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Finite temperature

AdS was scale invariant. sol’n dual to vacuum of CFT.
saddle point for CFT in an ensemble with a scale (some relevant

perturbation) is a geometry which approaches AdS near the bdy:

ds2 =
L2

z2

(
−f (z)dt2 + d~x2 +

dz2

f (z)

)
f = 1− zd

zdH

When the emblackening factor f
z→0→ 1 this is the Poincaré AdS metric.

[exercise: check that this solves the same EOM as AdS.]

It has a horizon at z = zH , where the emblackening factor
f ∝ z − zH
Events at z > zH can’t influence the boundary near z = 0:

z=0

t

null

geodesics

z

z=z
H



Physics of horizons
Claim: geometries with horizons describe thermally mixed states.
Why: Near the horizon (z ∼ zH),

ds2 ∼ −κ2ρ2dt2 + dρ2 +
L2

z2
H

d~x2 ρ2 ≡ 2

κz2
H

(z − zH) + o(z − zH)2

κ ≡ 4
|f ′(zH )| = d/2zH is called the ‘surface gravity’

Continue this geometry to euclidean time, t → iτ :

ds2 ∼ κ2ρ2dτ2 + dρ2 +
L2

z2
H

d~x2

which looks like IRd−1 × IR2
ρ,κτ with polar coordinates ρ, κτ .

There is a deficit angle in this plane unless we identify

κτ ' κτ + 2π.

A deficit angle would mean nonzero Ricci scalar curvature, which would mean

that the geometry is not a saddle point of our bulk path integral.

So: T = κ/(2π) = 1/(πzH).
(Note: this is the temperature of the Hawking radiation.)



Static BH describes thermal equilibrium
This identification on τ also applies at the boundary. If

ds2
bulk

z→0
≈ dz2

z2
+

L2

z2
g (0)
µν dx

µdxν

then, up to a factor, the boundary metric is g
(0)
µν .

This includes making the euclidean time periodic.

A =

∫
z=zH ,fixed t

√
gdd−1x =

(
L

zH

)d−1

V

The Bekenstein-Hawking entropy is

S =
A

4GN
=

Ld−1

4GN

V

zd−1
H

=
N2

2π
(πT )d−1V =

π2

2
N2VT d−1 .

The Bekenstein-Hawking entropy density is

sBH =
SBH
V

=
aBH
4GN

.

where aBH ≡ A
V is the ‘area density’ of the black hole.



QFT thermodynamics from black holes cont’d
how to think about this:

ZCFT (T ) ≈ e−S
eucl
bulk[g ]

g is the saddle with the correct periodicity of eucl time at the bdy.

(warning: boundary terms in action are important – see below)

ZCFT (T ) = e−βF

− F

V
=

L2

16πGN

1

z4
H

=
π2

8
N2T 4.

with N = 4 values of parameters, F (λ =∞) = 3
4F (λ = 0).

g2N

1

1

4
3π2

2
N2T 3V

S

checks:

• SBH
horizon

= − ∂F
∂T

integral over all spacetime

(relatedly: first law of thermo holds)

• cV > 0 for AdS BH. (unlike schwarzchild in asymptotically flat space!)

• uniqueness of stationary BH
(‘no hair’)

!
few state variables

in eq thermo



Thermodynamics from gravity: boundary terms

ZCFT ≡ e−βF = e−Sbulk[g ]

g is the euclidean saddle-point metric(s).

Sbulk = SEH + SGH + Sct .

SEH = − 1

16πGN

∫
dd+1x

√
g

(
R +

d(d − 1)

L2

)
Two kinds of boundary terms:

def of γ: ds2 z→0
≈ L2 dz

2

z2
+ γµνdx

µdxν .

Sct =

∫
∂M

ddx
√
γ

2(d − 1)

L
+ . . .

local, intrinsic boundary counter-term (no normal derivatives).
just like for scalar correlators. · · · ∝ intrinsic curvature of bdry metric.



Gibbons-Hawking term

SGH : ‘Gibbons-Hawking’ term is an extrinsic boundary term
like

∫
∂AdS

φn · ∂φ for scalar.

IBP in the Einstein-Hilbert term to get the EOM :

δSEH = EOM +

∫
∂AdS

γµνn · ∂δγµν ,

but we want a Dirichlet condition on the metric: δγµν = 0
δSGH cancels the ∂δγµν bits.

SGH = −2

∫
∂M

ddx
√
γΘ

Θ: extrinsic curvature of the boundary

Θ ≡ γµν∇µnν =
nz

2
γµν∂zγµν .

nA is an outward-pointing unit normal to the boundary z = ε.



Stress tensor expectation value

GKPW : 〈Tµν〉 =
2
√
γ

δ

δγµν
Sbulk[g ].

CFT: Tµ
µ = 0 modulo scale anomaly

In thermal eqbm: T t
t = −E , T x

x = P E = d P



Approach to equilibrium

bulk picture: dynamics of gravitational collapse.
dissipation: energy falls into BH [Horowitz-Hubeny, 99]

• small-amplitude perturbations: quasinormal modes of BH
• far-from equilibrium processes: [Chesler-Yaffe, 08, 09] (PDEs!)

input: -3 -2 -1 1 2 3
Τ

1.0

1.2

1.4

gxxHΤL

output:

black hole forms from vacuum initial conditions.

brutally brief summary: all relaxation timescales τth ∼ T−1.
• Lesson: In these models, breakdown of hydro in this model is not
set by higher-derivative terms, but from non-hydrodynamic modes.



Example: η/s
Shear viscosity is a transport coefficient like conductivity.
source: T x

y response: T x
y .

η = lim
ω→0

1

iω
GR
T x
y T

x
y

(k = 0, ω)

〈T x
y 〉 = iωηγxy → must study fluctuations of metric

[compute following Iqbal-Liu 08] Assume a bulk metric of the form

ds2 = gtt(z)dt2 + gzz(z)dz2 + gij(z)dx idx j

such that

1. gAB depend only on z

2. asymptotically AdS near z → 0

3. Rindler horizon at z = zH

gtt
z→zH→ −2κ(zH − z) gzz

z→zH→ 1

2κ(zH − z)
.



Shear fluctuations of the metric

Consider S = Sgravity −
1

2

∫
dd+1x

√
g

1

q(z)
gAB∂Aφ∂Bφ

Claim: fluctuations of φ ≡ hxy in Einstein gravity are governed by

this action with 1
q(z) = 1

16πGN
. [lots of work by Son, Starinets, Policastro, Kovtun, Buchel,

J. Liu...]

Recall: 〈O(xµ)〉QFT = lim
z→0

Πφ(z , xµ) (m=0)

=⇒ η = lim
ω→0

lim
z→0

lim
k→0

(
Π(z , kµ)

iωφ(z , kµ)

)
Π ≡ ∂L

∂ (∂zφ)
=

√
g

q(z)
g zz∂zφ.

Compute this in two steps:
I Find behavior near horizon.
I Use wave equation to evolve to boundary.

0 =
δSφ

δφ(kµ, z)
∝ [g ijkikj + g ttω2 − 1

√
g
∂z (g zz√g∂z)]φ(kµ, z)

We can safely set ~k = 0.



Near horizon

Assumption (3) =⇒ z = zH is a regular singular point of the
wave equation.
Try φ(k , z) = (z − zH)α.

φ(k, z) ' (z − zH)±
iω

4πT in/out.

=⇒ At horizon: Π(zH , k) =

[
1

q(z)

√
|g |

gzz |gtt |
iωφ(z , k)

]
z=zH

.



Propagate to boundary

EOM: ∂zΠ ∝ kµkνg
µνφ

ω→0,~k→0→ 0.

def of Π: ∂z(φω) =
q

√
gg zz

ωΠ
ω→0,ωφ fixed→ 0.

=⇒ Π

ωφ
|z=0 =

Π

ωφ
|z=zH ‘membrane paradigm’

=⇒ η =
1

q(zH)

√
|g |

gzz |gtt |
.

Entropy density: s =
a

4GN
=

1

4GN

√
|g |

gzz |gtt |

=⇒ η

s
=

1

4π
.



Fluid/gravity duality

Here we’ve computed the value of a hydro transport coeff of the CFT plasma.

More generally: perturb BH horizon by local boost uµ(x), slowly
varying.
[Janik-Peschanski,Bhattacharyya et al...]: In an expansion in derivatives of T (x), uµ(x),

sol’ns of Einsten eqns
of this form

↔ soln’s of Navier-Stokes eqns
with particular transport coeffs

personal disappointment: holographic duality doesn’t average over
turbulent flows.





Finite Density States

To describe low-temperature states of matter, we need more
ingredients.
Suppose the CFT has a conserved U(1) current.

→ massless gauge field Aµ in bulk.

Wilson-natural starting point: ∆Sbulk = − 1

4g2
F

∫
dd+1x

√
gFABF

AB .

Max eqn : 0 =
δSbulk
δAC

∝ 1
√
g
∂A

(√
ggABgCDFBD

)
Max eqn near AdS bdy: A ∼ A(0)(x) +

(z
L

)d−2
A(1)(x)

in particular, At ∼ µ+
(z
L

)d−2
ρ.

ΠAt =
∂L

∂ (∂zAt)
= Ez = A(1) = ρ.



Charged black holes in AdS
saddle point w this BC (and no other matter): AdS Reissner-Nördstrom.

ds2 =
L2

z2

(
−f dt2 + d~x2 +

dz2

f

)
, At = µ−

(
z

z0

)d−2

µ

f (z) = 1−Mzd + Qz2d−2 note: multiple zeros

At T � µ the near-horizon geometry of black hole is AdS2×Rd−1.

ds2 z0→z1∼ −a(z−z0)2dt2+b
dz2

(z − z0)2
+
d~x2

z2
0

=

︷ ︸︸ ︷
−ζ2dt2 +

dζ2

ζ2
+
d~x2

z2
0

The conformal invariance of this metric is emergent.
The bulk geometry is a picture of the RG flow from the CFTd to this NRCFT.

boundary

d+1
AdS

d−1

xRAdS
2

horizon

r−1<<1 r>>1ω � µ ω � µ
AdS/CFT: low-ω physics determined by dual IR CFT.
[Much more on this in Tom Faulkner’s lectures]



Other observables, other models

So far: thermodynamics, correlators of local ops.
Other observables have natural holographic realizations:
gauge-theory-specific: Wilson loops, external quarks
very universal: entanglement entropy

So far: CFTs and their relevant deformations (e.g. by T , µ).
We can realize holographically different UV behavior:
Galilean CFTs, Lifshitz theories.



Comment on entanglement entropy

L

If H = HA ⊗HA (e.g. in local theory, A is a region of space)

If ignorant of A → ρA = tr HA
ρ e.g. ρ = |Ω〉〈Ω|.

SA ≡ −tr AρA ln ρA. (notoriously hard to compute)

• ‘order parameter’ for topologically ordered states
in 2+1d, S(L) = γ L

a
+ Stop [Levin-Wen, Preskill-Kitaev 05]

• scaling with region-size characterizes simulability:[Verstraete,Cirac,Eisert...]

boundary law ↔ matrix product state ansatz (DMRG) will work.

[Ryu-Takayanagi] SA = extremum∂M=∂A
area(M)

4GN
outcome from holography:
which bits are universal in CFT? in d space dims,

SA=

p1

(
L
a

)d−1
+p3

(
L
a

)d−3 · · ·+

{
pd−1

L
a + c̃ , d : even

pd−2

(
L
a

)2
+ c̃ log (L/a) , d : odd

In fact, the area law coeff is also a universal measure of # of dofs, can be

extracted from mutual information SA + SB − SA∪B for colliding regions. [Swingle]



Other observables, other models

So far: thermodynamics, correlators of local ops.
Other observables have natural holographic realizations:
gauge-theory-specific: Wilson loops, external quarks
very universal: entanglement entropy

• entanglement RG [G. Vidal]:
a real space RG which keeps track of entanglement

builds an extra dimension

ds2 ?
= dS2

[Swingle 0905.1317, Raamsdonk 0907.2939]

So far: CFTs and their relevant deformations (e.g. by T , µ).
We can realize holographically different UV behavior: Galilean
CFTs, Lifshitz theories.



Strongly-coupled NRCFT

The fixed-point theory (“fermions at unitarity”) is a
strongly-coupled nonrelativistic CFT (‘Schrödinger symmetry’)

[Mehen-Stewart-Wise, Nishida-Son].
Universality: it also describes neutron-neutron scattering.
Two-body physics is completely solved.

Many body physics is mysterious.

Experiments: very low viscosity, η
s ∼

few
4π [Thomas, Schafer...]

−→ strongly coupled.

AdS/CFT?
Clearly we can’t approximate it as a relativistic CFT.
Different hydro: conserved particle number.



A holographic description?

Method of the missing box

AdS : relativistic CFT

“Schrodinger spacetime” : galilean-invariant CFT
A metric whose isometry group is the Schrödinger group:
[Son; K Balasubramanian, JM 0804]

L−2ds2 =
2dξdt + d~x2 + dr2

r2
− 2β2 dt

2

r4

This metric solves reasonable equations of motion.

Holographic prescription generalizes naturally.

But: the vacuum of a galilean-invariant field theory is extremely boring:
no antiparticles! no stuff!
How to add stuff?



A holographic description of more than zero atoms?

A black hole (BH) in Schrödinger spacetime.
[A. Adams, K. Balasubramanian, JM; Maldacena, Martelli, Tachikawa; Herzog, Rangamani, Ross 0807]

Here, string theory was extremely useful:
A solution-generating machine named Melvin [Ganor et al]

insert string vacuum

here

χ
y

OUT

β

MELVIN

IN

IN: AdS5 × S5 OUT: Schrödinger ×S5

IN: AdS5 BH ×S5 OUT: Schrödinger BH × squashed S5

[since then, many other stringy realizations: Hartnoll-Yoshida, Gauntlett, Colgain, Varela, Bobev, Mazzucato...]



Results so far

This black hole gives the thermo and hydro of some NRCFT
(‘dipole theory’ [Ganor et al 05] ).

Einstein gravity =⇒ η

s
=

1

4π
.

Satisfies laws of thermodynamics, correct scaling laws, correct kubo relations.

[Rangamani-Ross-Son 09, McEntee-JM-Nickel, unpublished]

But it’s a different class of NRCFT from unitary fermions:

F ∼ −T 4

µ2
, µ < 0

This is because of an
Unnecessary assumption: all of Schröd must be realized geometrically.
We now know how to remove this assumption, can find more realistic models.



Concluding comments



Remarks on the role of supersymmetry (susy)

I susy constrains the form of interactions.
fewer candidates for dual.

I in susy theories, ∃ more coupling-independent quantities,
hence ∃ more checks.

I susy allows lines of fixed points (e.g. N = 4 SYM)
coupling = dimensionless parameter

I for these applications, susy is broken by finite T , µ, anyway.
it’s not clear what influence it has on the resulting states.
one implication: a phonino pole

[Lebedev-Smilga, Kovtun-Yaffe, seen holographically by Gauntlett-Sonner-Waldram]



Remarks on the role of string theory
1. What are consistent ways to UV complete our gravity model?

I So far, no known constraints that aren’t visible from EFT. And if we

can’t find the physics we want in any gravity model ...

I Suggests interesting resummations of higher-derivative terms, protected
by stringy symmetries.

e.g. the DBI action LDBI ∼
√

1− F 2 is ‘natural’ in string theory because

its form is protected by the T-dual Lorentz invariance.

2. What is a microscopic description of the dual QFT?

I Such a description is crucial for the detailed checks that make us believe

the duality.

I A weak coupling limit needn’t exist (isolated fixed points are generic).

I A Lagrangian description needn’t exist

(e.g. minimal models) gravity plus matter in AdS provides a much more

direct construction of CFT.

I Honesty: Any Lmicro that we would get from string theory is so far from

LHubbard anyway that it isn’t clear how it helps.



Public service announcement

Please practice holography
responsibly.



Please Practice Holography Responsibly

Holography gives us tractable toy models of strongly correlated systems.

Toy models are only useful if we ask the right questions.

I critical exponents depend on ‘landscape issues’
(parameters in bulk action)

I thermodynamics doesn’t distinguish weak and strong coupling
(in examples: N = 4 SYM, lattice QCD)

I transport is very different
transport by weakly-interacting quasiparticles is less effective(η

s

)
weak

∼ 1

g4 ln g
�

(η
s

)
strong

∼ 1

4π
.

I far from equilibrium physics: ?

I source of optimism: Weisskopf story.



The end

Thanks for listening.


