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Outline

» Electronic response in magnetars is anisotropic, and features
long range oscillations in the static screening potential parallel
to the magnetic field

> Electronic scattering off lattice phonons is anisotropic and
leads to anisotropic heat transport contribution from the
lattice phonons



Electrons in large magnetic fields

» Magnetars are neutron stars with magnetic fields as large as
2 x 105G

» Large magnetic fields can change the structure and properties
of matter

» For example, atoms on the surface of the star become
elongated along B (Ruderman 1971; Medin, Lai)

» What happens in the crust where the electrons are
“deconfined"?



Landau levels
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» The single electron energy levels are E, = \/kz2 + 2neB + m?2

» We consider the case where only the lowest Landau level is

occupied
__ eB
> Ne =53 M2 - mg



Screening by electrons
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» Re(M(0,q)) appears in the calculation of the screened
potential
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» Taking out the Coulomb part, V(r) = ZlZZng(r).
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Debye Screening
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» Usually for large r, taking —e?limg_o M(q)

gives Debye screening
> g(r ) = exp( r/Ap). For the lowest Landau level,
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Non-analyticities

» [1(q) has non-analyticities due to a sharp Fermi surface
» For B = 100B., we have
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» Friedel oscillations more prominent in the non-relativistic
regime Kapusta, Toimela (1988)



Friedel oscillations

» Simplified expression for kf = \/u2 — m2 < p

42k
> M(qz,91) ~ erBexp( 2eB)Iog(IZ +2kF})

» Branch cuts anng q, = :l:2kf + in give a long range structure
to the position space potential, V/(p, z), in the z direction
> g(p,0) ~ exp(—me)
_ m2
> g(O;Z) ~ e MDZ — 16 (ke)2+m2) ILr)1(4kfz)/8
» See also Horing (1969)

> At higher densities, Friedel oscillations become unimportant

cos(2kF z)




Friedel oscillations
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> B=1008, pe = 0.7MeV, Ar = 1296fm, A\p = 468fm
» For Z =26, dpec = 743fm



Friedel oscillations




Conclusions

» Overscreening of charge by electrons leads to long range
oscillations parallel to the magnetic field

» Superposition of the screened potential can give rise to an
anisotropic potential

» May affect the structure and the properties of the lattice
formed by ions. May form an anisotropic crystal structure



Electron-lattice phonon interaction

» The electron ion interaction is simply screened Coulomb,

Ze
Lo = d*x Wi pl. (1)
mD

> This gives the electron-lattice phonon interaction strength
1 Z
7= _getm (eg. Kittel)

D mpny
» Therefore one can calculate the mean free path of lattice
phonons due to scattering off electrons



N(w,q)

» Imll(w,q) is related to the rate of absorption of lattice
phonons by electrons and therefore to lattice phonon

transport properties

2 T3f2
453 mM(w,q)

» The conductivity depends on the angle between the magnetic
field and q, the direction of propagation of the lattice phonon

» The heat conductivity kK = %Cv)\gQ =

» We calculate the decay rate at w = 3T, and g = w/c¢



Anisotropic scattering
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» B=10B., T =5keV, ¢c = 0.05



Anisotropic scattering
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> Intuition: Momentum and energy conservation require
VI + @2+ mg = (k) + mi = csq




Angle averaged scattering
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Anisotropic thermal conductivity
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» For comparison, the electronic conductivity at pi1» = 0.0005 is
kS ~ 1MeV?, % ~ 107°MeV?



Conclusion

» Even for modest magnetic fields, the lattice phonon transport
is highly anisotropic

» The anisotropy in the heat transport of electrons in large
magnetic fields is well known eg. (Chugunov, Haensel, Perez,
Azorin, Yakovlev...)

» Anisotropic lattice transport has not been taken into account
and may be important for large magnetic fields



Conductivities
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Neutron star profile
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» (Baym, Pethick, Sutherland; Reddy)



Magnetar oscill
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» (Watts, Strohmayer)
» 18Hz, 26Hz, 92Hz, 625Hz, ....



	Screening in large B

