Holographic duality basics Lecture 2

John McGreevy, MIT

July, 2011

Recap

A word about large N^2

most prominent example: 't Hooft limit of $N \times N$ matrix fields X. physical operators are $\mathcal{O}_k = \mathrm{tr}\; X^k$

this accomplishes several related things:

•
$$
\langle \mathcal{O}\mathcal{O} \rangle \sim \langle \mathcal{O} \rangle \langle \mathcal{O} \rangle + o(N^{-2})
$$

is the statement that something (the excitations created by \mathcal{O}) behaves classically.

- provides notion of single-particle states in bulk.
- \bullet makes saddle well-peaked $Z \sim e^{-N^2l}$

important comment:

this is just the best-understood class of examples. in other examples, the $\#$ of dofs goes like $\mathsf{N}^b, \mathsf{b} \neq 2.$

I'll always write N^2 as a proxy for this large number.

An example of a theory with a known gravity dual

 $\mathcal{N} = 4$ SYM is a family of superconformal FTs. The $\mathcal{N} = 4$ SYM action is schematically

$$
\mathcal{L}_{\text{SYM}} \sim \text{tr}\,\left(F^2 + (D\Phi)^2 + i\bar{\Psi}\Gamma \cdot D\Psi + g^2[\Phi, \Phi]^2 + ig\bar{\Psi}[\Phi, \Psi]\right)
$$

this gauge theory comes with 2 parameters: a coupling constant $\lambda=g^2{\sf N}$ (with $\beta_\lambda\equiv 0)$ an integer, the number of colors N.

$$
\boxed{\mathcal{N}=4\;\mathrm{SYM}_{N,\lambda}}=\boxed{\mathrm{IIB}\;\mathrm{strings}\;\mathrm{in}\;\mathcal{A}dS_5\times S^5\;\mathrm{of}\;\mathrm{size}\;\lambda,\hbar=1/N}
$$

[Maldacena 1997]

• large N makes gravity classical (improves saddle point, suppresses splitting and joining of strings)

• strong coupling (large λ) makes the geometry big. (improves bulk deriv. expansion)

'IIB strings in ...' specifies a list of bulk fields and interactions. \exists infinitely many other examples of dual pairs $[e.g.$ Hanany, Vegh et al...]

More dictionary

really a ϕ _a for every \mathcal{O}^a in CFT. how to match?

- 1. organize into reps of conformal group
- 2. single-trace operators correspond to 'elementary fields' in the bulk.

states from multitrace ops $(\mathrm{tr}\ X^k)^2\vert0\rangle$ — 2-particle states of ϕ .

3. simple egs fixed by symmetry:

 \bullet gauge fields in bulk A_μ – global currents J^μ in bdy $\mathcal{S}_{QFT}\ni \int A_{\mu}J^{\mu}\,$ (massless A \leftrightsquigarrow conserved J) • def of QFT stress tensor: response to change in metric on

boundary $S_{QFT} \ni \int \delta g_{\mu\nu} \, T^{\mu\nu}$

energy momentum tensor: $\mathcal{T}^{\mu\nu}$ global current: J^{μ} scalar operator: \mathcal{O}_B fermionic operator: \mathcal{O}_F \leftrightarrow graviton: g_{ab} Maxwell field: A_a scalar field: ϕ fermionic field: ψ .

boundary conditions on bulk fields \leftrightarrow couplings in field theory e.g.: boundary value of bulk metric $\lim_{t\to\infty} g_{\mu\nu}$ $=$ source for stress-energy tensor $T^{\mu\nu}$ different couplings in bulk action \leftrightarrow different field theories

Next: a few technical slides from which we can confirm our interpretation

 $u = RG$ scale

and see the machinery at work.

How to calculate

 Z_{QFT} [sources] $\approx e^{-N^2 l_{\text{bulk}}}$ [boundary conditions at $z \rightarrow 0$]_{|extremum of l_{bulk}} more explicitly:

$$
Z_{QFT}[\text{sources}, \phi_0] \equiv \langle e^{-\int \phi_0 \mathcal{O}} \rangle_{CFT}
$$

$$
\approx e^{-N^2 l_{\text{bulk}}[\phi|\phi(z=\epsilon)]^2 \phi_0} |_{\phi \text{ solves EOM of } l_{\text{bulk}}}
$$

As when counting dofs, we anticipate UV divergences at the boundary $z \rightarrow 0$, cut off the bulk at $z = \epsilon$ and set bc's there. AdS_{d+1}

Example: scalar probe

Simple example: scalar field in the bulk. Natural (covariant) action:

$$
\Delta S[\phi] = -\frac{\mathfrak{K}}{2} \int d^{d+1}x \sqrt{g} \left[g^{AB} \partial_A \phi \partial_B \phi + m^2 \phi^2 + b \phi^3 + \ldots \right]
$$

 $\mathfrak K$, a normalization constant: assume the theory of ϕ is weakly coupled, $\mathfrak K \propto \mathcal N^2.$ $(\sqrt{g} = \sqrt{|\det g|} = (\frac{L}{z})^{d+1}, \quad g^{AB} = \delta^{AB} z^2)$ We will study fluctuations around the solution $\phi = 0$, AdS. (Recall: $\langle \mathcal{O}\mathcal{O}\rangle=\left(\frac{\delta}{\delta\phi_0}\right)^2$ In $Z|_{\phi_0=0}$) \longrightarrow ignore interactions of ϕ for now. Integrate by parts:

$$
S = -\frac{\mathfrak{K}}{2} \int_{\partial AdS} d^d x \sqrt{g} g^{zB} \phi \partial_B \phi - \frac{\mathfrak{K}}{2} \int \sqrt{g} \phi \left(-\Box + m^2 \right) \phi + o(\phi^3)
$$

From this expression we learn:

- ► the EOM for small fluctuations of ϕ is $(-\Box + m^2)\phi = 0$ (An underline will indicate fields which solve the equations of motion.)
- If ϕ solves the equation of motion, the on-shell action $S[\phi], \quad Z \equiv e^{-S[\phi]}$ is just given by the boundary term.

next: relate bulk masses and operator dimensions

$$
\Delta(\Delta-d)=m^2L^2
$$

by studying the AdS wave equation near the boundary.

Wave equation in AdS

translational invariance in d dimensions, $x^{\mu} \rightarrow x^{\mu} + a^{\mu}$,

Fourier:
$$
\phi(z, x^{\mu}) = e^{ik_{\mu}x^{\mu}} f_{k}(z), \quad k_{\mu}x^{\mu} \equiv -\omega t + \vec{k} \cdot \vec{x}
$$

$$
0 = (g^{\mu\nu}k_{\mu}k_{\nu} - \frac{1}{\sqrt{g}}\partial_{z}(\sqrt{g}g^{zz}\partial_{z}) + m^{2})f_{k}(z)
$$

=
$$
\frac{1}{L^{2}}[z^{2}k^{2} - z^{d+1}\partial_{z}(z^{-d+1}\partial_{z}) + m^{2}L^{2}]f_{k}(z),
$$
 (1)

we used $g^{AB} = (z/L)^2 \delta^{AB}$, $\sqrt{g} = \sqrt{|\det g|} = \left(\frac{L}{z}\right)^{d+1}$. Near boundary $(z \rightarrow 0)$, power law solns, (spoiled by the z^2k^2 term). Try $f_k = z^{\Delta}$ in [\(1\)](#page-10-0):

$$
0 = k^{2}z^{2+\Delta} - z^{d+1}\partial_{z}(\Delta z^{-d+\Delta}) + m^{2}L^{2}z^{\Delta}
$$

= $(k^{2}z^{2} - \Delta(\Delta - d) + m^{2}L^{2})z^{\Delta}$,

and for $z \rightarrow 0$ we get:

The two roots of (2)

$$
\Delta(\Delta - d) = m^2 L^2
$$
\n
$$
\text{are } \Delta_{\pm} = \frac{d}{2} \pm \sqrt{\left(\frac{d}{2}\right)^2 + m^2 L^2}.
$$
\n(2)

Comments

$$
\Delta_{\pm}=\tfrac{d}{2}\pm\sqrt{\left(\tfrac{d}{2}\right)^2+m^2L^2}.
$$

2

1.0 1.5 2.0 2.5 3.0 Δ

$$
\triangleright \Delta_+ > 0 \ \ \forall \ \ m: z^{\Delta_+} \text{ always decays near} \\ \text{the boundary}
$$

$$
\blacktriangleright \Delta_+ + \Delta_- = d.
$$

We want to impose boundary conditions that allow solutions. Leading $z\to 0$ behavior of generic solution: $\phi\sim z^{\Delta_-}$, we impose

$$
\phi(x, z)|_{z=\epsilon} \stackrel{!}{=} \phi_0(x, \epsilon) = \epsilon^{\Delta_-} \phi_0^{Ren}(x),
$$

where ϕ_0^{Ren} is a renormalized source field.

Wavefunction renormalization of $\mathcal O$ (Heuristic but useful)

Suppose: $(g_{\mu\nu} \stackrel{z\approx e}{=} \frac{dz^2}{z^2} + \gamma_{\mu\nu} dx^{\mu} dx^{\nu}$ defines the boundary metric γ .)

$$
S_{bdy} \ni \int_{z=\epsilon} d^d x \sqrt{\gamma} \phi_0(x,\epsilon) \mathcal{O}(x,\epsilon)
$$

=
$$
\int d^d x \left(\frac{L}{\epsilon}\right)^d (\epsilon^{\Delta} - \phi_0^{Ren}(x)) \mathcal{O}(x,\epsilon),
$$

where we have used $\sqrt{\gamma} = (L/\epsilon)^d$. Demanding that this be finite as $\epsilon \to 0$:

$$
\mathcal{O}(x,\epsilon) \sim \epsilon^{d-\Delta_{-}} \mathcal{O}^{Ren}(x) \n= \epsilon^{\Delta_{+}} \mathcal{O}^{Ren}(x),
$$

(we used $\Delta_+ + \Delta_- = d$) The scaling dimension of \mathcal{O}^{Ren} is $\Delta_+ \equiv \Delta$.

• To confirm: $\langle \mathcal{O}(x) \mathcal{O}(0) \rangle \sim \frac{1}{|x|^{2\Delta}}$

• For small m^2 , \exists 'alternative quantization': another CFT from the same bulk theory with Neumann boundary conditions on ϕ .

Relevantness

$$
\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\left(\frac{d}{2}\right)^2 + m^2 L^2}
$$

• If $m^2 > 0$: $\Delta \equiv \Delta_+ > d$, so \mathcal{O}_{Δ} is an irrelevant operator.

$$
\Delta S = \int d^d x \, (\text{mass})^{d-\Delta} \mathcal{O}_{\Delta},
$$

the effects of such an operator go away in the IR, at energies $E <$ mass. $\phi \sim z^{\Delta_-}\phi_0$ *is* this coupling.

It grows in the UV (small z). If ϕ_0 is a finite perturbation, it will back-react on the metric and destroy the asymptotic AdS-ness of the geometry: extra data about the UV will be required.

• $m^2 = 0 : \leftrightarrow \Delta = d$ means that $\mathcal O$ is marginal.

• If $m^2 < 0$: $\Delta < d$, so $\mathcal O$ is a relevant operator. Note that in AdS, $m^2 < 0$ is ok (i.e. not unstable) if m^2 is not too negative. (Note: $\Delta(m)$ depends on the spin of the bulk field.)

Vacuum of CFT, euclidean case

Return to the scalar wave equation in momentum space:

$$
0 = [z^{d+1}\partial_z(z^{-d+1}\partial_z) - m^2L^2 - z^2k^2]f_k(z)
$$

If $k^2 > 0$ (spacelike or Euclidean) the general solution is (a_K, a_I) , integration consts):

$$
f_k(z) = a_K z^{d/2} K_{\nu}(kz) + a_l z^{d/2} I_{\nu}(kz), \quad \nu = \Delta - \frac{d}{2} = \sqrt{(d/2)^2 + m^2 L^2}.
$$

In the interior of AdS ($z \rightarrow \infty$), the Bessel functions behave as

$$
K_{\nu}(kz) \stackrel{z \to \infty}{\approx} e^{-kz} \qquad I_{\nu}(kz) \stackrel{z \to \infty}{\approx} e^{kz}.
$$

regularity in the interior uniquely fixes $f_k \propto K_{\nu}$. Plugging this into the action S gives $\langle \mathcal{O}(x) \mathcal{O}(0)\rangle \sim \frac{1}{|x|^{2\Delta}}$ note: ∃ nonlinear uniqueness statement, 'Graham-Lee theorem'

Correlation functions of scalar operators from AdS

The solution with $f_k(z = \epsilon) = 1$ ('the regulated bulk-to-boundary propagator'), is

$$
\underline{f}_k(z) = \frac{z^{d/2} K_\nu(kz)}{\epsilon^{d/2} K_\nu(k\epsilon)} \qquad (\int dk \ e^{ikx} f_k(\epsilon) = \delta^d(x))
$$

The general position space solution can be obtained by Fourier decomposition:

$$
\underline{\phi}^{[\phi_0]}(x) = \int d^d k e^{ikx} \underline{f}_k(z) \phi_0(k, \epsilon) .
$$

'on-shell action' (i.e. the action evaluated on the saddle-point solution):

$$
S[\underline{\phi}] = -\frac{\mathfrak{K}}{2} \int d^d x \sqrt{\gamma} \underline{\phi} n \cdot \partial \underline{\phi}
$$

= $-\frac{\mathfrak{K}L^{d-1}}{2} \int d^d k \phi_0(k, \epsilon) \mathcal{F}_{\epsilon}(k) \phi_0(-k, \epsilon)$

$$
\mathcal{F}_{\epsilon}(k) = z^{-d} \underline{f}_{-k}(z) z \partial_z \underline{f}_k(z)|_{z=\epsilon} + (k \leftrightarrow -k)
$$

$$
\langle \mathcal{O}(k_1) \mathcal{O}(k_2) \rangle_c^{\epsilon} = - \frac{\delta}{\delta \phi_0(k_1)} \frac{\delta}{\delta \phi_0(k_2)} S = (2\pi)^d \delta^d(k_1 + k_2) \mathcal{F}_{\epsilon}(k_1) .
$$

$$
K_{\nu}(u) = u^{-\nu}(a_0 + a_1u^2 + a_2u^4 + \cdots)
$$
 (leading term)
+u^{\nu}ln u(b₀ + b₁u² + b₂u⁴ + \cdots) (subleading term)

$$
\mathcal{F}_{\epsilon}(k) = 2\epsilon^{-d+1}\partial_{z}\left(\frac{(kz)^{-\nu+d/2}(a_{0}+\cdots)+(kz)^{\nu+d/2}\ln kz(b_{0}+\cdots)}{(k\epsilon)^{-\nu+d/2}(a_{0}+\cdots)+(k\epsilon)^{\nu+d/2}\ln k\epsilon(b_{0}+\cdots)}\right)
$$
\n
$$
= 2\epsilon^{-d}\left[\left\{\frac{d}{2}-\nu(1+c_{2}(\epsilon^{2}k^{2})+c_{4}(\epsilon^{4}k^{4})+\cdots)\right\} + \left\{\nu\frac{2b_{0}}{a_{0}}(\epsilon k)^{2\nu}\ln(\epsilon k)(1+d_{2}(\epsilon k)^{2}+\cdots)\right\}\right]
$$
\n
$$
\equiv (I) + (II)
$$

(I): Laurent series in ϵ with coefficients $k^{\text{even integer}}$ (*i.e.* analytic in k at $k = 0$). \equiv contact terms \equiv short distance goo:

$$
\int d^d k e^{-ikx} (\epsilon k)^{2m} \epsilon^{-d} = \epsilon^{2m-d} \Box_{x}^{m} \delta^{d}(x) \qquad (m \in \mathbb{Z}_+)
$$

The ϵ^{2m-d} agrees w/ ϵ is a UV cutoff for the QFT.

Checking that $\langle \mathcal{O}(x) \mathcal{O}(0) \rangle \sim \frac{1}{|x|^{2\Delta}}$

The interesting bit of $\mathcal{F}(k)$, which gives the $x_1 \neq x_2$ behavior of the correlator, is non-analytic in k :

$$
(II) = -2\nu \cdot \frac{b_0}{a_0} k^{2\nu} \ln(k\epsilon) \cdot \epsilon^{2\nu - d} (1 + \mathcal{O}(\epsilon^2)),
$$

input of Bessel: $\frac{b_0}{a_0} = \frac{(-1)^{\nu-1}}{2^{2\nu} \nu \Gamma(\nu)}$ $\frac{(-1)^{\nu-1}}{2^{2\nu}\nu\Gamma(\nu)^2}$ for $\nu\in\mathbb{Z}$

FT of leading term:
$$
\int d^d k e^{-ikx} (II) = \frac{2\nu \Gamma(\Delta_+)}{\pi^{d/2} \Gamma(\Delta_+ - d/2)} \frac{1}{x^{2\Delta_+}} \epsilon^{2\nu - d}
$$

.

- AdS radius appears only in overall normalization, in the combination \mathfrak{KL}^{d-1} .
- Multiplicative renormalization removes the $\epsilon^{2\nu-d}$.
- Holographic Renormalization: add to S_{bulk} the local, intrinsic boundary term

$$
\begin{array}{lcl} \Delta S = S_{\textrm{\tiny c.t.}} & = & \displaystyle \frac{\mathfrak{K}}{2} \int_{\textrm{bdy}} d^d x \left(-\Delta_- L^{d-1} \epsilon^{2\Delta_- - d} \left(\phi_0^{\textrm{Ren}}(x) \right)^2 \right) \\ \\ & = & -\Delta_- \displaystyle \frac{\mathfrak{K}}{2L} \int_{\partial\mathcal{A} dS, z=\epsilon} \sqrt{\gamma} \, \phi^2(z,x) \end{array}
$$

Affect neither bulk EOM nor $G_2(x_1 \neq x_2)$, cancels divergences.

Real-time

In Euclidean signature (or Lorentzian signature with spacelike k^2) regularity in the IR uniquely determined the correct solution.

In Lorentzian signature with timelike k^2 ($\omega^2 > \vec{k}^2$), \exists many solutions with the same UV behavior $(z \rightarrow 0)$, different IR behavior:

$$
z^{d/2}K_{\nu}(\pm iqz)\stackrel{z\to\infty}{\approx}e^{\pm iqz}\qquad q\equiv\sqrt{\omega^2-\vec{k}^2}
$$

these modes oscillate near the Poincaré horizon. this ambiguity reflects the multiplicity of real-time Green's f'ns.

Important example: retarded Green's function, describes causal response of the system to a perturbation.

Linear response: nothing fancy, just QM

The retarded Green's function for two observables \mathcal{O}_A and \mathcal{O}_B is

$$
G_{\mathcal{O}_A\mathcal{O}_B}^R(\omega,k) = -i \int d^{d-1}x dt \ e^{i\omega t - ik \cdot x} \theta(t) \langle [\mathcal{O}_A(t,x), \mathcal{O}_B(0,0)] \rangle
$$

 $\theta(t) = 1$ for $t > 0$, else zero.

(We care about this because it determines what $\langle O_A \rangle$ does if we kick the system via \mathcal{O}_B .)

the source is a time dependent perturbation to the Hamiltonian:

$$
\delta H(t) = \int d^{d-1}x \phi_{B(0)}(t,x) \mathcal{O}_B(x) .
$$

$$
\langle \mathcal{O}_A \rangle (t, x) \equiv \text{Tr } \rho(t) \mathcal{O}_A(x) \n= \text{Tr } \rho_0 U^{-1}(t) \mathcal{O}_A(t, x) U(t)
$$

in interaction picture: $U(t)=\mathcal{T}e^{-i\int^t \delta H(t')dt'}$ $(e.g.~\rho_0=e^{-\beta H_0})$

Linear response, cont'd

linearize in small perturbation:

$$
\delta \langle \mathcal{O}_A \rangle (t, x) = -i \text{Tr} \, \rho_0 \int^t dt' [\mathcal{O}_A(t, x), \delta H(t')]
$$

$$
= -i \int^t d^{d-1}x' dt' \langle [\mathcal{O}_A(t, x), \mathcal{O}_B(t', x')] \rangle \phi_{B(0)}(t', x')
$$

$$
= \int dx' G_R(x, x') \phi_B(x')
$$

fourier transform:

$$
\delta \langle \mathcal{O}_A \rangle(\omega, k) = G^R_{\mathcal{O}_A \mathcal{O}_B}(\omega, k) \delta \phi_{B(0)}(\omega, k)
$$

Linear response, an example

perturbation: an external electric field, $E_x = i\omega A_x$ couples via $\delta H = A_{x}J^{x}$ where J is the electric current $(\mathcal{O}_{B} = J_{x})$ response: the electric current $(\mathcal{O}_A = J_x)$

$$
\delta \langle \mathcal{O}_A \rangle(\omega, k) = G^R_{\mathcal{O}_A \mathcal{O}_B}(\omega, k) \delta \phi_{B(0)}(\omega, k)
$$

it's safe to assume $\langle J \rangle_{E=0} = 0$:

 \implies Kubo formula \cdot

$$
\langle \mathcal{O}_J \rangle(\omega, k) = G_{JJ}^R(\omega, k) A_x = G_{JJ}^R(\omega, k) \frac{E_x}{i\omega}
$$

Ohm's law: $J = \sigma E$

$$
\sigma(\omega,k)=\frac{G_{JJ}^R(\omega,k)}{i\omega}
$$

Holographic real-time prescription

Claim [Son-Starinets 2002]: corresponds to the solution which at $z \to \infty$ describes stuff falling into the horizon

- \triangleright Both the retarded response and stuff falling through the horizon describe things that happen, rather than unhappen.
- \triangleright You can check that this prescription gives the correct analytic structure of $G_R(\omega)$ ([Son-Starinets] and all the hundreds of papers that have used this prescription).
- It has been derived from a holographic version of the Schwinger-Keldysh prescription [Herzog-Son, Maldacena, Skenderis-van Rees].

The fact that stuff goes past the horizon and doesn't come out is what breaks time-reversal invariance in the holographic computation of ${\sf G}^{\sf R}.$ Here, the ingoing choice is $\phi(t,z)\sim e^{-i\omega t+i\mathbf{q}z}$: as t grows, the wavefront moves to larger z. (the solution which computes causal response is $z^{d/2}K_{+\nu}(iqz)$.) The same prescription, adapted to the black hole horizon, works in the finite temperature case.

What to do with the solution

determining $\langle \mathcal{O}\mathcal{O}\rangle$ is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc, behaves near the boundary as

$$
\underline{\phi}(z,x) \approx \left(\frac{z}{L}\right)^{\Delta_-} \phi_0(x) \left(1 + \mathcal{O}(z^2)\right) + \left(\frac{z}{L}\right)^{\Delta_+} \phi_1(x) \left(1 + \mathcal{O}(z^2)\right);
$$

this formula defines the coefficient ϕ_1 of the subleading behavior of the solution. All the information about G is in ϕ_0, ϕ_1 . $\textsf{recall: } Z[\phi_0] \equiv e^{-W[\phi_0]} \simeq e^{-S_\text{bulk}[\phi]} \big|_{\phi \stackrel{\tau \to 0}{\to} z^{\Delta_-} \phi_0}$ confession: this is a euclidean eqn. next: a nice general trick. [Iqbal-Liu]

classical mechanics interlude: consider a particle in 1d with action $S[x] = \int_{t_i}^{t_f} dt L$. The variation of the action with respect to the initial value of the coordinate is the initial momentum: $\Pi(t_i) = \frac{\delta S}{\delta x(t_i)}, \quad \Pi(t) \equiv \frac{\partial L}{\partial \dot{x}}$ $\delta x(t_i)$ $\delta x(t_i)$ \cdots δx (3) f x(t) .
t. i $x(t_i)$ t_{ϵ}

Thinking of the radial direction of AdS as time, a mild generalization of (3) : $[Iqba]$ -Liu]

$$
\langle \mathcal{O}(x) \rangle = \frac{\delta W[\phi_0]}{\delta \phi_0(x)} = \lim_{z \to 0} \left(\frac{z}{L}\right)^{\Delta_{-}} \Pi(z, x)|_{\text{finite}},
$$

where $\Pi \equiv \frac{\partial \mathcal{L}}{\partial (\partial \Omega)}$ $\frac{\partial \mathcal{L}}{\partial (\partial_z \phi)}$ is the bulk field-momentum with z treated as time. two minor subtleties:

(1) the factor of z^{Δ} arises because of our renormalization of ϕ : $\phi \sim z^{\Delta-} \phi_0$, so $\frac{\partial}{\partial \phi_0} = z^{-\Delta_-} \frac{\partial}{\partial \phi(z=\epsilon)}.$

(2) Π itself in general has a term proportional to the source ϕ_0

Linear response from holography

With these caveats, away from the support of the source:

$$
\langle \mathcal{O}(x)\rangle = \mathfrak{K}\frac{2\Delta - d}{L}\phi_1(x).
$$

linearize in the size of the perturbing source:

$$
\langle \mathcal{O}(x) \rangle = G_R \cdot \phi_0
$$

summary: The leading behavior of the solution encodes the source *i.e.* the perturbation of the *action* of the QFT. The coefficient of the subleading falloff encodes the response [Balasubramanian et al, 1996].

[figure: Hartnoll, 0909.3553]

(Quasi)normal modes

determining $\langle \mathcal{O}\mathcal{O}\rangle$ is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc, behaves near the boundary as

$$
\underline{\phi}(z,x) \stackrel{z\to 0}{\approx} \left(\frac{z}{L}\right)^{\Delta_-} \phi_0(x) \left(1+\mathcal{O}(z^2)\right) + \left(\frac{z}{L}\right)^{\Delta_+} \phi_1(x) \left(1+\mathcal{O}(z^2)\right);
$$

Important conceptual point: the Hilbert spaces are the same.

A useful visualization: 'Witten diagrams'

e.g. consider 3-point function, $\langle OOO\rangle = \left(\frac{\delta}{\delta d}\right)$ $\delta\phi_0$ \int^3 ln $Z|_{\phi_0=0}$. cubic coupling matters:

$$
(\Box - m_1^2)\phi_1(z, x) = b\phi_2\phi_3
$$
 and perms.

Solve perturbatively in $\phi_0\colon\qquad ({\mathcal K}, {\mathcal G}$ are Green's f'ns for $\Box - m_i^2)$

$$
\underline{\phi}^{1}(z, x) = \int d^{d}x_{1} K^{\Delta_{1}}(z, x; x_{1}) \phi_{0}^{1}(x_{1})
$$
\n
$$
+ b \int d^{d}x' dz' \sqrt{g} G^{\Delta_{1}}(z, x; z', x')
$$
\n
$$
\times \int d^{d}x_{1} \int d^{d}x_{2} K^{\Delta_{2}}(z', x'; x_{1}) \phi_{0}^{2}(x_{1}) K^{\Delta_{3}}(z', x'; x_{2}) \phi_{0}^{3}(x_{2}) + o(b^{2} \phi_{0}^{3})
$$
\n
$$
\phi_{0}^{1}(x_{1})
$$
\n
$$
\phi_{0}^{1}(x_{2})
$$
\n
$$
\phi_{0}^{1}(x_{1})
$$
\n
$$
\phi_{1}^{2}(x_{2})
$$
\n
$$
\phi_{1}^{2}(x_{1})
$$
\n
$$
\phi_{2}^{2}(x_{2})
$$
\n
$$
\phi_{2}^{2}(x_{2})
$$
\n
$$
\phi_{2}^{2}(x_{2})
$$

external legs \leftrightarrow sources ϕ_0 , vertices \leftrightarrow bulk interactions

With $S_{\text{above}} = \sqrt{\frac{1}{2}}$ bulk $[(\partial \phi)^2 + \phi^2]$ $\delta\phi\sim\delta\phi_1 z^\Delta$ gives $\delta\mathcal{S}_{\text{above}}=\infty$ for $\Delta>d/2$. With $S = S_{\text{above}} + #$ bdy $\sqrt{\gamma}\phi$ n · $\partial\phi$

the fluctuation with $\phi \sim z^{\Delta}$ is normalizible for $\Delta < \frac{d-2}{2}$ $\frac{-2}{2}$. Result: can treat $\phi_1 z^{\Delta_-}$ as source, $\phi_0 z^{\Delta_+}$ as response: $G_{\text{alt}} = \frac{\phi_0}{\phi_1}$ $\frac{\phi_0}{\phi_1}=\mathsf{G}_{\mathsf{usual}}^{-1}.$ Interpretation: alternative quantization is a CFT with a relevant double trace operator $\Delta\left({\cal O}^2\right)=2\Delta_-$ Perturbation (by $\Delta S_{\text{alt}} = \int_{\text{bdy}} \sqrt{\gamma} \phi^2$)leads back to ordinary quantization.

Next: thermal equilibrium