Determining the EOS of Dense Matter from Neutron Star Mass and Radius Observations

HST observation of 4U1820

Andrew W. Steiner
Institute for Nuclear Theory
U. Washington

Aug. 1, 2011

With: Edward F. Brown (Michigan State Univ.), Stefano Gandolfi (LANL), James M. Lattimer (Stony Brook Univ.), Sergey Postnikov (UNAM), and Madappa Prakash (Ohio Univ.)

Outline

- . The M-R curve and the EOS
- Introduction to the astrophysics and nuclear physics
- Observational data
- Bayesian analysis
- Results: We find interesting and quantitative constraints,
 e.g. the radius of 1.4 solar mass NSs is between 10.4 and 12.9 km, and many models are ruled out
- Bayesian analysis discussion tomorrow?
 - $\circ \chi^2$ and standard fitting
 - Parameter estimation
 - Model comparison
 - Application to M-R curves and the EOS
 - Anything you else you want

M vs. R and the EOS of Dense Matter

- M-R curve is (to a good approximation) universal: all neutron stars lie near the same M-R curve
- Properties of dense matter:
 - Drive other features of NS evolution
 - Tells us about QCD at high density
- · Masses and radii connected to:
 - What is the neutron star mass function?
 - o How do neutron stars get their mass?

Rüster, et al. (2005)

Dense Matter in Neutron Stars

- Attraction vs. repulsion
- Lower pressure decreases the radius and lowers the maximum mass
- Phase transitions tend to (but don't always) lower the pressure, smaller radius and smaller maximum mass
- The smaller the radius of a 1.4 solar mass NS, the smaller the maximum mass
- Neutron star masses and radii are probes of total energy density and pressure only
- To get composition, we are going to need multiple observations and/or multiple messengers
- The larger the maximum mass, the smaller the largest (baryon density/energy density/pressure) reached in the maximum mass star

Connections to Nuclear Physics

- Nuclear symmetry energy
- · Neutron skin thickness in lead
- Three-body force

Connection to three-body forces:

Connecting M-R and the EOS with Observations

- . Do our models match the data? If not, why not?
- . What are the statistical and systematic uncertainties and how do we account for them?
 - Take model alternatives and pick the smallest range which encloses all of them
 - Is there is some reasonable alternative model which is possible to implement and not yet included?
- Either all neutron stars are as we predict them to be, or there is something fundamental about them that we're wrong about, or we're really really unlucky.

Accreting Neutron Stars: LMXBs

Copyright © 2005 Pearson Prentice Hall, Inc.

- From a main-sequence (normal) star or a white dwarf
- Overflowing the Roche lobe
- Most often accrete a mix of hydrogen and helium, sometimes heavier elements
- Accretion luminosity dominates over emission from the NS surface
- At high enough density, light elements are unstable to thermonuclear explosions

Mass Measurements and QLMXBs

- . Mass measurements: Demorest et al. (2010) find a neutron stars with mass $1.97 \pm 0.04~{
 m M}_{\odot}$
- Quiescent LMXBs in globular clusters:
 - . H atmosphere
 - Known distance
 - Small magnetic field
 - . Measure radius:

$$F \propto T_{
m eff}^4 igg(rac{R_\infty}{D}igg)^2$$

[i.e. Rutledge et al. (1999)]

Photospheric Radius Expansion Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2} \ \sqrt{1-2eta(r_{ph})}$$

Normalization during the tail of the burst:

$$A \equiv rac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} igg(rac{R}{D}igg)^2 (1-2eta)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

Photospheric Radius Expansion Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2}\,\sqrt{1-2eta(r_{\it ph})}$$

Normalization during the tail of the burst:

$$A\equivrac{F_{\infty}}{\sigma T_{bb,\infty}^4}=f_c^{-4}igg(rac{R}{D}igg)^2(1-2eta)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

EOS parameterization

Schematic EOS near the saturation density:

$$E = m_n n_n + m_p n_p + B + rac{K}{18n_0^2} (n - n_0)^2 + rac{K'}{162n_0^3} (n - n_0)^3 + \ (1 - 2x)^2 \left[S_k \left(rac{n}{n_0}
ight)^{2/3} + S_p \left(rac{n}{n_0}
ight)^{\gamma}
ight]$$

High density

$$P(arepsilon) = Karepsilon^{\Gamma} ext{ with } \Gamma \equiv 1 + rac{1}{n}$$

High-density parameters:

$$n_1, n_2, \varepsilon_1$$
 and ε_2 or $\Gamma_1, \Gamma_2, \varepsilon_1$ and ε_2

or

$$P(400 \text{ MeV/fm}^3), P(600), P(1000), P(1400)$$

EOS parameterization

Quark matter

$$P = rac{3(1-c)}{4\pi^2}\,\mu^4 - rac{3(m_s^2 - 4\Delta^2)}{4\pi^2}\,\mu^2 - B$$

- Mixed phase modeled by an additional polytrope
- Hybrid or "strange quark stars"
- Scale invariance:

$$P = -arepsilon + n\,rac{\partialarepsilon}{\partial n}$$

$$rac{dn}{n} = rac{darepsilon}{P(arepsilon) + arepsilon}$$

We cannot determine baryon densities very precisely

Statistical Approach

• Bayes theorem:

$$P[\mathcal{M}_i|D] = rac{P[D|\mathcal{M}_i]P[M_i]}{\sum_j P[D|\mathcal{M}_j]P[\mathcal{M}_j]}$$

- Well-suited to this underconstrained problem
- Conditional probability is provided by the data

$$P[D|\mathcal{M}] = \prod_{i \in n_{ ext{datasets}}} \mathcal{D}_i(M,R)|_{M=M_i,R=R(M_i)}$$

In Bayesian analysis, marginal estimation is often employed:

$$P[p_j|D](p_j) = rac{1}{V} \int \; dp_1 \; \ldots \; dp_{j-1} \; dp_{j+1} \; \ldots \; dp_{N(p)} P[M|D]$$

Different EOS parameterization is degenerate with different prior distribution

Previous Results from the 2010 Paper

• Not the end of the story:

- One source removal
- PRE systematics
- Prior distributions
- Correlations between high and low densities
- Hybrid stars
- Strange quark stars

Radius of a 1.4 Solar Mass Neutron Star

Model A	11.18	11.49	12.07	12.33	
Model B	11.23	11.53	12.17	12.45	
Model C	10.63	10.88	11.45	11.83	
Model D	11.44	11.69	12.27	12.54	
Redshifted photosphere	10.74	10.93	11.46	11.72	
Without X7	10.87	11.19	11.81	12.13	
Without M13	10.94	11.25	11.88	12.22	
$1.0 < f_{\it C} < 1.33$	10.42	10.58	11.09	11.61	
$1.47 < f_C < 1.8$	11.82	12.07	12.62	12.89	
No PREs	11.23	11.56	12.23	12.49	
For all models	10.42	10.58	12.62	12.89	
$M_{ m max} \geq 2.4$	12.14	12.29	12.63	12.81	
No X7 or M13, Model D	11.36	11.65	12.41	12.83	
No M13 and $1.47 < f_C < 1.8$, Model B	11.84	12.12	12.70	12.98	
No X7 and $1.0 < f_C < 1.33$, Model C	9.17	9.34	9.78	10.07	
Strange quark stars	10.19	10.64	11.57	12.01	

Mass and Radius Results

· Slightly larger range of radii for a 1.4 solar mass star: 10.4 and 12.9 km

Mass and Radius Results

Steiner, Lattimer, and Brown, in prep.

- Compatible with strange quark stars
- Still rule out 1/3 of Stone's Skyrme models
- Rule out almost all supernova EOSs

EOS results

Steiner, Lattimer, and Brown, in prep.

- $P(\varepsilon)$ determined to within 30-50%
- $P(n_B)$ determined to within a factor of 3
- Neutron skin thickness of lead $\delta R < 0.20~\mathrm{fm}$

Summary

- After examining:
 - One source removal
 - PRE systematics
 - Prior distributions
 - Correlations between high and low densities
 - Hybrid stars
 - Strange quark stars

We find neutron stars have radii between 10.4 and 12.9 km

- Or something even more exciting is going on!
- Several currently used EOSs are ruled out
- Exciting future work in making connections to the three-body force (Gandolfi) and in direct constraints to the M-R curve without an EOS parameterization (Postnikov, Prakash, Lattimer)