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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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[bj , b
†
k] = δjk

The Superfluid-Insulator transition

Boson Hubbard model

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Insulator (the vacuum) 
at large repulsion between bosons
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Excitations of the insulator:
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Excitations of the insulator:

S =
�

d2rdτ
�
|∂τψ|2 + v2|�∇ψ|2 + (g − gc)|ψ|2 +

u

2
|ψ|4

�

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant
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Quantum critical transport 

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
Q2

h
× [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Conductivity
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Quantum critical transport 
Transport co-oefficients not determined

by collision rate, but by
universal constants of nature

Momentum transport
η

s
≡

viscosity
entropy density

=
�

kB
× [Universal constant O(1) ]
P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett.  94, 11601 (2005)
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Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
+

v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.

Also, we have σ(ω → ∞) = σ∞, associated with the den-
sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFT3.

Quantum critical transport 
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices
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Boltzmann theory of bosons
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Boltzmann theory of vortices

σ∞1/τcv

1/σ0v

Re[σ(ω)]

ω
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Boltzmann theory of bosons
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

; Σ → a universal functionσ =
Q2

h
Σ

�
�ω
kBT

�

O(N)

O(1/N)

Re[σ(ω)]
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AdS/CFT correspondence

AdS4-Schwarzschild black-brane

S =
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�
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AdS/CFT correspondence

A 2+1 
dimensional 
system at its 

quantum 
critical point
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AdS/CFT correspondence
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quantum 
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AdS/CFT correspondence

A 2+1 
dimensional 
system at its 

quantum 
critical point

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Friction of quantum 
criticality = waves 

falling into black brane 

AdS4-Schwarzschild black-brane
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AdS4 theory of “nearly perfect fluids”

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.
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To leading order in a gradient expansion, charge transport in
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Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |γ| < 1/12.
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

• The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

• The γ < 0 result can be interpreted
as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• Stability constraints on the effective
theory (|γ| < 1/12) allow only a lim-
ited ω-dependence in the conductivity
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• Consider an infinite, continuum,

translationally-invariant quantum system

with a globally conserved U(1) charge Q
(the “electron density”) in spatial dimen-

sion d > 1.

• Describe zero temperature phases where

�Q� varies smoothly as a function of µ

(the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

Compressible quantum matter
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 Turning on a chemical potential on a CFT

Massless Dirac fermions
(e.g. graphene)

µ = 0
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 Turning on a chemical potential on a CFT

Massless Dirac fermions
(e.g. graphene)

Compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface
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The Fermi surface

Area A

This is the locus of zero energy singularities in momentum space
in the two-point correlator of fermions carrying charge Q.

G−1
fermion(k = kF , ω = 0) = 0.

Luttinger relation: The total “volume (area)” A enclosed by the
Fermi surface is equal to �Q�. This is a key constraint which allows
extrapolation from weak to strong coupling.
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Another compressible state is the solid 
(or “Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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The only other familiar compressible 
state is the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter
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Compressible quantum matter

Conjecture: All compressible states which preserve
translational and global U(1) symmetries must have
Fermi surfaces, but they are not necessarily
Fermi liquids.
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• Such states obey the Luttinger relation

�

�

q�A� = �Q�,

where the �’th Fermi surface has fermionic quasiparticles with
global U(1) charge q� and encloses area A�.

• Non-Fermi liquids have quasiparticles coupled to deconfined gauge
fields (or gapless bosonic modes at quantum critical points).

Compressible quantum matter
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The Hubbard Model

H = −
�

i<j

tijc
†
iαcjα + U

�

i

�
ni↑ −

1

2

��
ni↓ −

1

2

�
− µ

�

i

c
†
iαciα

tij → “hopping”. U → local repulsion, µ → chemical potential

Spin index α =↑, ↓

niα = c
†
iαciα

c
†
iαcjβ + cjβc

†
iα = δijδαβ

ciαcjβ + cjβciα = 0
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AdS4-Schwarzschild black-brane

S =

�
d4x

√
−g

�
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2κ2

�
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6
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��
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+

++

+
+

+
Electric flux

�Q�
�= 0

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4e2
FabF

ab

�

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

AdS4-Reissner-Nordtröm black-brane
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+

++

+
+

+
Electric flux

�Q�
�= 0

At T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdS2 ×R2

ds2 =
L2

6

�
−dt2 + dr2

r2

�
+ dx2 + dy2

AdS4-Reissner-Nordtröm black-brane
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Interpretation of AdS2 

CFT on graphene
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Interpretation of AdS2 

Add “matter” one-at-a-time: honeycomb lattice with a vacancy.

There is a zero energy quasi-bound state with |ψ(r)| ∼ 1/r.
We represent this by a localized fermion field χα(τ).
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S =

�
d3xLCFT −

�
dτLimp

Limp = χ†
α
∂χα

∂τ
− κχ†

ασ
a
αβχβ ϕ

a(r = 0, τ)

AdS2: “Boundary” conformal field theory obtained
when κ flows to a fixed point κ → κ∗.

S. Sachdev, C. Buragohain, and M. Vojta, Science 286, 2479 (1999)

CFT

Interpretation of AdS2 

Vacancy in 
graphene
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Solution in large N limit shows low energy theory
of impurity is described by AdS2

S =

�
d4xLSYM +

�
dτ Limp

Limp = χ†
b

∂χb

∂τ
+ iχ†

b

�
(Aτ (0, τ))

b
c + vI (φI(0, τ))

b
c

�
χc

CFT

Interpretation of AdS2 

Superspin 
coupled to 

SYM4

S. Kachru, A. Karch, and S. Yaida, Phys. Rev. D 81, 026007 (2010)
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Interpretation of AdS2 X R2

Solve electronic models in the limit of large 
number of nearest-neighbors

Bethe 
lattice
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Bethe 
lattice

Interpretation of AdS2 X R2

Theory is expressed as a “quantum spin’’ coupled 
to an “environment”: 

solution is often a boundary CFT in 0+1 dimension
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solution is often a boundary CFT in 0+1 dimension

Quantum spin
Bethe 
lattice
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Interpretation of AdS2 X R2

Theory is expressed as a “quantum spin’’ coupled 
to an “environment”: 

solution is often a boundary CFT in 0+1 dimension

Environment

Quantum spin
Bethe 
lattice
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Interpretation of AdS2 X R2

Exponents are determined by self-consistency 
condition between “spin” and “environment”.

Environment

Quantum spin
Bethe 
lattice
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Artifacts of AdS2 X R2

• The large-neighbor-limit solution matches with those of the
AdS2 ×R2 holographic solutions:

– A non-zero ground state entropy.

– Single fermion self energies are momentum independent,
and their singular behavior is the same on and off the
Fermi surface.

– A marginal Fermi liquid spectrum for fermionic quasi-
particles (for the holographic solution, this requires tun-
ing a free parameter).

– The low energy sector has conformally invariant corre-
lations.

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).
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+

++

+
+

+
Electric flux

�Q�
�= 0

AdS4-Reissner-Nordtröm black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4e2
FabF

ab

�

Near-horizon AdS2 X R2
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IR Lifshitz
metric

+
+

+

+

+ +
Electric flux

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4e2
FabF

ab + Lmatter

�

Sufficiently light matter undergoes Schwinger pair-creation, 
back-reacts on the metric, the horizon may disappear, 

and the charge density is delocalized in the bulk spacetime

Beyond AdS2 X R2
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Beyond AdS2 X R2

Kachru, Liu, Mulligan; Horowitz, Roberts; Gubser, Nellore; Hartnoll, 
Polchinski, Silverstein, Tong; Hartnoll, Tavanfar; Charmousis, Gouteraux, 
Kim, Kiritsis, Meyer; Goldtein, Iizuka, Kachru, Prakash, Trivedi, Westphal;
Herzog, Klebanov, Pufu, Tesileanu

• The metric often has a “Lifshitz” form in the IR:

ds2 = −dt2

r2z
+

dr2 + dx2 + dy2

r2

with dynamic scaling exponent z. This possibly indicates Landau-
damped transverse gauge modes. The AdS2 × R2 case corre-
sponds to z → ∞.
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Beyond AdS2 X R2

Gubser; Hartnoll, Herzog, Horowitz; Nishioka, Ryu, Takayanagi; 
Gauntlett, Sonner, Wiseman; Gubser, Pufu, Rocha; Denef, Hartnoll; 
Gusber, Herzog, Pufu, Tesileanu; 
Faulkner, Horowitz, McGreevy, Roberts, Vegh;
Erdmenger, Grass, Kerner, Ngo; Ammon, Erdmenger, Kaminski, O’Bannon

• For bosons, back-reaction on metric appears when bosons con-
dense, leading to a holographic description of superfluids. The
Lifshitz metric is mysterious, indicating the presence of addi-
tional low energy modes not found in traditional superfluids.

• The metric often has a “Lifshitz” form in the IR:

ds2 = −dt2

r2z
+

dr2 + dx2 + dy2

r2

with dynamic scaling exponent z. This possibly indicates Landau-
damped transverse gauge modes. The AdS2 × R2 case corre-
sponds to z → ∞.
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Beyond AdS2 X R2

• For fermions, multiple Fermi surfaces are obtained, whose to-
tal enclosed area is consistent with the Luttinger count. This
appears to be a Fermi liquid, but the Lifshitz metric is still
mysterious.

Arsiwalla, de Boer, Papadodimas, Verlinde; 
Hartnoll, Hofman, Vegh; Iqbal, Liu, Mezei;
Cubrovic, Schalm, Sun, Zaanen

• The metric often has a “Lifshitz” form in the IR:

ds2 = −dt2

r2z
+

dr2 + dx2 + dy2

r2

with dynamic scaling exponent z. This possibly indicates Landau-
damped transverse gauge modes. The AdS2 × R2 case corre-
sponds to z → ∞.
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum critical 
points

 The description is far removed from, and complementary 
to, that of the quantum Boltzmann equation which builds on 
the quasiparticle/vortex picture.

 Prospects for experimental tests of frequency-dependent, 
non-linear, and non-equilibrium transport   
 

Conclusions

Quantum criticality and conformal field theories 
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 The Reissner-Nordström solution provides the simplest 
holographic theory of a compressible state

 The RN solutions has many problems: finite ground-state 
entropy density, violation of Luttinger relation.

 Condensation of a scalar leads to the holographic theory of 
a superfluid. The IR metric has a Lifshitz form, indicating the 
presence of neutral gapless excitations not found in a 
superfluid.

Conclusions

Compressible quantum matter
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 Fermion back-reaction leads to a Fermi liquid with many 
Fermi surfaces which do obey the Luttinger relation. 
However, the IR Lifshitz metric, and the very small Fermi 
wavevectors appear to be unwanted artifacts.

 Needed: a complete holographic theory of non-Fermi 
liquids and “fractionalized” Fermi liquids, obeying the Luttinger 
relations, to describe experiments on “strange metals”.  
  

Conclusions

Compressible quantum matter
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(a) Pnictide
(b) e-doped cuprate
(c) h-doped cuprate
(d) organic 
superconductor
(e) Sr2Ru3O7

Plots of the
resistivity
exponent
d ln(ρ)

d lnT

Umklapp scattering
 likely crucial

S. Sachdev and B. Keimer, 
Physics Today, February 2011, page 29
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