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Introduction

Multi-messengers for studying
quark superconductivity in compact stars

Structure: CSC phases, stability, NS masses

Cooling: processes, tuning, fitting the data

Vortices: nucleation, interactions, dynamics

Gravity waves: generation by crystalline color
superconducting phase, upper limits

Luca Bonanno, AS, 2011, submitted to arxiv;
Daniel Hess, AS, 2011, arXiv:1104.1706;
Mark Alford, AS, 2010, J. Phys. G, 37, 075202
Bettina Knippel, AS, 2009, Phys.Rev.D79:083007



Stellar configurations

The set-up

The low density nuclear equation of state:
Relativistic Lagrangian at Hartree-Fock + Crust
model (BPS)

Can be and should be matched to a
relativistic-BHF model

The high-density quark equation of state: NJL+
vector interactions + t’Hooft + Bag from gluon
dynamics (not MIT Bag)



Stellar configurations
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• Phase equilibrium is constructed via Maxwell prescription

• Sequential phase transition NM → 2SC → CFL.



Stellar configurations

Maximal Masses
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• Dashed: 2SC, grey-full: CFL.

• Stability is achieved for GV > 0.2 and transition densities few ρ0



Constructing stellar configurations

Nature, online 27 October 2010

The largest pulsating star yet observed casts doubts on exotic matter theories (?)

Radio pulses from a neutron star suggest exotic particles are absent from its core



Constructing stellar configurations

Parameter space
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• Below dashed-dotted: 2SC stars are stable

• To the right of dashed curves CFL are stable few ρ0



Constructing stellar configurations

Composition
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• Fix transition density 2.5 × ρ0.

• Increasing GV stabilizes the stars + “exotic matter”



Constructing stellar configurations

Conclusions on the EOS

Need a stiff NM equation state above saturation.
NL3 parameter set accommodates hyperons, GM3
- not.

Need vector interactions to stabilize color
superconducting quark stars (more generally a
mechanism that will make the quark EOS stiffer).

A 2M⊙ mass star does not exclude exotic matter in
the cores of NS.



NS cooling

Cooling processes
Quark cores of NS emit neutrons via: d → u + e + ν̄e u + e → d + νe. The rate of the
process is

ǫνν̄ = −2
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NS cooling
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Gapless vs gapped emissivities (Jaikumar, Roberts, AS, 2006)

Here ζ = ∆/δµ, where δµ = µd − µu = µe.



NS cooling

Temperature evolution
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NS cooling

Luminosities
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NS cooling

Conclusions on cooling

Red-green quarks in the 2SC phase may or may
not be fast cooling agents depending on the
gaplessness parameter.

The blue quarks act as a BCS superconductor and
can contribute to fast cooling if their gaps are
small, inversely, can be ineffective in cooling if
their gaps are lagre (unlikely above keV).

We have new tools to control the cooling of
2CS-phase of quarks!



Vortices

GL functional
Ginzburg-Landau functional for 2SC superconductor

F = Fn + αψ∗ψ +
1

2
β(ψ∗ψ)2 + γ(∇ψ∗ − 2ieAψ∗)(∇ψ + 2ieAψ) +

1

2µ0
(B − µ0H)2. (1)

The boundary between the type-I and type-II superconductors is set by the GL
parameter

κ2SC ≈ 11
∆

µ
. (2)

Need to have fields larger than the lower critical field

Hc1 =
ΦX

4πλ2
lnκ ≃ 6.5 × 1017

(

µ

400 MeV

)2 ( g2

4π

)(

1 −
T

Tc

)

G, (3)

The density of color-magnetic flux tubes is of the order of those in the core

nv =
BX

ΦX
=

2
√

3e

g

BX

Φ0
≃ 0.3

BX

Φ0
, (4)



Vortices

Aharonov-Bohm cross-section
A single U(1) gauge group (electromagnetism) the cross-section (per unit length)

dσ

dϑ
=

sin2(πβ)

2πk sin2(ϑ/2)
, β =

qp

qc
. (5)

qp is the charge of the scattering particle.

• The cross-section vanishes if β is an integer, but is otherwise non-zero.

• The cross section is independent of the thickness of the flux tube: the scattering
is not suppressed in the limit where the symmetry breaking energy scale goes to
infinity, and the flux tube thickness goes to zero.

• The cross section diverges both at low energy and for forward scattering.

Effect of rotated electromagnetism (Alford, Berges, Rajagopal) “Rotated” gauge
fields

AQ̃ = cosα0AQ − sinα0AT ,

AX = sinα0AQ + cosα0AT ,

There is a massless AQ̃ field and massive (Higgsed) AX-field.



Vortices

AB-cross-section in quark matter
In the basis ψ = (ru, gd, rd, gu, bu, bd, e−)

βψ = diag
(1
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)

. (6)

We conclude

• The gapped quarks have β̃ close to 1/2, which means that they have
near-maximal Aharonov-Bohm interactions with an X-flux tube.

• The light fermions the Q̃-neutral bd has zero Aharonov-Bohm interaction with the
flux tube.

• The light fermions the Q̃-neutral bd has zero Aharonov-Bohm interaction with the
flux tube.

• The bu and electron have a β̃ that differs from an integer by
e2/g2 = α/αs ∼ 1/100, near-maximal Aharonov-Bohm interactions with an X-flux
tube.



Vortices

Flux dynamics
Aharonov-Bohm scattering contribution from relaxation time

τ =
cnv

pFi
sin2(πβ̃i), f mf + f ML + fb + fIord. = 0. (7)

• Boundary force

fb ≈
r

R2 − r2

µ2
q

3π
lnκX

• Mutual friction force

fmf = ηVL =
pFiniτ

−1
if

nv

= ni sin2(πβ̃i)vL.

• Magnus-Lorentz force

f ML = −(jX × n̂ΦX)

r

nuclear

2SC

R
l

The
expulsion time for a flux tubes is of the

order of 1010 years.



Vortices

Conclusions on the flux tubes

Dynamics of flux tubes is two slow to expel the
magnetic field from the 2SC core.

Flux-tube-fermion scattering can contribute to the
transport in some color superconducting phases



Gravity wave

Gravitation radiation

Two independent polarization of GW; perturbations of metric hij = h+e+ij + hXeX
ij .

Weak field limit, linearized GR equations, gµν = ηµν + hµν , hµν perturbation

�h̄µν = 0, h̄µν = hµν −
1

2
ηµνh



Gravity wave

Gravitation radiation

LIGO is sensitive to GW emitting by rotating NS, which is at 2Ω, e.g. Crab pulsar
Ω ≃ 30 Hz.



Gravity wave

Gravitation radiation

Given a deformation the characteristic strain amplitude:

h0 =
16π2G

c4

ǫIzzν2

r
,

ǫ = (Ixx − Iyy)/Izz is the equatorial ellipticity. Strain amplitude can be expressed in
terms of the m = 2 mass quadrupole moment as
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,

Quadrupole moment
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,

where U = 2 + dlng(r)/dlnr and trr, tΛ and tr⊥ are the coefficients of the expansion of
the shear stress tensor in spherical harmonics.



Gravity wave

Internal structure
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• Idea: L.-M. Lin, Phys. Rev. D 76, 081502(R) (2007), incompressible models
without nuclear crusts

• B. Knippel, A. Sedrakian, Phys. Rev. D 79, 083007 (2009), microscopic
equations of state



Gravity wave

Strain amplitudes
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Dashed line Crab pulsars’ upper limit from S5 run

h0 can pin down the product σ∆2, currently σ̄max∆2 ∼ 0.25 MeV2 (under the
assumptions of the present model).



Gravity wave

Conclusions on the gravity waves

Future detection of gravity wave from an isolated
NS can place bounds on the properties of solid
phases in the NS

Crystalline quark matter can produce gravitational
waves that are strong enough to be detected by
the LIGO or advanced LIGO experiments

A 2M⊙ mass star does not exclude exotic matter in
the cores of NS.
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