Holographic duality basics Lecture 2

John McGreevy, MIT

July, 2011

Recap

A word about large N^2

most prominent example: 't Hooft limit of $N \times N$ matrix fields X. physical operators are $\mathcal{O}_k = \operatorname{tr} X^k$

this accomplishes several related things:

•
$$\langle \mathcal{O}\mathcal{O} \rangle \sim \langle \mathcal{O} \rangle \langle \mathcal{O} \rangle + o\left(N^{-2}\right)$$

is the statement that something (the excitations created by \mathcal{O}) behaves classically.

- provides notion of single-particle states in bulk.
- makes saddle well-peaked $Z \sim e^{-N^2 I}$

important comment:

this is just the best-understood class of examples. in other examples, the # of dofs goes like N^b , $b \neq 2$. I'll always write N^2 as a proxy for this large number.

An example of a theory with a known gravity dual

 $\mathcal{N} = 4$ SYM is a family of superconformal FTs. The $\mathcal{N} = 4$ SYM action is schematically

$$\mathcal{L}_{\mathsf{SYM}} \sim \mathrm{tr} \; \left(F^2 + (D\Phi)^2 + i \bar{\Psi} \Gamma \cdot D\Psi + g^2 [\Phi, \Phi]^2 + i g \bar{\Psi} [\Phi, \Psi]
ight)$$

this gauge theory comes with 2 parameters: a coupling constant $\lambda = g^2 N$ (with $\beta_{\lambda} \equiv 0$) an integer, the number of colors N.

$$\boxed{\mathcal{N} = 4 \text{ SYM}_{N,\lambda}} = \text{ IIB strings in } AdS_5 \times S^5 \text{ of size } \lambda, \hbar = 1/N$$

[Maldacena 1997]

• large *N* makes gravity classical (improves saddle point, suppresses splitting and joining of strings)

 \bullet strong coupling (large $\lambda)$ makes the geometry big. (improves bulk deriv. expansion)

'IIB strings in ...' specifies a list of bulk fields and interactions.

 \exists infinitely many other examples of dual pairs [e.g. Hanany, Vegh et al...]

More dictionary

really a ϕ_a for every \mathcal{O}^a in CFT. how to match?

1. organize into reps of conformal group

2. single-trace operators correspond to 'elementary fields' in the bulk.

states from multitrace ops $(\operatorname{tr} X^k)^2 |0\rangle$ — 2-particle states of ϕ .

3. simple egs fixed by symmetry:

• gauge fields in bulk A_{μ} – global currents J^{μ} in bdy $S_{QFT} \ni \int A_{\mu} J^{\mu}$ (massless $A \iff$ conserved J) • def of QFT stress tensor: response to change in metric on

boundary $S_{QFT} \ni \int \delta g_{\mu\nu} T^{\mu\nu}$

energy momentum tensor: $T^{\mu\nu}$ graviton: g_{ab} global current: J^{μ} Maxwell field: A_a scalar operator: \mathcal{O}_B scalar field: ϕ fermionic operator: \mathcal{O}_F fermionic field: ψ .

boundary conditions on bulk fields $\leftrightarrow \circ$ couplings in field theory *e.g.*: boundary value of bulk metric $\lim_{r\to\infty} g_{\mu\nu}$ = source for stress-energy tensor $T^{\mu\nu}$ different couplings in bulk action $\leftrightarrow \circ$ different field theories Next: a few technical slides from which we can confirm our interpretation

 $u = \mathsf{RG}$ scale

and see the machinery at work.

How to calculate

 Z_{QFT} [sources] $\approx e^{-N^2 I_{\text{bulk}}[\text{boundary conditions at } z \to 0]}|_{\text{extremum of } I_{\text{bulk}}}$ more explicitly:

$$\begin{aligned} Z_{QFT}[\text{sources}, \phi_0] &\equiv \langle e^{-\int \phi_0 \mathcal{O}} \rangle_{CFT} \\ &\approx e^{-N^2 I_{\text{bulk}}[\phi|\phi(z=\epsilon) = \phi_0]} |_{\phi \text{ solves EOM of } I_{\text{bulk}}} \end{aligned}$$

As when counting dofs, we anticipate UV divergences at the boundary $z \rightarrow 0$, cut off the bulk at $z = \epsilon$ and set bc's there.

Example: scalar probe

Simple example: scalar field in the bulk. Natural (covariant) action:

$$\Delta S[\phi] = -\frac{\Re}{2} \int d^{d+1} x \sqrt{g} \left[g^{AB} \partial_A \phi \partial_B \phi + m^2 \phi^2 + b \phi^3 + \dots \right]$$

 \mathfrak{K} , a normalization constant: assume the theory of ϕ is weakly coupled, $\mathfrak{K} \propto N^2$. $(\sqrt{g} = \sqrt{|\det g|} = (\frac{L}{z})^{d+1}, g^{AB} = \delta^{AB}z^2)$ We will study fluctuations around the solution $\phi = 0$, AdS. (Recall: $\langle \mathcal{OO} \rangle = (\frac{\delta}{\delta \phi_0})^2 \ln Z|_{\phi_0} = 0$) \longrightarrow ignore interactions of ϕ for now.

Integrate by parts:

$$S = -\frac{\Re}{2} \int_{\partial AdS} d^d x \sqrt{g} g^{zB} \phi \partial_B \phi - \frac{\Re}{2} \int \sqrt{g} \phi \left(-\Box + m^2 \right) \phi + o(\phi^3)$$

From this expression we learn:

- ► the EOM for small fluctuations of φ is (-□ + m²)φ = 0 (An underline will indicate fields which solve the equations of motion.)
- ► If $\underline{\phi}$ solves the equation of motion, the on-shell action $S[\underline{\phi}], \quad Z \equiv e^{-S[\underline{\phi}]}$

is just given by the boundary term.

next: relate bulk masses and operator dimensions

$$\Delta(\Delta-d)=m^2L^2$$

by studying the AdS wave equation near the boundary.

Wave equation in AdS

translational invariance in d dimensions, $x^{\mu} \rightarrow x^{\mu} + a^{\mu}$,

Fourier :
$$\phi(z, x^{\mu}) = e^{ik_{\mu}x^{\mu}}f_k(z), \quad k_{\mu}x^{\mu} \equiv -\omega t + \vec{k} \cdot \vec{x}$$

$$0 = (g^{\mu\nu}k_{\mu}k_{\nu} - \frac{1}{\sqrt{g}}\partial_{z}(\sqrt{g}g^{zz}\partial_{z}) + m^{2})f_{k}(z)$$

$$= \frac{1}{L^{2}}[z^{2}k^{2} - z^{d+1}\partial_{z}(z^{-d+1}\partial_{z}) + m^{2}L^{2}]f_{k}(z), \qquad (1)$$

we used $g^{AB} = (z/L)^2 \delta^{AB}$, $\sqrt{g} = \sqrt{|\det g|} = (\frac{L}{z})^{d+1}$. Near boundary $(z \to 0)$, power law solns, (spoiled by the $z^2 k^2$ term). Try $f_k = z^{\Delta}$ in (1):

$$0 = k^2 z^{2+\Delta} - z^{d+1} \partial_z (\Delta z^{-d+\Delta}) + m^2 L^2 z^{\Delta}$$

= $(k^2 z^2 - \Delta (\Delta - d) + m^2 L^2) z^{\Delta}$,

and for $z \rightarrow 0$ we get:

$$\Delta(\Delta - d) = m^2 L^2 \tag{2}$$

The two roots of (2) are $\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\left(\frac{d}{2}\right)^2 + m^2 L^2}$.

Comments

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\left(\frac{d}{2}\right)^2 + m^2 L^2}.$$

• The solution proportional to $z^{\Delta_{-}}$ is bigger near $z \to 0$. \rightarrow usually the source ('non-normalizable')

2.5 2.0 1.5 1.0

► $\Delta_+ > 0 \quad \forall \quad m: \ z^{\Delta_+}$ always decays near the boundary

$$\blacktriangleright \Delta_+ + \Delta_- = d.$$

We want to impose boundary conditions that allow solutions. Leading $z \to 0$ behavior of generic solution: $\phi \sim z^{\Delta_-}$, we impose

$$\phi(x,z)|_{z=\epsilon} \stackrel{!}{=} \phi_0(x,\epsilon) = \epsilon^{\Delta_-} \phi_0^{Ren}(x),$$

where ϕ_0^{Ren} is a renormalized source field.

Wavefunction renormalization of \mathcal{O} (Heuristic but useful)

Suppose: $(g_{\mu\nu} \stackrel{z\approx\epsilon}{=} \frac{dz^2}{z^2} + \gamma_{\mu\nu} dx^{\mu} dx^{\nu}$ defines the boundary metric γ .)

$$\begin{aligned} S_{bdy} & \ni \quad \int_{z=\epsilon} d^d x \ \sqrt{\gamma} \ \phi_0(x,\epsilon) \mathcal{O}(x,\epsilon) \\ &= \quad \int d^d x \ \left(\frac{L}{\epsilon}\right)^d (\epsilon^{\Delta_-} \phi_0^{Ren}(x)) \mathcal{O}(x,\epsilon), \end{aligned}$$

where we have used $\sqrt{\gamma} = (L/\epsilon)^d$. Demanding that this be finite as $\epsilon \to 0$:

$$\begin{aligned} \mathcal{O}(x,\epsilon) &\sim \epsilon^{d-\Delta_{-}}\mathcal{O}^{Ren}(x) \\ &= \epsilon^{\Delta_{+}}\mathcal{O}^{Ren}(x), \end{aligned}$$

(we used $\Delta_+ + \Delta_- = d$) The scaling dimension of \mathcal{O}^{Ren} is $\Delta_+ \equiv \Delta$.

• To confirm: $\langle \mathcal{O}(x)\mathcal{O}(0)
angle \sim rac{1}{|x|^{2\Delta}}$

• For small m^2 , \exists 'alternative quantization': another CFT from the same bulk theory with Neumann boundary conditions on ϕ .

Relevantness

$$\Delta_{\pm}=rac{d}{2}\pm\sqrt{\left(rac{d}{2}
ight)^2+m^2L^2}$$

• If $m^2 > 0$: $\Delta \equiv \Delta_+ > d$, so \mathcal{O}_Δ is an irrelevant operator.

$$\Delta S = \int d^d x \; ({
m mass})^{d-\Delta} \mathcal{O}_{\Delta},$$

the effects of such an operator go away in the IR, at energies $E<{\rm mass.}$ $\phi\sim z^{\Delta_-}\phi_0$ is this coupling.

It grows in the UV (small z). If ϕ_0 is a finite perturbation, it will back-react on the metric and destroy the asymptotic AdS-ness of the geometry: extra data about the UV will be required.

• $m^2 = 0 : \leftrightarrow \Delta = d$ means that \mathcal{O} is marginal.

• If $m^2 < 0$: $\Delta < d$, so \mathcal{O} is a relevant operator. Note that in AdS, $m^2 < 0$ is ok (*i.e.* not unstable) if m^2 is not too negative. (Note: $\Delta(m)$ depends on the spin of the bulk field.)

Vacuum of CFT, euclidean case

Return to the scalar wave equation in momentum space:

$$0 = [z^{d+1}\partial_z(z^{-d+1}\partial_z) - m^2L^2 - z^2k^2]f_k(z)$$

If $k^2 > 0$ (spacelike or Euclidean) the general solution is $(a_K, a_I, \text{ integration consts})$:

$$f_k(z) = a_K z^{d/2} K_{\nu}(kz) + a_I z^{d/2} I_{\nu}(kz), \quad \nu = \Delta - \frac{d}{2} = \sqrt{(d/2)^2 + m^2 L^2}.$$

In the interior of AdS $(z
ightarrow \infty)$, the Bessel functions behave as

$$K_{\nu}(kz) \stackrel{z o \infty}{pprox} e^{-kz} \qquad I_{\nu}(kz) \stackrel{z o \infty}{pprox} e^{kz}$$

regularity in the interior uniquely fixes $\underline{f}_k \propto K_{\nu}$. Plugging this into the action *S* gives $\langle \mathcal{O}(x)\mathcal{O}(0)\rangle \sim \frac{1}{|x|^{2\Delta}}$ note: \exists nonlinear uniqueness statement, 'Graham-Lee theorem'

Correlation functions of scalar operators from AdS

The solution with $f_k(z=\epsilon)=1$ ('the regulated bulk-to-boundary propagator'), is

$$\underline{f}_{k}(z) = \frac{z^{d/2} \mathcal{K}_{\nu}(kz)}{\epsilon^{d/2} \mathcal{K}_{\nu}(k\epsilon)} \qquad (\int dk \ e^{ikx} f_{k}(\epsilon) = \delta^{d}(x))$$

The general position space solution can be obtained by Fourier decomposition:

$$\underline{\phi}^{[\phi_0]}(x) = \int d^d k e^{ikx} \underline{f}_k(z) \phi_0(k,\epsilon) \; .$$

'on-shell action' (i.e. the action evaluated on the saddle-point solution):

$$S[\underline{\phi}] = -\frac{\Re}{2} \int d^d x \sqrt{\gamma} \underline{\phi} \mathbf{n} \cdot \partial \underline{\phi}$$
$$= -\frac{\Re L^{d-1}}{2} \int d^d k \phi_0(k, \epsilon) \mathcal{F}_{\epsilon}(k) \phi_0(-k, \epsilon)$$
$$\mathcal{F}_{\epsilon}(k) = z^{-d} \underline{f}_{-k}(z) z \partial_z \underline{f}_k(z)|_{z=\epsilon} + (k \leftrightarrow -k)$$

$$\langle \mathcal{O}(k_1)\mathcal{O}(k_2)
angle_c^\epsilon = -rac{\delta}{\delta\phi_0(k_1)}rac{\delta}{\delta\phi_0(k_2)}S = (2\pi)^d\delta^d(k_1+k_2)\mathcal{F}_\epsilon(k_1)\;.$$

$$\begin{split} \mathcal{K}_{\nu}(u) = & u^{-\nu}(a_0 + a_1 u^2 + a_2 u^4 + \cdots) & \text{(leading term)} \\ & + u^{\nu} \ln u(b_0 + b_1 u^2 + b_2 u^4 + \cdots) & \text{(subleading term)} \end{split}$$

$$\begin{aligned} \mathcal{F}_{\epsilon}(k) &= 2\epsilon^{-d+1}\partial_{z} \left(\frac{(kz)^{-\nu+d/2}(a_{0}+\cdots)+(kz)^{\nu+d/2}\ln kz(b_{0}+\cdots)}{(k\epsilon)^{-\nu+d/2}(a_{0}+\cdots)+(k\epsilon)^{\nu+d/2}\ln k\epsilon(b_{0}+\cdots)} \right. \\ &= 2\epsilon^{-d} \left[\left\{ \frac{d}{2} - \nu(1+c_{2}(\epsilon^{2}k^{2})+c_{4}(\epsilon^{4}k^{4})+\cdots) \right\} \right. \\ &+ \left\{ \nu \frac{2b_{0}}{a_{0}}(\epsilon k)^{2\nu}\ln(\epsilon k)(1+d_{2}(\epsilon k)^{2}+\cdots) \right\} \right] \\ &\equiv (\mathrm{I}) + (\mathrm{II}) \end{aligned}$$

(I): Laurent series in ϵ with coefficients $k^{\text{even integer}}$ (*i.e.* analytic in k at k = 0). \equiv contact terms \equiv short distance goo:

$$\int d^d k e^{-ikx} (\epsilon k)^{2m} \epsilon^{-d} = \epsilon^{2m-d} \Box_x^m \delta^d(x) \qquad (m \in \mathbb{Z}_+)$$

The ϵ^{2m-d} agrees w/ ϵ is a UV cutoff for the QFT.

Checking that $\langle \mathcal{O}(x)\mathcal{O}(0)\rangle \sim \frac{1}{|x|^{2\Delta}}$

The interesting bit of $\mathcal{F}(k)$, which gives the $x_1 \neq x_2$ behavior of the correlator, is non-analytic in k:

(II) =
$$-2\nu \cdot \frac{b_0}{a_0} k^{2\nu} \ln(k\epsilon) \cdot \epsilon^{2\nu-d} (1 + \mathcal{O}(\epsilon^2)),$$

input of Bessel: $\frac{b_0}{a_0} = \frac{(-1)^{\nu-1}}{2^{2\nu}\nu\Gamma(\nu)^2}$ for $\nu \in \mathbb{Z}$

FT of leading term:
$$\int d^d k e^{-ikx} (\mathrm{II}) = \frac{2\nu\Gamma(\Delta_+)}{\pi^{d/2}\Gamma(\Delta_+ - d/2)} \frac{1}{x^{2\Delta_+}} \epsilon^{2\nu-d}$$

- AdS radius appears only in overall normalization, in the combination $\Re L^{d-1}$.
- Multiplicative renormalization removes the $e^{2\nu-d}$.
- Holographic Renormalization: add to S_{bulk} the local, intrinsic boundary term

$$\Delta S = S_{\text{c.t.}} = \frac{\Re}{2} \int_{\text{bdy}} d^d x \left(-\Delta_- L^{d-1} \epsilon^{2\Delta_- - d} \left(\phi_0^{\text{Ren}}(x) \right)^2 \right)$$
$$= -\Delta_- \frac{\Re}{2L} \int_{\partial AdS, z=\epsilon} \sqrt{\gamma} \, \phi^2(z, x)$$

Affect neither bulk EOM nor $G_2(x_1 \neq x_2)$, cancels divergences.

Real-time

In Euclidean signature (or Lorentzian signature with spacelike k^2) regularity in the IR uniquely determined the correct solution.

In Lorentzian signature with timelike k^2 ($\omega^2 > \vec{k}^2$), \exists many solutions with the same UV behavior ($z \rightarrow 0$), different IR behavior:

$$z^{d/2} K_
u(\pm i q z) \stackrel{z o \infty}{pprox} e^{\pm i q z} \qquad q \equiv \sqrt{\omega^2 - ec k^2}$$

these modes oscillate near the Poincaré horizon. this ambiguity reflects the multiplicity of real-time Green's f'ns.

Important example: retarded Green's function, describes causal response of the system to a perturbation.

Linear response: nothing fancy, just QM

The retarded Green's function for two observables \mathcal{O}_A and \mathcal{O}_B is

$$G^{R}_{\mathcal{O}_{A}\mathcal{O}_{B}}(\omega,k) = -i \int d^{d-1}x dt \ e^{i\omega t - ik \cdot x} \theta(t) \langle [\mathcal{O}_{A}(t,x), \mathcal{O}_{B}(0,0)] \rangle$$

 $\theta(t) = 1$ for t > 0, else zero.

(We care about this because it determines what $\langle \mathcal{O}_A \rangle$ does if we kick the system via \mathcal{O}_B .)

the source is a time dependent perturbation to the Hamiltonian:

$$\delta H(t) = \int d^{d-1} x \phi_{B(0)}(t, x) \mathcal{O}_B(x) \, .$$

$$\begin{array}{lll} \langle \mathcal{O}_{\mathcal{A}} \rangle(t,x) & \equiv & \mathrm{Tr} \ \rho(t) \ \mathcal{O}_{\mathcal{A}}(x) \\ & = & \mathrm{Tr} \ \rho_0 \ U^{-1}(t) \ \mathcal{O}_{\mathcal{A}}(t,x) U(t) \end{array}$$

in interaction picture: $U(t) = Te^{-i\int^t \delta H(t')dt'}$ (e.g. $\rho_0 = e^{-\beta H_0}$)

Linear response, cont'd

linearize in small perturbation:

$$\begin{split} \delta \langle \mathcal{O}_A \rangle (t,x) &= -i \mathrm{Tr} \ \rho_0 \int^t dt' [\mathcal{O}_A(t,x), \delta H(t')] \\ &= -i \int^t d^{d-1} x' dt' \langle [\mathcal{O}_A(t,x), \mathcal{O}_B(t',x')] \rangle \phi_{B(0)}(t',x') \\ &= \int dx' G_R(x,x') \phi_B(x') \end{split}$$

fourier transform:

$$\delta \langle \mathcal{O}_{\mathcal{A}} \rangle(\omega, k) = \mathcal{G}_{\mathcal{O}_{\mathcal{A}}\mathcal{O}_{\mathcal{B}}}^{\mathcal{R}}(\omega, k) \delta \phi_{\mathcal{B}(0)}(\omega, k)$$

Linear response, an example

perturbation: an external electric field, $E_x = i\omega A_x$ couples via $\delta H = A_x J^x$ where J is the electric current ($\mathcal{O}_B = J_x$) response: the electric current ($\mathcal{O}_A = J_x$)

$$\delta \langle \mathcal{O}_{A} \rangle(\omega, k) = G_{\mathcal{O}_{A}\mathcal{O}_{B}}^{R}(\omega, k) \delta \phi_{B(0)}(\omega, k)$$

it's safe to assume $\langle J \rangle_{E=0} = 0$:

 \implies Kubo formula :

$$\langle \mathcal{O}_J \rangle(\omega, k) = G_{JJ}^R(\omega, k) A_x = G_{JJ}^R(\omega, k) \frac{E_x}{i\omega}$$

Ohm's law: $J = \sigma E$

$$\sigma(\omega,k) = \frac{G_{JJ}^R(\omega,k)}{i\omega}$$

Holographic real-time prescription

Claim $_{\rm [Son-Starinets\ 2002]}$: corresponds to the solution which at $z\to\infty$ describes stuff falling into the horizon

- Both the retarded response and stuff falling through the horizon describe things that *happen*, rather than *unhappen*.
- You can check that this prescription gives the correct analytic structure of G_R(ω) ([Son-Starinets] and all the hundreds of papers that have used this prescription).
- It has been derived from a holographic version of the Schwinger-Keldysh prescription [Herzog-Son, Maldacena, Skenderis-van Rees].

The fact that stuff goes past the horizon and doesn't come out is what breaks time-reversal invariance in the holographic computation of G^R . Here, the ingoing choice is $\phi(t, z) \sim e^{-i\omega t + iqz}$: as t grows, the wavefront moves to larger z.

(the solution which computes causal response is $z^{d/2}K_{+\nu}(iqz)$.)

The same prescription, adapted to the black hole horizon, works in the finite temperature case.

What to do with the solution

determining $\langle {\cal O} {\cal O} \rangle$ is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc, behaves near the boundary as

$$\underline{\phi}(z,x) \approx \left(\frac{z}{L}\right)^{\Delta_{-}} \phi_{0}(x) \left(1 + \mathcal{O}(z^{2})\right) + \left(\frac{z}{L}\right)^{\Delta_{+}} \phi_{1}(x) \left(1 + \mathcal{O}(z^{2})\right);$$

this formula defines the coefficient ϕ_1 of the subleading behavior of the solution. All the information about G is in ϕ_0, ϕ_1 . recall: $Z[\phi_0] \equiv e^{-W[\phi_0]} \simeq e^{-S_{\text{bulk}}[\underline{\phi}]}|_{\substack{\phi^z \to 0\\ \sigma \to z^{\Delta} - \phi_0}}$ confession: this is a euclidean eqn. next: a nice general trick. [Iqbal-Liu] **classical mechanics interlude:** consider a particle in 1d with action $S[x] = \int_{t_i}^{t_f} dt L$. The variation of the action with respect to the initial value of the coordinate is the initial momentum: $x(t_i) = \frac{\delta S}{\delta x(t_i)}, \quad \Pi(t) \equiv \frac{\partial L}{\partial \dot{x}} \quad . \quad (3)$

Thinking of the radial direction of AdS as time, a mild generalization of (3): [Iqbal-Liu]

$$\langle \mathcal{O}(x) \rangle = \frac{\delta W[\phi_0]}{\delta \phi_0(x)} = \lim_{z \to 0} \left(\frac{z}{L} \right)^{\Delta_-} \Pi(z, x)|_{\text{finite}},$$

where $\Pi \equiv \frac{\partial \mathcal{L}}{\partial (\partial_z \phi)}$ is the bulk field-momentum with z treated as time. two minor subtleties:

(1) the factor of z_{-}^{Δ} arises because of our renormalization of $\phi: \phi \sim z^{\Delta_{-}} \phi_{0}$, so $\frac{\partial}{\partial \phi_{0}} = z^{-\Delta_{-}} \frac{\partial}{\partial \phi(z=\epsilon)}$.

(2) Π itself in general has a term proportional to the source ϕ_0

Linear response from holography

With these caveats, away from the support of the source:

$$\langle \mathcal{O}(x) \rangle = \mathfrak{K} \frac{2\Delta - d}{L} \phi_1(x).$$

linearize in the size of the perturbing source:

$$\langle \mathcal{O}(\mathbf{x}) \rangle = G_R \cdot \phi_0$$

summary: The leading behavior of the solution encodes the source *i.e.* the perturbation of the *action* of the QFT. The coefficient of the subleading falloff encodes the response [Balasubramanian et al, 1996].

[figure: Hartnoll, 0909.3553]

(Quasi)normal modes

determining $\langle {\cal O} {\cal O} angle$ is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc, behaves near the boundary as

$$\underline{\phi}(z,x) \stackrel{z \to 0}{\approx} \left(\frac{z}{L}\right)^{\Delta_{-}} \phi_{0}(x) \left(1 + \mathcal{O}(z^{2})\right) + \left(\frac{z}{L}\right)^{\Delta_{+}} \phi_{1}(x) \left(1 + \mathcal{O}(z^{2})\right);$$

Important conceptual point: the Hilbert spaces are the same.

A useful visualization: 'Witten diagrams'

e.g. consider 3-point function, $\langle OOO \rangle = \left(\frac{\delta}{\delta \phi_0}\right)^3 \ln Z|_{\phi_0=0}$. cubic coupling matters:

$$(\Box - m_1^2)\phi_1(z,x) = b\phi_2\phi_3$$
 and perms.

Solve perturbatively in ϕ_0 : (*K*, *G* are Green's f'ns for $\Box - m_i^2$)

external legs \leftrightarrow sources ϕ_0 , vertices \leftrightarrow bulk interactions

$$\begin{array}{ll} \text{With} \quad S_{\text{above}} = \int_{\text{bulk}} \left[(\partial \phi)^2 + \phi^2 \right] \\ \delta \phi \sim \delta \phi_1 z^{\Delta} \text{ gives } \delta S_{\text{above}} = \infty \text{ for } \Delta > d/2. \\ \\ \text{With} \quad S = S_{\text{above}} + \# \int_{\text{bdy}} \sqrt{\gamma} \phi n \cdot \partial \phi \end{array}$$

the fluctuation with $\phi \sim z^{\Delta}$ is normalizible for $\Delta < \frac{d-2}{2}$. Result: can treat $\phi_1 z^{\Delta_-}$ as source, $\phi_0 z^{\Delta_+}$ as response: $G_{\text{alt}} = \frac{\phi_0}{\phi_1} = G_{\text{usual}}^{-1}$. Interpretation: alternative quantization is a CFT with a relevant double trace operator $\Delta (\mathcal{O}^2) = 2\Delta_-$ Perturbation (by $\Delta S_{\text{alt}} = \int_{\text{bdy}} \sqrt{\gamma} \phi^2$)leads back to ordinary quantization. Next: thermal equilibrium