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Recap



gravity in spacetimesg1

o . : FT,
with timelike asymptotic boundaries QF T4

important special case:

gravity in AdS441 = d-dimensional conformal field theory (CFT)
isometries of AdSgy1 «~ conformal symmetry

2

AdSyp

2
AdS: ds? = =5 (—dt? + d5?) + R
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The extra (‘radial’) dimension r = 1/z is the resolution scale.
fields in bulk «~ (possibly-) running couplings

A2 -
ZQFT[SOUI'C@S, ¢o] ~ e N /bulk[boundary conditions at r—)oo]‘saddle of houi



A word about large N?

most prominent example: 't Hooft limit of N x N matrix fields X.
physical operators are O, = tr X

this accomplishes several related things:

o (00)~(0)0)+0(N?)

is the statement that something (the excitations created by ©) behaves
classically.

e provides notion of single-particle states in bulk.

e makes saddle well-peaked Z ~ e NI

important comment:
this is just the best-understood class of examples.
in other examples, the # of dofs goes like N? b # 2.

I'll always write N2 as a proxy for this large number.



An example of a theory with a known gravity dual

N =4 SYM is a family of superconformal FTs.
The NV =4 SYM action is schematically

Loym ~tr (F2+ (DO + iU - DV + g2[0, 0] 4 ig¥[o, W])
this gauge theory comes with 2 parameters:

a coupling constant A = g2N (with 8y = 0)
an integer, the number of colors N.

N =4 SYMy \ = |IIB strings in AdSs x S° of size A\, = 1/N

[Maldacena 1997]
e large N makes gravity classical (improves saddle point, suppresses
splitting and joining of strings)
e strong coupling (large \) makes the geometry big. (improves bulk
deriv. expansion)
‘11B strings in ..." specifies a list of bulk fields and interactions.
3 infinitely many other examples of dual pairs [eg Hanany, Vegh et al._]



More dictionary
really a ¢, for every O? in CFT. how to match?

1. organize into reps of conformal group
2. single-trace operators correspond to ‘elementary fields' in the bulk.

states from multitrace ops (tr X*)?|0) — 2-particle states of ¢.
3. simple egs fixed by symmetry:
e gauge fields in bulk A, — global currents J* in bdy
SoFT 2 f AL JH (massless A «~s conserved J)
e def of QFT stress tensor: response to change in metric on
boundary Sqrr > [ 0gu, TH

energy momentum tensor: THY graviton: g,p
global current: J# — Maxwell field: A,
scalar operator: Op scalar field: ¢

fermionic operator: Of fermionic field: .

boundary conditions on bulk fields «~+ couplings in field theory
e.g.: boundary value of bulk metric lim,— o guv

= source for stress-energy tensor TH”
different couplings in bulk action «~ different field theories



Next: a few technical slides from which we can confirm our
interpretation

u = RG scale

and see the machinery at work.



How to calculate

ZgFt[sources] =~ e
more explicitly:

Zgrrlsources, o] = (e7 /%9 cpr

As when counting dofs, we anticipate UV divergences
at the boundary z — 0,

cut off the bulk at z =€

and set bc's there. AdSy
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Example: scalar probe

Simple example: scalar field in the bulk. Natural (covariant) action:
R
AS[g] = -5 / dx/g [g“BaAch?qu + m2¢? + bg® 4. }

£, a normalization constant: assume the theory of ¢ is weakly coupled, & oc N2,

—Tde g = (977, =02 )

We W|II study fluctuations around the solution ¢ = 0, AdS.
2
(Recall: (00) = (%) InZ| g — o)
——
— ignore interactions of ¢ for now.

Integrate by parts:

__E d zB _5 _ 2 3
== [ axEgPo0m0-3 [ VEG(-D+ ) ool



From this expression we learn:

» the EOM for small fluctuations of ¢ is (— 4+ m?)¢ =0

(An underline will indicate fields which solve the equations of motion.)
» If ¢ solves the equation of motion, the on-shell action
Slgl, Z=e "Wl
is just given by the boundary term.
next: relate bulk masses and operator dimensions

A(A —d) = m?L?

by studying the AdS wave equation near the boundary.



Wave equation in AdS

translational invariance in d dimensions, x* — x* + a#,

Fourier : ¢(z,x") = e fi(2), k' = —wt + k-X

1
0 = (g"kyk, — —0, Z9,) + m*)fi(z
(8" Ky N (Vgg*0;) )fi(2)
%[22/8 ~ 29,2919, + P lf2), (1)

we used g*% = (z/L)*6"%, /g = /|det g| = (£ )d+l
Near boundary (z — 0), power law solns, (spoiled by the z?k? term).
Try f = z% in (1):

0 = k222+A _ Zd+laZ(Az—d+A) + m2L2zA
(k22?2 — A(A — d) + m?12)Z2
and for z — 0 we get:

A(A — d) = mPL? (2)

The two roots of (2) are Ay = 9 & (%)2 + m?L2.



Comments S

Ar =9 +4/(9)% + m2L2. o

Nl

» The solution proportional T e
to z2- is bigger near z — 0. —
usually the source (‘non-normalizable’)

» A, >0 V m: z2+ always decays near
the boundary

» AL+ A =d.

We want to impose boundary conditions that allow solutions.
Leading z — 0 behavior of generic solution: ¢ ~ z2~, we impose

3(x, 2)|22e = do(x,€) = €A G5 (%),

where d)é"e” is a renormalized source field.



Wavefunction renormalization of O (Heuristic but useful)

e d?

Suppose: (g = Zr + yuwdx"dx” defines the boundary metric «y .)
d
dey > / dx \ﬁ ¢0(X7 E)O(Xv 6)
Z=€

= /ddx <i>d(6A‘¢§e”(X))O(X76)7

where we have used /7 = (L/€)".
Demanding that this be finite as ¢ — 0:

O(x,€) ~ eI=B-0ORen(x)
_ €A+OR6"(X)7

(we used AL + A_ =d)

The scaling dimension of OFe" is A, = A.

e To confirm: (O(x)O(0)) ~ M%

e For small m?, 3 ‘alternative quantization’: another CFT from the same bulk

theory with Neumann boundary conditions on ¢.



Relevantness

d d\?
_ ¢ el 212
Ai 5 + (2> +m L
elf m>0 A= A4 > d, so Op is an irrelevant operator.
AS = /ddx (mass)? 204,

the effects of such an operator go away in the IR, at energies E < mass.
¢ ~ 28 g is this coupling.

It grows in the UV (small z). If ¢ is a finite perturbation, it will back-react on
the metric and destroy the asymptotic AdS-ness of the geometry: extra data
about the UV will be required.

e m?> =0 :<> A = d means that O is marginal.

o If M <0: A <d, so is a relevant operator. Note that in
AdS, m? < 0 is ok (i.e. not unstable) if m? is not too negative.
(Note: A(m) depends on the spin of the bulk field.)



Vacuum of CFT, euclidean case

Return to the scalar wave equation in momentum space:
0= [z9T10,(z7910,) — m*[? — 22k*)fi(2)

If k2 >0 (spacelike or Euclidean) the general solution is

(ax, ar, integration consts):
fi(z) = axz9?K, (kz)+a1z9/%1,(kz), v = A—f (d/2)? + m2L2.

In the interior of AdS (z — o0), the Bessel functions behave as

K, (kz) 2" ek I (kz) “R° ek
regularity in the interior uniquely fixes f, x K.
Plugging this into the action S gives (O(x)O(0)) ~ \X\M

note: 3 nonlinear uniqueness statement, ‘Graham-Lee theorem’



Correlation functions of scalar operators from AdS
The solution with fx(z =€) = 1 (‘the regulated bulk-to-boundary

propagator’), is
Zd/zKu(kz) ' ikx d
R I K T ACE )

The general position space solution can be obtained by Fourier decomposition:

ol (x) = / ke £ (2)go(k,€) -

‘on-shell action’ (i.e. the action evaluated on the saddle-point solution):

Stél =~ [ d*xvien- 00

ﬁLd_l

- A / d?keo(k, €)F.(K)go(—k, )

Fo(k) =279 1 (2)20,£,(2)|2=c + (k & —k)

(O(k1)O(k2))E = — S = (2m)969(ky + ko) Fo(ky) .

1) 1)
doo(k1) dpo(k2)



K, (u) =u™"(ap + alu2 +aut + - - ) (leading term)
+u”In u(bg + biu? + byu* + - - ) (subleading term)

2e_d+18 (kZ)*I/+d/2(aO 4+ - ) + (kz)ll+d/2|n kZ(bO 4. )
z (ke)*u+d/2(ao_|_...)+(k€)u+d/2|nk€(bo+“.)

2¢ ¢ H;j —v(1+ c2(2k?) + ca(e*k*) + - - )}

+ {Vi[:)(ek)zyln(ek)(l + do(ek)? + - )H
= () + (1I1)

(1): Laurent series in € with coefficients keven integer
(i.e. analytic in k at k = 0). = contact terms = short distance goo:

/ ke (ck)2me=d = 2m=drmsd () (m e Z.)

The 2™~ agrees w/ ¢ is a UV cutoff for the QFT.



: 1
Checking that (O(x)O(0)) ~ 1=
The interesting bit of F(k), which gives the x; # x» behavior of the correlator,
is non-analytic in k:
bo

(I1) = —2v
a0

=k In(ke) - €741 + O(€2)),
input of Bessel: la’—g = % for veZ

2I/r(A'f') 1 62V—d
Td2M (A4 — d/2) x?A+ '

e AdS radius appears only in overall normalization, in the combination £L97!,
2v—d

FT of leading term: /ddke_ikX(II) =

e Multiplicative renormalization removes the €

® Holographic Renormalization: add to Spui the local, intrinsic boundary term

As=s, = 2 / dx (A 19718 (457 (x))?)

- a2 VA (z.%)

OAdS,z=c
Affect neither bulk EOM nor Gp(x; # x2), cancels divergences.



Real-time

In Euclidean signature (or Lorentzian signature with spacelike k?)
regularity in the IR uniquely determined the correct solution.

In Lorentzian signature with timelike k? (w* > k%),
3 many solutions with the same UV behavior (z — 0), different IR
behavior:

292K, (+iqz) TR etz g=1/w? - k2

these modes oscillate near the Poincaré horizon.
this ambiguity reflects the multiplicity of real-time Green's f'ns.

Important example: retarded Green's function, describes causal
response of the system to a perturbation.



Linear response: nothing fancy, just QM

The retarded Green's function for two observables O4 and Og is
G8 o (. K) = —i / d9Lxdt €t *0(£) ([Oa(t, ), O (0, 0)])

6(t) =1 for t > 0, else zero.
(We care about this because it determines what (O4) does if we kick the
system via Og.)

the source is a time dependent perturbation to the Hamiltonian:

SH(t) = /dd1x¢3(0)(t,x)03(x).

(Oa)(t,x) = Tr p(t) Oa(x)
= Tr po U H(£)Oa(t, x) U(t)

in interaction picture: U(t) = Te '/ SHd (g g py = e=FHo)



Linear response, cont'd

linearize in small perturbation:

3{(Oa)(t,x) = —iTr po /t dt'[Oa(t, x), 6H(t')]
_ / 91X dt' ([Oa(, x), Os(¢'. 3 )) b0y (£ X')

- /dx’GR(XaX/WB(X,)

fourier transform:

5<OA>(W’ k) = G(I.’;AOB(W7 k)é(bB(O)(w? k)



Linear response, an example

perturbation: an external electric field, Ex = iwAx
couples via §H = A, J* where J is the electric current (0Og = J)
response: the electric current (Oa = Jy)

5(0a)(w, k) = 65,00 (w, K)365(0) («; k)
it's safe to assume (J)e—o = O:

E«
(0.)(w, k) = G, KA = GF (e, k) =

Ohm's law: J =cE

GR(w, k
—> Kubo formula : o(w, k) = ij:j’)




Holographic real-time prescription

Claim [son-starinets 2002: corresponds to the solution which at z — oo
describes stuff falling into the horizon

» Both the retarded response and stuff falling through the
horizon describe things that happen, rather than unhappen.

» You can check that this prescription gives the correct analytic
structure of GR(w) ([SonfStarinets] and all the hundreds of papers that

have used this prescription).

» It has been derived from a holographic version of the
SChWInger—Ke|dySh prescription [Herzog-Son, Maldacena, Skenderis-van Rees].

The fact that stuff goes past the horizon and doesn't come out is what breaks
time-reversal invariance in the holographic computation of G¥.

Here, the ingoing choice is ¢(t, z) ~ e~ /witiaz;

as t grows, the wavefront moves to larger z.

(the solution which computes causal response is z%/2K , (igz).)

The same prescription, adapted to the black hole horizon, works in
the finite temperature case.



What to do with the solution

determining (QO) is like a scattering problem in QM
The solution of the equations of motion, satisfying the desired IR bc,
behaves near the boundary as

z V4

oz~ () 600 (14 0(2) + ()™ 1) (14 0(2)

this formula defines the coefficient ¢1 of the subleading behavior of the solution.

All the information about G is in ¢o, ¢1.
recall: Z[¢g] = e~ WIool ~ e~ Sbuild]| S0
Z Qo
confession: this is a euclidean eqn. next: a nice general trick. [igbal-Liy]



classical mechanics interlude: consider a particle in 1d with
action S[x] = tt_f dtL. The variation of the action with respect to
the initial(galue of the coordinate is the initial momentum:

XUy

n(t) = : nie)=— . (3)

Thinking of the radial direction of AdS as time, a
mild generalization of (3): fiabat-Liu

(060) = S = tim (£)% Gz e

where 1 = % is the bulk field-momentum with z treated as time.

two minor subtleties:

(1) the factor of z® arises because of our renormalization of ¢: ¢ ~ 22~ o, so
) _ A _ D
ddo dp(z=e) "

(2) N itself in general has a term proportional to the source ¢




Linear response from holography

With these caveats, away from the support of the source:

(0()) = 822761 (x).

linearize in the size of the perturbing source:
(O(x)) = Gr - o

summary: The leading behavior of the solution encodes the
source i.e. the perturbation of the action of the QFT.
The coefficient of the subleading falloff encodes the response

[Balasubramanian et al, 1996].

[figure: Hartnoll, 0909.3553]




(Quasi)normal modes

determining (OQ) is like a scattering problem in QM
The solution of the equations of motion, satisfying the desired IR bc,
behaves near the boundary as

z— A Ay
(z,x) = (%) do(x) (1+ 0(22))+(%) ¢1(x) (14+0(2%))
21
G x %0 lR
[figure: Hartnoll, 0909.3553] ®

G has poles when ¢1 # 0, ¢g = 0: response Withoutm
this means that the system has an actual mode at that energy
(if w € €, 'quasinormal mode’)

Important conceptual point: the Hilbert spaces are the same.



A useful visualization: ‘Witten diagrams'3
e.g. consider 3-point function, (O00) = (5%0> In Z|4,=0
cubic coupling matters:

(O —m})¢1(z,x) = bgads  and perms.

Solve perturbatively in ¢o: (K, G are Green's f'ns for O — m?)
Ql(z,x) = /ddleAl (z,x; xl)gbé(xl)
+ b/ d¥x'dz'\/gGP (z,x; 2, X')

/ddxl/ddszA2 Z X' x ¢0 xl)KA3(z X' xo gf)o x2)+ o0 b2¢0

0)x)

external legs <+ sources ¢, vertices <> bulk interactions



Comment on alternative quantization
A =9 +,/(2)7 +m2L2. Y

Lowest A, is d/2. Unitarity bound is ¢52.
Idea [Klebanov-Witten 99]: If Under ’
d¢, 6S # 00, maybe we can let d¢ fluctuate.

With Sypove — / (86)% + 6]

bulk
5¢ ~ 5122 gives S pove = 00 for A > d/2.

Wlth 5 - Sabove + #/ ﬁ¢n ' aqb
bdy

the fluctuation with ¢ ~ z2 is normalizible for A < 952

Result: can treat ¢1z2~ as source, ¢oz2+ as response:
G = 2 =G}

It = %, usual*
Interpretation: alternative quantization is a CFT with a relevant double trace
operator A (0%) = 2A_

Perturbation (by AS. = [ /7¢°)leads back to ordinary quantization.



Next: thermal equilibrium



