

$$
\mathcal{H} = \mathcal{H}_{nn} + \frac{\mu_0}{4\pi} \sum_{ij} \frac{\vec{\mu}_i \cdot \vec{\mu}_j - 3(\vec{\mu}_i \cdot \hat{r}_{ij})(\vec{\mu}_i \cdot \hat{r}_{ij})}{r_{ij}^3}
$$

Pyrochlore lattice

Dipole \approx pair of opposite charges ($\mu = qa$):

• Sum over dipoles \approx sum over charges:

$$
\mathcal{H}_{ij} = \sum_{m,n=1}^2 v(r_{ij}^{mn})
$$

• $v \propto q^2/r$ is the usual Coulomb interaction (regularised):

$$
v(r_{ij}^{mn}) = \begin{cases} \mu_0 q_i^m q_j^n / (4\pi r_{ij}^{mn}) & i \neq j \\ v_o(\frac{\mu}{a})^2 = \frac{J}{3} + 4\frac{D}{3}(1 + \sqrt{\frac{2}{3}}) & i = j, \end{cases}
$$

Origin of the ice rules

Choose $a = a_d$, separation between centres of tetrahedra

Resum tetrahedral charges $Q_{\alpha} = \sum_{r_1^m \in \alpha} q_i^m$.

$$
\mathcal{H} \approx \sum_{ij}^{mn} v(r_{ij,mn}) \longrightarrow \sum_{\alpha\beta} V(r_{\alpha\beta}) = \begin{cases} \frac{\mu_0}{4\pi} \frac{Q_{\alpha} Q_{\beta}}{r_{\alpha\beta}} & \alpha \neq \beta \\ \frac{1}{2} v_{\alpha} Q_{\alpha}^2 & \alpha = \beta \end{cases}
$$

• Ice configurations ($Q_{\alpha} \equiv 0$) degenerate \Rightarrow Pauling entropy!

• Pauling estimate of ground state entropy $S_0 = \ln N_{qs}$.

$$
N_{gs} = 2^N \left(\frac{6}{16}\right)^{N/2} \Rightarrow S_0 = \frac{1}{2} \ln \frac{3}{2}
$$

• microstates vs. constraints; N spins, $N/2$ tetrahedra

Conservation law

Orient bonds on the dual diamond lattice from one sublattice to the other

 $\sum S^{a}(\mathbf{x})=0$

 $\nabla \cdot \vec{B}^a = 0$

Define a vector field on bonds

$$
\vec{B}^a(\mathbf{x}) = S^a(\mathbf{x})\widehat{e}(\mathbf{x})
$$

on each tetrahedron in grounds states, implies at each dual site

Second ingredient: rotation of closed loops of **B** connects ground states Which implies large density of states near $B_{av} = 0$

Using these "magnetic" fields we can construct a coarse grained partition function

$$
\sum_{\text{pin configs}} \text{``1''} \to \sum_{\vec{B}^a(\mathbf{x})} \delta(\nabla \cdot \vec{B}^a) e^{-\frac{K}{2} \int d^3x \sum_a (\vec{B}^a)^2}
$$

Solve constraint $\vec{B} = \nabla \times \vec{A}$ to get Maxwell theory for gauge field \rightarrow \rightarrow \rightarrow

$$
\sum_{\vec{A}^a(\mathbf{x})} e^{-\frac{K}{2} \int d^3x \sum_a (\nabla \times \vec{A}^a)^2}
$$

Leads to dipolar spin correlations.

S

$$
S_{[hhk]} = \frac{32\left(\cos(\frac{q_x}{4}) - \cos(\frac{q_z}{4})\right)^2 \sin(\frac{q_x}{4})^2}{5 - \cos(q_x) - 4\cos(\frac{q_x}{2})\cos(\frac{q_z}{2})}.
$$

Flipping spin creates two ice rule violating tetrahedra which can be separated to infinite distance as finite free energy cost – fractionalized monopoles. These are monopoles in two senses.

First, they are charged under the emergent gauge field. \rightarrow

$$
\nabla \bullet \vec{B} = \pm 2
$$

The entropy of the background spins depends upon their separation and leads to an entropic Coulomb interaction between monopoleantimonopole pair:

$$
F(\vec{r}) = -\#\frac{T}{r}
$$

Second, the are "charged" under the magnetostatic gauge field. More precisely we see that in the dumbbell model they have an energetic Coulomb interaction with charge q introduced earlier

Deconfined magnetic monopoles

Dumbell Hamiltonian gives

$$
E(r)=-\frac{\mu_0}{4\pi}\frac{q_m^2}{r}
$$

- magnetic Coulomb interaction
- deconfined monopoles
	- charge $q_m = 2\mu/a =$ $(2\mu/\mu_b)(\alpha\lambda_C/2\pi a_d)q_D$ $\approx q_D/8000$
	- monopoles in H , not B

Experiments: I

Macroscopic low temperature entropy (*Ramirez et al, 1999*)

II: Interacting Coulomb Liquid

Dirac Strings and Magnetic Monopoles in Spin Ice $Dy_2Ti_2O_7$

D. J. P. Morris,^{1*} D. A. Tennant,^{1,2*} S. A. Grigera,^{3,4*} B. Klemke,^{1,2} C. Castelnovo,⁵ R. Moessner,⁶ C. Czternasty,¹ M. Meissner,¹ K. C. Rule,¹ J.-U. Hoffmann,¹ K. Kiefer,¹ S. Gerischer,¹ D. Slobins R. S. Perry⁷

III: Measuring the gauge fluctuations

