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Convection in Astrophysics
● Evolution of many stellar systems dominated by convective 

transport of energy

– Supernovae (both thermonuclear and gravitational)

– X-ray bursts and novae (thermonuclear explosion of accreted material 
on a surface of compact object)

– General stellar evolution, including post main-sequence evolution of 
massive stars

● Often the convection is highly subsonic

– Challenging for traditional astrophysical hydrodynamics codes

● New algorithms are needed for efficient simulation of 
convective astrophysical flows



Type Ia Supernovae Observations

● No H seen in spectra, but strong Si, 
Ca, and Fe lines

● Occur in old stellar populations

● Lightcurve is robust

– Variations can be corrected for via a 
single parameter function.

– SNe Ia act as standard candles.

SN 1994D (High-Z SN Search team)
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● Bright as host galaxy, L ~1043 erg s-1

● Large amounts of 56Ni produced

– Radioactivity powers the lightcurve



Type Ia Supernovae
(single-degenerate scenario)

SN 1994D (High-Z SN Search team)

(David A. Hardy & PPARC)

(Roepke and Hillebrandt 2005)
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    Accretion from 
binary companion. 
Grows to M

ch

    “Smoldering” 
phase—central T 
rises → flame born

    Flame propagation.  
Initially subsonic, but  
detonation transition?

    Explosion! 
Lightcurve powered 
by Ni decay.  Width / 
luminosity relation.



Outstanding Questions in SNe Ia
● What is the progenitor?

– Alternate models exist, including the merger of two white dwarfs

● Does the burning front remain subsonic or does it transition to 
a detonation?

– A late time transition to a supersonic burning front (detonation) 
appears to give the best match to observations.  Turbulence likely 
plays a key role in this transition.  

● What are the initial conditions?

– Variations in the spatial and temporal distribution of hot spots gives 
different explosion outcomes (Gracia-Senz & Bravo 2005, Plewa et al.  2004, Roepke et 
al. 2007, ...)

● What is the physical basis for the width-luminosity relationship 
in the lightcurve?

– Some variation in the explosion is needed to account for the diversity 
in explosions.

Each of these questions requires a unique code.



Why Study 
Ignition?(R
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▼ Roepke and Hillebrandt: ignition seeds in many points 
distributed around the center.  

... what does nature do?
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◀ Jordan et al. 2007: Single 
off-centered ignition point 
leads to very asymmetric 
explosion.  Also discussed 
in Plewa et al. 2004, 
Roepke and Woosley 2006.

● Explosion outcome very 
sensitive to spatial and 
temporal distribution of initial 
flames (ignition points)

– Single point on/off-center vs. 
multi-point explored by various 
groups

● Majority of explosion 
calculations begin with no 
initial velocity field



Multidimensional Simulations
● Nature is 3-d

– Convection driven by nuclear energy release

– Fluid instabilities / turbulence

– Localized burning/runaway

– Rotation

● Challenging simulations

– Large computing / memory requirements

– Making sense of enormous amounts of data

● SNe Ia begin with periods of low speed convection driven by 
nuclear energy release

– Requires ability to model the domain for long timescales

● Requires a different algorithmic approach than those 
traditionally used in astrophysics



Simulating Low Mach Phenomena
With explicit timestepping, information 
cannot propagate more than one zone 
per step:

For                          this is 

We would like to have

For very low Mach number flows, it takes          
timesteps for a fluid element to move more than one 
zone.  Can't we do better?

▶ A Mach 0.01 front 
moving to the right (a) 
initially, (b) after 1 
step, (c) after 100 
steps.

a

b

c



MAESTRO: Low Mach Number Hydrodynamics
Almgren, Bell, Rendleman, & Zingale 2006 ApJ, 637, 922
Almgren, Bell, Rendleman, & Zingale 2006, ApJ, 649, 927

Almgren, Bell, Nonaka, & Zingale 2008, ApJ, 684, 449

● Reformulation of compressible Euler equations

– Retain compressibility effects due to heating and stratification

– Asymptotic expansion in Mach number decomposes pressure into 
thermodynamic and dynamic parts

– Analytically enforce hydrostatic equilibrium through base state:

● Elliptic constraint on velocity field

–       is a density-like variable

–     represents heating sources

● Timestep based on bulk fluid velocity, not sound speed

● Weak scaling to ~100,000 processors



Previous SNe Ia Convection Calculations

(Kuhlen et al. 2006)

(Hoflich and Stein 2002)

▶ Hoflich and Stein modeled a 2-d wedge using an 
implicit code.  Found flow caused compression 
near the center.  Suggested ignition near the 
center.

◀ Kuhlen et al. modeled the convectively unstable region, 
with the very center cut out.  The observed a characteristic 
dipole feature and suggested that off-center ignition was 
likely.

No previous calculations have modeled the entire star.



Computational Demands
● Computer time measured in CPU-hours

● Single 3843 run: ~1 million CPU-hours

● Single 5763 run: ~7 million CPU-hours 

– 10368 processors (1728 MPI tasks × 6 OpenMP threads/MPI task)

– 2100 plotfiles, each 18 GB in size = ~40 TB of data for a single run

► The OLCF Cray XT5 jaguarpf machine at 
ORNL.  This machine has 224,000 cores and 
is currently ranked #2 on the Top500 list.



Pre-SNe Ia Convection: Dipole Convection
Zingale, Almgren, Bell, Nonaka, & Woosley 2009,, ApJ, 704, 196.

Nonaka, Aspden, Zingale, Almgren, Bell, & Woosley 2011, in preparation

● Dipole feature seen in 
previous calculations better 
described as a jet

– Asymmetry in radial 
velocity field

● Direction changes rapidly

Radial velocity field (red = outflow; blue = inflow) in an 
11523 non-rotating WD simulation.



Pre-SNe Ia Convection: Runaway
Zingale, Almgren, Bell, Nonaka, & Woosley 2009, ApJ, 704, 196.

● Temperature increase 
nonlinear

– Ignition occurs as T 
crosses 8 x 108 K

– “Failed” hotspots seen 
toward the end. 



Zingale, Nonaka, Almgren, Bell, Malone, Woosley 2011, accepted to ApJ

● Clear separation 
between the convecting 
and stable regions

● Persists up to ignition

– Strong shearing here 
will greatly affect the 
flame evolution

Vorticity field in a non-rotating model.

Pre-SNe Ia Convection: Shear Layer



Pre-SNe Ia Convection: 
Ignition Radius Likelihood

● Distribution of likely 
ignition locations

– Average hotspot radius 
over 1 s intervals

– Consider final 200 s of 
evolution

● Vast majority of hotspots 
are moving outward from 
the center

● Off-center ignition likely

► Histogram of likely ignition radii from 5763 
non-rotating model.  Hotspot radii are averaged 
into 1 s intervals and colored by radial velocity.

Zingale, Nonaka, Almgren, Bell, Malone, Woosley 2011, accepted to ApJ



Pre-SNe Ia Convection: Multiple Ignition?
Nonaka, Aspden, Zingale, Almgren, Bell, Woosley 2011, in preparation

● Disable burning in a hot 
spot once it ignites to allow 
further evolution

● Second hot spot is not 
present over a short 
timescale

● Single-point, off-center 
ignition most likely.



● High resolution simulations show a well-resolved turbulent cascade

● Integral scale large/turbulent intensity small → turbulence unlikely to affect flame 
propagation.

● Velocities in stable region are much higher/shearing.

▲Restarting a 5763 calculation with 2 new 
levels of refinement—effective gridding of 
23043 (~2 km resolution)

Current Work: Turbulent Properties
Nonaka, Aspden, Zingale, Almgren, Bell, Woosley 2011, in preparation



X-ray Bursts
● Thermonuclear runaway in 

thin accreted H/He layer 
on surface of a neutron 
star

● Accretion timescale ~ 
hours to days

● Runaway timescale ~ 
seconds

● > 70 sources known, some 
with 10s or more individual 
bursts.

● Potential site for rp-
process nucleosynthesis

Strohmayer et al., 1996, ApJ, 469:L9



Outstanding Questions in XRBs
● How does the fuel spread over the surface?
● How does the ignition begin?
● Is the burning localized?
● Does convection modify the nucleosynthesis?
● What are the effects of rotation?
● Does convection bring ash to the surface?



Localization
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● Spitkovsky et al. (2001)

— Shallow-water calculations of 
spreading on NS

— Coriolis force balances lateral 
spreading of burning front

— Simplified vertical structure

● Accreted layer not 
degenerate enough to 
localize a hot spot

— Fizzles out, maybe stirs

— Similar to nova (Shankar & 
Arnett 1994)

MAESTRO simulation (L = 3.84 m, ∆x = 0.5 cm) 
evolved to t = 1.5 x 10-5 s showing dissiapation of a hot 
spot (initial T = 109 K) in a He NS accreted layer.  
Temperature is shown on the left, nuclear energy 
generation rate is shown on the right.



X-ray Burst Modeling
● Pure He layers

– Convective energy transport develops quickly

– Resolution requirements much higher than previously thought

– 2-d simulations challenging.  3-d?

● Mixed H/He bursts underway

– Nuclear physics more time consuming

– Steep composition change challenging

 ▶ Convection in 
an He layer on a 
neutron star, 
modeled by 
graduate 
student Chris 
Malone.

Malone et al. 2011, ApJ, 728, 118



What Can't We Do (Now)?

● Lateral flame propagation w/ resolved nuclear physics

– Low Mach methods cannot (currently) describe two different scale 
heights (fuel and ash)

– Lengthscale for Coriolis force to balance pressure gradient (Rossby 
length):                        ~ few km

● Much bigger domain that we currently use

v
front



Novae
● Explosion of surface H layer on white dwarf

– Similar progenitor system to SNe Ia (but much fainter)

– Recur when new layer of fuel is accreted (recurrance times of decades to 
1000s of years, depending on white dwarf mass) 

– CNO burning required to explain luminosity

– Core material seen in ejecta

(Young, Corwin, Bryan, and De Vaucouleurs)



Novae
● Biggest issue: dredge-up

– Underlying C/O needed to catalyze the reaction—enrichment by 
atleast order-of-magnitude

– Convection? Shear instabilities during accretion? Mass diffusion?   
(Livio and Truran 1990)

● Does the WD gain or lose mass as a result of the explosion?

● Can novae be SNe Ia progenitors?



Novae
● Numerical challenges

– Numerical mixing at base of accretion layer can artifically enhance 
burning

– Expansion is significant—needs to be tracked to accurately model 
dynamics.

Velocity magnitude 15N abundance



sub-Chandra SNe Ia Models
● Numerical challenges

– Convective region potentially extends to the “top” of the star—difficult 
to capture steep gradient.

Slice through 3-d domain of vorticity in He layer on 
surface of 1.0 M

⊙
 WD.



Summary / What's Next?
● Modern algorithms / supercomputers can model convective 

astrophysical flows for many turnover times in 3-d.

– Requires involvement of many different disciplines: 
mathematics, computational science, application scientists.

● Convection in pre-SNe Ia white dwarfs:

– Rapidly changing convective field

– Range of ignition locations: between central and ~80 km off-
center

– Details of ignition distribution can be learn by looking at late 
time fluctuations

– Single-point, off-center ignition likely



Summary / What's Next?
● X-ray bursts

– Low Mach number hydrodynamics provides an efficient means 
for modeling convection on neutron stars

– Exploring mixed H/He burning underway.

● Applications to nova, sub-Chandra SNe Ia ignition, and H core 
convection in massive stars underway.

● Future Work

– Addition of long wavelength acoustics to extend range of 
validity of low Mach number model

– Work on understanding limits to method

– Restart ignition calculation in compressible code to follow the 
subsequent flame evolution.
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