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Preface

My goal for these lectures is to convince you that string theory
may be useful for many-body problems.

The systems about which we can hope to say something using
string theory have in common strong coupling.
This makes our usual techniques basically useless.

goal for first lecture:

Make plausible the statement that AdS/CFT solves certain
strongly-coupled quantum field theories
in terms of simple (gravity) variables.



A word about string theory
String theory is a (poorly-understood) quantum theory of gravity
which has a ‘landscape’ of many groundstates

V

geometry of spacetime

some of which look like our universe
(3 + 1 dimensions, particle physics...)

most of which don’t.

A difficulty for particle physics, a virtue for many-body physics:
by AdS/CFT, each groundstate (with Λ < 0) describes a universality
class of critical behavior and its deformations
This abundance mirrors ‘landscape’ of many-body phenomena.

Note: tuning on both sides.

An opportunity to connect string theory and experiment.
New perspective on the structure of QFT: access to

uncalculable things in uncalculable situations

G (ω, k,T ) at strong coupling
potentials for moving probes far from equilibrium
entanglement entropy in real time

with a finite density of fermions



Outline

1. stringless motivation of the duality and basic dictionary

2. correlation functions in AdS

3. finite temperature and a little bit of transport

Some references:
JM, Holographic duality with a view toward many-body physics, 0909.0518

Maldacena, The gauge/gravity duality, 1106.6073

Polchinski, Introduction to Gauge/Gravity Duality, 1010.6134

Hartnoll, Quantum Critical Dynamics from Black Holes, 0909.3553

Horowitz, Polchinski Gauge/gravity duality, gr-qc/0602037



Bold assertions

[Horowitz-Polchinski, gr-qc/0602037]

a) Some ordinary quantum many-body systems are actually
quantum theories of gravity in extra dimensions
(≡ quantum systems with dynamical spacetime metric).

b) Some are even classical theories of gravity.

What can this mean?

Two hints:
1. The Renormalization Group (RG) is local in scale
2. Holographic Principle



Old-school universality

experimental universality (late 60s):
same critical exponents from very different systems.
Near a (continuous) phase transition (at T = Tc ), scaling laws:
observables depend like power laws on the distance from the critical point.

e.g. ferromagnet near the Curie transition (let t ≡ Tc−T
Tc

)

specific heat: cv ∼ t−α

magnetic susceptibility: χ ∼ t−γ

water near its liquid-gas critical point:

specific heat: cv ∼ t−α

compressibility: χ ∼ t−γ

with the same α, γ!



Renormalization group idea
This phenomenon is explained via the Kadanoff-Wilson idea:

IR UV
u

e.g . : H =
∑

ij

JijSiSj

Idea: measure the system with coarser and coarser rulers.

Let ‘block spin’ = average value of spins in block.
Define a Hamiltonian H(u) for block spins so long-wavelength
observables are the same.
−→ a flow on the space of hamiltonians: H(u)



Fixed points of the RG are scale-invariant

This procedure (the sums) is hard to do in practice.

H(water molecules)

H(IR fixed point)

UV

IR

z=1/u

H(electron spins in a ferromagnet)

12

13

K

J

Many microscopic theories will flow to the same fixed-point
−→ same critical scaling exponents.

The fixed point theory is scale-invariant:
if you change your resolution you get the same picture back.



Hint 1: RG is local in scale
QFT = family of trajectories on the space of hamiltonians: H(u)
at each scale u, expand in symmetry-preserving local operators {OA}

H(u) =

∫
dd−1x

∑
A

gA(u)OA(u, x)

[e.g. suppose the dof is a scalar field. then {OA} = {(∂φ)2, φ2, φ4, ...} ]

since H(u) is determined by a step-by-step procedure,

u∂ug = βg (g(u)) .

for each coupling g

locality in scale: βg depends only on g(u).

H(water molecules)

H(IR fixed point)

UV

IR

z

H(electron spins in a ferromagnet)

J

13

12

JDef: near a fixed point,
βg is determined by the scaling dimension ∆ of O:

OA(x , u1) ∼
(
u1

u2

)∆A

OA(x , u2)

ops of large ∆ (> d , “irrelevant”)

become small in IR (as u → 0).



Hint 2: Holographic principle

holographic principle: in a gravitating system, max entropy in region V
∝ area of ∂V in planck units. [’t Hooft, Susskind 1992]

recall: max entropy SMAX ∼ lndimH ∝ #dof .

in an ordinary system with local dofs SMAX ∝ V

to see that gravitating systems are different, we combine two facts:

fact 1: BH has an entropy ∝ area of horizon in planck units.

SBH =
A

4GN

in d + 1 spacetime dimensions, GN ∼ `d−1
p −→ SBH dimless.

Whence fact 1?

Black holes have a temperature [Hawking] e.g. TH = 1
8πGN M

for schwarzchild

Consistent thermodynamics requires us to assign them an entropy:

dEBH = THdSBH for schwarzchild, EBH = M, A = 4π(4M2G 2) gives (?)

‘Generalized 2d Law’: Stotal = Sordinary stuff + SBH



Hint 2: Holographic principle, cont’d

fact 2: dense enough matter collapses into a BH
1 + 2 −→ in a gravitating system,
max entropy in a region of space =
entropy of the biggest black hole that fits.

Smax = SBH =
1

4GN
× horizon area

Idea [Bekenstein, 1976]: consider a volume V with area A in a flat region
of space.
suppose the contrary: given a configuration with
S > SBH = A

4GN
but E < EBH (biggest BH fittable in V )

then: throw in junk (increases S and E ) until you make a BH.
S decreased, violating 2d law.
punchline: gravity in d + 2 dimensions has the same number of degrees of

freedom as a QFT in fewer (d + 1) dimensions.



1+2

Combining these hints, we conjecture:

gravity
in a space with an extra dim

whose coord is the energy scale

?
= QFT

To make this more precise, we consider a simple case
(AdS/CFT) [Maldacena, 1997]

in more detail.



AdS/CFT
A relativistic field theory, scale invariant (βg = 0 for all nonzero g)

xµ → λxµ µ = 0...d − 1, u → λ−1u

u is the energy scale, RG coordinate

with d-dim’l Poincaré symmetry: Minkowski ds2 = −dt2 + d~x2

Most gen’l d + 1 dim’l metric w/ Poincaré plus scale inv.

AdSd+1 : ds2 =
u2

L2

(
−dt2 + d~x2

)
+ L2 du

2

u2
L ≡ ‘AdS radius′

If we rescale space and time and move in the radial dir,

the geometry looks the same (isometry).

copies of minkowski space of varying ‘size’.
(Note: this metric also has conformal symmetry SO(d , 2)

∃ gravity dual =⇒ “Polchinski’s Theorem” for any d .)

another useful coordinate:

z ≡ L2

u
ds2 = L2−dt2 + d~x2 + dz2

z2

[u] = energy, [z] = length (c = ~ = 1 units).



Geometry of AdS continued

uIR

R

AdSd+1

d−1,1

minkowski

UV

...

BOUNDARY

IR UV
u

The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)

preliminary conjecture:

gravity on AdSd+1 space
?
= CFTd

crucial refinement:
in a gravity theory the metric fluctuates.
−→ what does ‘gravity in AdS’ mean ?!?



Geometry of AdS continued

AdS has a boundary (where u →∞, z → 0, ‘size’ of Mink blows up).

massless particles reach it in finite time.

=⇒ must specify boundary conditions there.
the fact that the geometry is AdS near there is one of these
boundary conditions.
different from Minkowski space or (worse) de Sitter:

AdS dSMink

(asymptotic boundary)

time

rescaled
space

so: some CFTd
?
= gravity on asymptotically AdSd+1 space

(we will discuss the meaning of this ‘=’ much more)



Preview of dictionary

“bulk” ! “boundary”

fields in AdSd+1 ! operators in CFT

(Note: operators in CFT don’t make particles.)

mass ! scaling dimension

m2L2 = ∆(∆− d)

a simple bulk theory
with a small # of light fields

!
CFT with

a small # of ops of small ∆
(like rational CFT)



What to calculate

some observables of a QFT (Euclidean for now):
vacuum correlation functions of local operators:

〈O1(x1)O2(x2) · · · On(xn)〉

standard trick: make a generating functional Z [J] for these correlators by

perturbing the action of the QFT:

L(x)→ L(x) +
∑

A

JA(x)OA(x) ≡ L(x) + LJ(x)

Z [J] = 〈e−
∫
LJ 〉CFT

JA(x): arbitrary functions (sources)

〈
∏

n

On(xn)〉 =
∏

n

δ

δJn(xn)
lnZ

∣∣∣
J=0

Hint: LJ is a UV perturbation – near the boundary, z → 0



Holographic duality made quantitative

[Witten; Gubser-Klebanov-Polyakov (GKPW)]

ZQFT [sources] = Zquantum gravity[boundary conditions at u →∞]

≈ e−Sbulk[boundary conditions at u→∞]|saddle of Sbulk

J = φ0 ”φ
u→∞→ φ0”

What’s Sbulk? AdS solves the EOM for

Sbulk =
1

#GN

∫
dd+1x

√
g (R− 2Λ + ...)

(... = fields which vanish in groundstate, more irrelevant couplings.)

expansion organized by decreasing relevance

Λ = −d(d−1)
2L2 note tuning!

R ∼ ∂2g =⇒ GN ∼ `d−1
p

gravity is classical if L� `p.

This is what comes from string theory (when we can tell)

at low E and for 1
L �

1√
α′
≡ 1

`s
( 1
α′ = string tension)

(One basic role of string theory here: fill in the dots.)



Conservation of evil

large AdS radius L ! strong coupling of QFT

(avoids an immediate disproof – obviously a perturbative QFT isn’t usefully an

extra-dimensional theory of gravity.)

a special case of a

Useful principle (Conservation of evil):
different weakly-coupled descriptions
have non-overlapping regimes of validity.

strong/weak duality: hard to check, very powerful
Info goes both ways: once we believe the duality, this is our best definition of

string theory.



Holographic counting of degrees of freedom

[Susskind-Witten]

Smax =
area of boundary

4GN

?
= # of dofs of QFT

yes : ∞ = ∞

need to regulate two divergences: dofs at every point in space
(UV) (# dofs ≡ N2) ,
spread over Rd−1 (IR).

2

R

ε

N

counting in QFTd :

Smax ∼
(
R

ε

)d−1

N2



counting in AdSd+1: at fixed time: ds2
AdS = L2 dz2+d~x2

z2

A =

∫
bdy , z fixed

√
gdd−1x =

∫
Rd−1

dd−1x

(
L

z

)d−1

|z→0

R

IR

AdSd+1

u

UV

d−1,1

minkowski

...

ε

R
ACTUAL

BOUNDARYBOUNDARY

CUTOFF

A =

∫ R

0
dd−1x

Ld−1

zd−1
|z=ε =

(
RL

ε

)d−1

The holographic principle

then says that the maximum entropy in the bulk is

A

4GN
∼ Ld−1

4GN

(
R

ε

)d−1

.

Ld−1

GN
= N2

lessons:
1. parametric dependence on R checks out.
2. gravity is classical if QFT has lots of dofs/pt: N2 � 1

ZQFT [sources] ≈ e−N2Ibulk[boundary conditions at r→∞]|extremum of Ibulk

classical gravity (sharp saddle) ! many dofs per point, N2 � 1



Confidence-building measures

Why do we believe this enough to try to use it to do physics?

I 1. Many detailed checks in special examples
examples: relativistic gauge theories (fields are N × N matrices), with

extra symmetries (conformal invariance, supersymmetry)

checks: ‘BPS quantities,’ integrable techniques, some numerics

I 2. Sensible answers for physics questions
rediscoveries of known physical phenomena: e.g. color confinement, chiral

symmetry breaking, thermo, hydro, thermal screening, entanglement

entropy, chiral anomalies, superconductivity, ...
Gravity limit, when valid, says who are the correct variables.
Answers questions about thermodynamics, transport, RG flow, ...

in terms of geometric objects.

I 3. Applications to quark-gluon plasma (QGP)
benchmark for viscosity, hard probes of medium, approach to equilibrium



Simple pictures for hard problems, an example

Bulk geometry is a spectrograph separating the theory by energy scales.

ds2 = w(z)2
(
−dt2 + d~x2

)
+

dz2

z2

CFT: bulk geometry goes on forever, warp factor w(z) = L
z
→ 0:

IR UV
u uIR

R

AdSd+1

d−1,1

minkowski

UV

...

BOUNDARY

z

z z z
3 2 1

x,y

x

z

y

z
1 2

3

z

t,~x are the field theory
time and space coordinates.

(size)FT =
1

w(z)
(proper size)

EFT ∼ i∂t = w(z)Eproper



The role of the warp factor, cont’d

IR

d−1,1

minkowski

UV

confining geometry

z
MIN z

R

Model with a gap:
geometry ends smoothly, warp factor w(z) has a min.

if IR region is missing,

no low-energy excitations, energy gap.



large N counting

consider a matrix field theory
Φb

a is a matrix field. a, b = 1..N. other labels (e.g. spatial position,

spin) are suppressed.

L ∼ 1

g2
Tr
(
(∂Φ)2 + Φ2 + Φ3 + Φ4 + . . .

)
here e.g. (Φ2)c

a = Φb
aΦc

b,
the interactions are invariant under the U(N) symmetry
Φ→ U−1ΦU



’t Hooft counting
double-line notation:

〈Φ̃a
bΦ̃d

c 〉 ∝ g2δa
cδ

d
b ≡ g2

d

a

b

c

∝ g−2 ∝ g−2

diagram ∼
(
λ

N

)no. of prop.(N

λ

)no. of int. vert.
Nno. of index loops

’t Hooft limit: take N →∞, g → 0 holding λ ≡ g2N fixed.

∝ N2

(a)

b

b

∝ λN2

(b)

b
b

b b

bb

∝ λ3N2

(c)

Figure: planar graphs that contribute to the vac→vac ampl.



topology of graphs

b

b

∝ g2N = λN0

Figure: Non-planar (but still oriented!) graph that contributes to the
vacuum→vacuum amplitude.

∼ S2 ∼ T 2

If E = #of propagators, V = # of vertices, and F = # of index loops,

a diagram contributes NF−E+VλE−V .
F − E + V = χ(surface) = 2− 2h − b
(h = number of handles, b = number of boundaries)



topology of graphs, cont’d

the effective action (the sum over connected vacuum-to-vacuum diagrams)

has the expansion:

lnZ =
∞∑

h=0

N2−2h
∞∑
`=0

c`,hλ
` =

∞∑
h=0

N2−2hFh(λ)

[’t hooft]:1/N as a small parameter, string expansion. 1/N suppresses splitting

and joining of strings.

e.g.

concrete point: at large N, lnZ ∼ N2.



N counting for correlation functions

O(x) = c(k ,N)Tr(Φ1(x)...Φk (x))

Figure: Disconnected diagram contributing to the correlation function
〈Tr(Φ4)Tr(Φ4)〉 ∼ N2

Figure: Connected diagram contributing to the correlation function
〈Tr(Φ4)Tr(Φ4)〉 goes like N0


