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Recap



gravity in spacetimesd+1

with timelike asymptotic boundaries
! QFTd

important special case:

gravity in AdSd+1 = d-dimensional conformal field theory (CFT)
isometries of AdSd+1 ! conformal symmetry

AdS : ds2 =
r 2

R2

(
−dt2 + d~x2

)
+ R2 dr 2
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The extra (‘radial’) dimension r = 1/z is the resolution scale.

fields in bulk ! (possibly-) running couplings

ZQFT [sources, φ0] ≈ e−N
2Ibulk[boundary conditions at r→∞]|saddle of Ibulk



A word about large N2

most prominent example: ’t Hooft limit of N × N matrix fields X .
physical operators are Ok = tr X k

this accomplishes several related things:

• 〈OO〉 ∼ 〈O〉〈O〉+ o
(
N−2

)
is the statement that something (the excitations created by O) behaves
classically.
• provides notion of single-particle states in bulk.
• makes saddle well-peaked Z ∼ e−N

2I

important comment:
this is just the best-understood class of examples.
in other examples, the # of dofs goes like Nb, b 6= 2.

I’ll always write N2 as a proxy for this large number.



An example of a theory with a known gravity dual

N = 4 SYM is a family of superconformal FTs.
The N = 4 SYM action is schematically

LSYM ∼ tr
(

F 2 + (DΦ)2 + iΨ̄Γ · DΨ + g 2[Φ,Φ]2 + igΨ̄[Φ,Ψ]
)

this gauge theory comes with 2 parameters:

a coupling constant λ = g 2N (with βλ ≡ 0)

an integer, the number of colors N.

N = 4 SYMN,λ = IIB strings in AdS5 × S5 of size λ, ~ = 1/N

[Maldacena 1997]

• large N makes gravity classical (improves saddle point, suppresses

splitting and joining of strings)

• strong coupling (large λ) makes the geometry big. (improves bulk

deriv. expansion)

‘IIB strings in ...’ specifies a list of bulk fields and interactions.
∃ infinitely many other examples of dual pairs [e.g. Hanany, Vegh et al...]



More dictionary
really a φa for every Oa in CFT. how to match?

1. organize into reps of conformal group
2. single-trace operators correspond to ‘elementary fields’ in the bulk.

states from multitrace ops (tr X k)2|0〉 — 2-particle states of φ.

3. simple egs fixed by symmetry:
• gauge fields in bulk Aµ – global currents Jµ in bdy

SQFT 3
∫

AµJµ (massless A! conserved J)

• def of QFT stress tensor: response to change in metric on
boundary SQFT 3

∫
δgµνTµν

energy momentum tensor: Tµν

global current: Jµ

scalar operator: OB

fermionic operator: OF

!

graviton: gab
Maxwell field: Aa

scalar field: φ
fermionic field: ψ .

boundary conditions on bulk fields ! couplings in field theory
e.g.: boundary value of bulk metric limr→∞ gµν

= source for stress-energy tensor Tµν

different couplings in bulk action ! different field theories



Next: a few technical slides from which we can confirm our
interpretation

u = RG scale

and see the machinery at work.



How to calculate

ZQFT [sources] ≈ e−N
2Ibulk[boundary conditions at z→0]|extremum of Ibulk

more explicitly:

ZQFT [sources, φ0] ≡ 〈e−
∫
φ0O〉CFT

≈ e−N
2Ibulk[φ|φ(z=ε)

?
=φ0]|φ solves EOM of Ibulk

As when counting dofs, we anticipate UV divergences
at the boundary z → 0,
cut off the bulk at z = ε
and set bc’s there. R
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Example: scalar probe

Simple example: scalar field in the bulk. Natural (covariant) action:

∆S [φ] = −K

2

∫
dd+1x

√
g
[
gAB∂Aφ∂Bφ+ m2φ2 + bφ3 + . . .

]
K, a normalization constant: assume the theory of φ is weakly coupled, K ∝ N2.

(
√
g =

√
| det g | =

(
L
z

)d+1
, gAB = δABz2 )

We will study fluctuations around the solution φ = 0, AdS .

(Recall: 〈OO〉 =
(

δ
δφ0

)2

lnZ |φ0 = 0︸ ︷︷ ︸ )

−→ ignore interactions of φ for now.
Integrate by parts:

S = −K

2

∫
∂AdS

ddx
√

g g zBφ∂Bφ−
K

2

∫ √
g φ
(
−�+ m2

)
φ+o(φ3)



From this expression we learn:

I the EOM for small fluctuations of φ is (−�+ m2)φ = 0
(An underline will indicate fields which solve the equations of motion.)

I If φ solves the equation of motion, the on-shell action

S [φ], Z ≡ e−S[φ]

is just given by the boundary term.

next: relate bulk masses and operator dimensions

∆(∆− d) = m2L2

by studying the AdS wave equation near the boundary.



Wave equation in AdS
translational invariance in d dimensions, xµ → xµ + aµ,

Fourier : φ(z , xµ) = e ikµx
µ

fk(z), kµxµ ≡ −ωt + ~k · ~x

0 = (gµνkµkν −
1
√

g
∂z(
√

gg zz∂z) + m2)fk(z)

=
1

L2
[z2k2 − zd+1∂z(z−d+1∂z) + m2L2]fk(z), (1)

we used gAB = (z/L)2δAB ,
√
g =

√
| det g | =

(
L
z

)d+1
.

Near boundary (z → 0), power law solns, (spoiled by the z2k2 term).
Try fk = z∆ in (1):

0 = k2z2+∆ − zd+1∂z(∆z−d+∆) + m2L2z∆

= (k2z2 −∆(∆− d) + m2L2)z∆,

and for z → 0 we get:

∆(∆− d) = m2L2 (2)

The two roots of (2) are ∆± = d
2 ±

√(
d
2

)2
+ m2L2.



Comments

∆± = d
2 ±

√(
d
2

)2
+ m2L2.
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I The solution proportional
to z∆− is bigger near z → 0. →
usually the source (‘non-normalizable’)

I ∆+ > 0 ∀ m: z∆+ always decays near
the boundary

I ∆+ + ∆− = d .

We want to impose boundary conditions that allow solutions.
Leading z → 0 behavior of generic solution: φ ∼ z∆− , we impose

φ(x , z)|z=ε
!

= φ0(x , ε) = ε∆−φRen0 (x),

where φRen0 is a renormalized source field.



Wavefunction renormalization of O (Heuristic but useful)
Suppose: (gµν

z≈ε
= dz2

z2 + γµνdx
µdxν defines the boundary metric γ .)

Sbdy 3
∫
z=ε

ddx
√
γ φ0(x , ε)O(x , ε)

=

∫
ddx

(
L

ε

)d

(ε∆−φRen0 (x))O(x , ε),

where we have used
√
γ = (L/ε)d .

Demanding that this be finite as ε→ 0:

O(x , ε) ∼ εd−∆−ORen(x)

= ε∆+ORen(x),

(we used ∆+ + ∆− = d)

The scaling dimension of ORen is ∆+ ≡ ∆.
• To confirm: 〈O(x)O(0)〉 ∼ 1

|x|2∆

• For small m2, ∃ ‘alternative quantization’: another CFT from the same bulk

theory with Neumann boundary conditions on φ.



Relevantness

∆± =
d

2
±

√(
d

2

)2

+ m2L2

• If m2 > 0: ∆ ≡ ∆+ > d , so O∆ is an irrelevant operator.

∆S =

∫
ddx (mass)d−∆O∆,

the effects of such an operator go away in the IR, at energies E < mass.

φ ∼ z∆−φ0 is this coupling.
It grows in the UV (small z). If φ0 is a finite perturbation, it will back-react on

the metric and destroy the asymptotic AdS-ness of the geometry: extra data

about the UV will be required.

• m2 = 0 :↔ ∆ = d means that O is marginal.
• If m2 < 0: ∆ < d , so O is a relevant operator. Note that in
AdS , m2 < 0 is ok (i.e. not unstable) if m2 is not too negative.
(Note: ∆(m) depends on the spin of the bulk field.)



Vacuum of CFT, euclidean case

Return to the scalar wave equation in momentum space:

0 = [zd+1∂z(z−d+1∂z)−m2L2 − z2k2]fk(z)

If k2 > 0 (spacelike or Euclidean) the general solution is
(aK , aI , integration consts):

fk(z) = aK zd/2Kν(kz)+aI z
d/2Iν(kz), ν = ∆−d

2
=
√

(d/2)2 + m2L2.

In the interior of AdS (z →∞), the Bessel functions behave as

Kν(kz)
z→∞
≈ e−kz Iν(kz)

z→∞
≈ ekz .

regularity in the interior uniquely fixes f k ∝ Kν .
Plugging this into the action S gives 〈O(x)O(0)〉 ∼ 1

|x|2∆

note: ∃ nonlinear uniqueness statement, ‘Graham-Lee theorem’



Correlation functions of scalar operators from AdS
The solution with fk(z = ε) = 1 (‘the regulated bulk-to-boundary

propagator’), is

f k(z) =
zd/2Kν(kz)

εd/2Kν(kε)
(

∫
dk e ikx fk(ε) = δd(x))

The general position space solution can be obtained by Fourier decomposition:

φ[φ0](x) =

∫
ddke ikx f k(z)φ0(k, ε) .

‘on-shell action’ (i.e. the action evaluated on the saddle-point solution):

S [φ] = −K

2

∫
ddx
√
γφn · ∂φ

= −KLd−1

2

∫
ddkφ0(k, ε)Fε(k)φ0(−k, ε)

Fε(k) = z−d f −k(z)z∂z f k(z)|z=ε + (k ↔ −k)

〈O(k1)O(k2)〉εc = − δ

δφ0(k1)

δ

δφ0(k2)
S = (2π)dδd(k1 + k2)Fε(k1) .



Kν(u) =u−ν(a0 + a1u2 + a2u4 + · · · ) (leading term)

+uν ln u(b0 + b1u2 + b2u4 + · · · ) (subleading term)

Fε(k) = 2ε−d+1∂z

(
(kz)−ν+d/2(a0 + · · · ) + (kz)ν+d/2ln kz(b0 + · · · )
(kε)−ν+d/2(a0 + · · · ) + (kε)ν+d/2ln kε(b0 + · · · )

)
|z=ε

= 2ε−d
[{

d

2
− ν(1 + c2(ε2k2) + c4(ε4k4) + · · · )

}
+

{
ν

2b0

a0
(εk)2ν ln(εk)(1 + d2(εk)2 + · · · )

}]
≡ (I) + (II)

(I): Laurent series in ε with coefficients keven integer

(i.e. analytic in k at k = 0). ≡ contact terms ≡ short distance goo:∫
ddke−ikx(εk)2mε−d = ε2m−d�m

x δ
d(x) (m ∈ ZZ+)

The ε2m−d agrees w/ ε is a UV cutoff for the QFT.



Checking that 〈O(x)O(0)〉 ∼ 1
|x |2∆

The interesting bit of F(k), which gives the x1 6= x2 behavior of the correlator,

is non-analytic in k:

(II) = −2ν · b0

a0
k2ν ln(kε) · ε2ν−d(1 +O(ε2)),

input of Bessel: b0
a0

= (−1)ν−1

22ννΓ(ν)2 for ν ∈ Z

FT of leading term:

∫
ddke−ikx(II) =

2νΓ(∆+)

πd/2Γ(∆+ − d/2)

1

x2∆+
ε2ν−d .

• AdS radius appears only in overall normalization, in the combination KLd−1.

• Multiplicative renormalization removes the ε2ν−d .

• Holographic Renormalization: add to Sbulk the local, intrinsic boundary term

∆S = Sc.t. =
K

2

∫
bdy

ddx
(
−∆−Ld−1ε2∆−−d (φRen

0 (x))2
)

= −∆−
K

2L

∫
∂AdS ,z=ε

√
γ φ2(z , x)

Affect neither bulk EOM nor G2(x1 6= x2), cancels divergences.



Real-time

In Euclidean signature (or Lorentzian signature with spacelike k2)

regularity in the IR uniquely determined the correct solution.

In Lorentzian signature with timelike k2 (ω2 > ~k2),
∃ many solutions with the same UV behavior (z → 0), different IR
behavior:

zd/2Kν(±iqz)
z→∞
≈ e±iqz q ≡

√
ω2 − ~k2

these modes oscillate near the Poincaré horizon.
this ambiguity reflects the multiplicity of real-time Green’s f’ns.

Important example: retarded Green’s function, describes causal
response of the system to a perturbation.



Linear response: nothing fancy, just QM

The retarded Green’s function for two observables OA and OB is

GR
OAOB

(ω, k) = −i

∫
dd−1xdt e iωt−ik·xθ(t)〈[OA(t, x),OB(0, 0)]〉

θ(t) = 1 for t > 0, else zero.

(We care about this because it determines what 〈OA〉 does if we kick the

system via OB .)

the source is a time dependent perturbation to the Hamiltonian:

δH(t) =

∫
dd−1xφB(0)(t, x)OB(x) .

〈OA〉(t, x) ≡ Tr ρ(t)OA(x)

= Tr ρ0 U−1(t)OA(t, x)U(t)

in interaction picture: U(t) = Te−i
∫ t δH(t′)dt′ (e.g. ρ0 = e−βH0 )



Linear response, cont’d

linearize in small perturbation:

δ〈OA〉(t, x) = −iTr ρ0

∫ t

dt ′[OA(t, x), δH(t ′)]

= −i

∫ t

dd−1x ′dt ′〈[OA(t, x),OB(t ′, x ′)]〉φB(0)(t ′, x ′)

=

∫
dx ′GR(x , x ′)φB(x ′)

fourier transform:

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k)



Linear response, an example

perturbation: an external electric field, Ex = iωAx

couples via δH = AxJx where J is the electric current (OB = Jx)

response: the electric current (OA = Jx)

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k)

it’s safe to assume 〈J〉E=0 = 0:

〈OJ〉(ω, k) = GR
JJ(ω, k)Ax = GR

JJ(ω, k)
Ex

iω

Ohm’s law: J = σE

=⇒ Kubo formula : σ(ω, k) =
GR
JJ(ω, k)

iω



Holographic real-time prescription

Claim [Son-Starinets 2002]: corresponds to the solution which at z →∞
describes stuff falling into the horizon

I Both the retarded response and stuff falling through the
horizon describe things that happen, rather than unhappen.

I You can check that this prescription gives the correct analytic
structure of GR(ω) ([Son-Starinets] and all the hundreds of papers that

have used this prescription).

I It has been derived from a holographic version of the
Schwinger-Keldysh prescription [Herzog-Son, Maldacena, Skenderis-van Rees].

The fact that stuff goes past the horizon and doesn’t come out is what breaks

time-reversal invariance in the holographic computation of GR .

Here, the ingoing choice is φ(t, z) ∼ e−iωt+iqz :
as t grows, the wavefront moves to larger z .

(the solution which computes causal response is zd/2K+ν(iqz).)

The same prescription, adapted to the black hole horizon, works in
the finite temperature case.



What to do with the solution

determining 〈OO〉 is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc,
behaves near the boundary as

φ(z , x) ≈
(z

L

)∆−
φ0(x)

(
1 +O(z2)

)
+
(z

L

)∆+

φ1(x)
(
1 +O(z2)

)
;

this formula defines the coefficient φ1 of the subleading behavior of the solution.

All the information about G is in φ0, φ1.

recall: Z [φ0] ≡ e−W [φ0] ' e−Sbulk[φ]|
φ
z→0→ z∆−φ0

confession: this is a euclidean eqn. next: a nice general trick. [Iqbal-Liu]



classical mechanics interlude: consider a particle in 1d with
action S [x ] =

∫ tf
ti

dtL. The variation of the action with respect to
the initial value of the coordinate is the initial momentum:

Π(ti ) =
δS

δx(ti )
, Π(t) ≡ ∂L

∂ẋ
. (3)

f

x(t)

t
i

x(t  )
i

t

t

Thinking of the radial direction of AdS as time, a
mild generalization of (3): [Iqbal-Liu]

〈O(x)〉 =
δW [φ0]

δφ0(x)
= lim

z→0

(z

L

)∆−
Π(z , x)|finite,

where Π ≡ ∂L
∂(∂zφ) is the bulk field-momentum with z treated as time.

two minor subtleties:
(1) the factor of z∆

− arises because of our renormalization of φ: φ ∼ z∆−φ0, so
∂
∂φ0

= z−∆− ∂
∂φ(z=ε)

.

(2) Π itself in general has a term proportional to the source φ0



Linear response from holography

With these caveats, away from the support of the source:

〈O(x)〉 = K
2∆− d

L
φ1(x).

linearize in the size of the perturbing source:

〈O(x)〉 = GR · φ0

summary: The leading behavior of the solution encodes the
source i.e. the perturbation of the action of the QFT.
The coefficient of the subleading falloff encodes the response
[Balasubramanian et al, 1996].

G ∝ φ1

φ0

[figure: Hartnoll, 0909.3553]



(Quasi)normal modes

determining 〈OO〉 is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc,
behaves near the boundary as

φ(z , x)
z→0
≈
(z

L

)∆−
φ0(x)

(
1 +O(z2)

)
+
(z

L

)∆+

φ1(x)
(
1 +O(z2)

)
;

G ∝ φ1

φ0

[figure: Hartnoll, 0909.3553]

G has poles when φ1 6= 0, φ0 = 0: response without source.
this means that the system has an actual mode at that energy
(if ω ∈C, ‘quasinormal mode’)

Important conceptual point: the Hilbert spaces are the same.



A useful visualization: ‘Witten diagrams’
e.g. consider 3-point function, 〈OOO〉 =

(
δ
δφ0

)3
ln Z |φ0=0 .

cubic coupling matters:

(�−m2
1)φ1(z , x) = bφ2φ3 and perms.

Solve perturbatively in φ0: (K ,G are Green’s f’ns for �−m2
i )

φ1(z , x) =

∫
ddx1K ∆1(z , x ; x1)φ1

0(x1)

+ b

∫
ddx ′dz ′

√
gG ∆1(z , x ; z ′, x ′)

×
∫

ddx1

∫
ddx2K ∆2(z ′, x ′; x1)φ2

0(x1)K ∆3(z ′, x ′; x2)φ3
0(x2) + o(b2φ3

0)

(x )
i

φ
0 1

K

(z,x)

i

φ
0

φ
0
(x )

2

k

(z’,x’)

K

K

G
i

k

j

(x )
1

(z,x)

j

external legs ↔ sources φ0, vertices ↔ bulk interactions



Comment on alternative quantization
∆± = d

2 ±
√(

d
2

)2
+ m2L2.
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Lowest ∆+ is d/2. Unitarity bound is d−2
2

.

Idea [Klebanov-Witten 99]: If under
δφ, δS 6=∞, maybe we can let δφ fluctuate.

With Sabove =

∫
bulk

[
(∂φ)2 + φ2

]
δφ ∼ δφ1z∆ gives δSabove =∞ for ∆ > d/2.

With S = Sabove + #

∫
bdy

√
γφn · ∂φ

the fluctuation with φ ∼ z∆ is normalizible for ∆ < d−2
2 .

Result: can treat φ1z∆− as source, φ0z∆+ as response:
Galt = φ0

φ1
= G−1

usual.
Interpretation: alternative quantization is a CFT with a relevant double trace

operator ∆
(
O2
)

= 2∆−

Perturbation (by ∆Salt =
∫

bdy

√
γφ2)leads back to ordinary quantization.



Next: thermal equilibrium


