# THE (IN-)DEPENDENCE OF R-MODE DAMPING ON THE MICROPHYSICS







#### KAI SCHWENZER WASHINGTON UNIVERSITY IN ST. LOUIS

INT SEATTLE, JULY 25.2010

IN COLLABORATION WITH MARK ALFORD AND SIMIN MAHMOODIFAR

ARXIV:1012.4883

### COMPACT STARS

- ] COMPACT STARS ARE THE DENSEST KNOWN OBJECTS (  $\sim M_{\odot}$  @ ~ 10km radius)
- EXOTIC FORMS OF MATTER
  - REQUIRES TO CONNECT OBSERVATIONAL ASPECTS TO MICROSCOPIC PROPERTIES
- MANY MICROSCOPIC ASPECTS OF STRONG INTERACTION ARE PURELY UNDERSTOOD
  - MANY OBSERVABLES ARE RATHER INDIRECT AND INVOLVE MODEL ASSUMPTIONS





X-RAY EMISSION FROM CRAB PULSAR (\*1054 A.D)

## DISCRIMINATION



#### DISCRIMINATION

DETAILED PROPERTIES OF A GIVEN COMPACT STAR CAN NEITHER BE OBSERVED

NOR THEORETICALLY PREDICTED

YET IT WOULD BE GREAT IF ONE COULD ANSWER THE QUESTION IF A STAR IS WITHIN A GIVEN CLASS (E.G.: "QUARK MATTER")

FOR STATIC PROPERTIES (E.G. MASS/ RADIUS RELATION) THIS IS HARD ...

I... BUT FOR DYNAMIC PROPERTIES CERTAIN CLASSES OF STARS CAN BEHAVE VERY DIFFERENTLY DUE TO PARAMETRICALLY DIFFERENT MICROPHYSICAL MECHANISMS

# PULSAR FREQUENCIES



GRADUALLY SPUN UP BY ACCRETION



# AGE DEPENDENCE

WHY DON'T THEY SPIN AS FAST AS THEY COULD?

AGES ARE MOSTLY UNKNOWN, BUT THE SPIN-DOWN AGE COULD GIVE A ROUGH ORDER OF MAGNITUDE ESTIMATE

PULSAR FREQUENCIES AND SPIN-DOWN RATES PRESENT IMPORTANT DIRECT OBSERVABLES AND SHOW A STRIKING AGE-DEPENDENCE

OSCILLATIONS COULD SPIN DOWN STARS DUE TO GRAVITATIONAL RADIATION ...



MANCHESTER, ET. AL. ASTRO-PH/0412641

#### **R-MODE OSCILLATIONS**

R-MODE: EIGENMODE OF A ROTATING STAR WHICH IS UNSTABLE AGAINST GRAV. WAVE EMISSION N. ANDERSSON, ASTROPHYS. J. 502 (1998) 708

LARGE AMPLITUDE R-MODE OSCILLATIONS COULD QUICKLY SPIN DOWN A STAR

B. J. OWEN, ET. AL., PHYS. REV. D 58 (1998) 084020

BUT R-MODE GROWTH HAS TO BE STOPPED BY SOME NON-LINEAR DAMPING MECHANISM

--> MARK ALFORDS TALK

SIMPLE POSSIBILITY: NON-LINEAR VISCOUS DAMPING

OTHERWISE, LARGE AMPLITUDE R-MODES COULD BE DESTROYED BY DECAY INTO OTHER MODES L.M. LIN AND W.M. SUEN, MON. NOT. ROY. ASTRON. SOC. 370 (2006) 1295



SIMULATION BY L. LINDBLOM VELOCITY OSCILLATION:  $\delta \vec{v} = \alpha R \Omega \left(\frac{r}{R}\right)^{l} \vec{Y}_{ll}^{B} e^{i\omega t}$ DENSITY OSCILLATION (NLO IN  $\Omega$ ):  $\left|\frac{\Delta n}{\bar{n}}\right| \approx \sqrt{\frac{16m}{(m+1)^{5}(2m+3)}} \frac{\alpha A R^{2} \Omega^{2}}{\kappa(\Omega)}$   $\cdot \left(\left(\left(\frac{r}{R}\right)^{m+1} + \delta \Phi_{0}\right) |Y_{m+1}^{m}(\theta, \phi)| + \cdots\right)$ 

# VISCOUS DAMPING

$$\frac{d\epsilon}{dt}\Big|_{visc} = -\eta \left(\nabla_a v_b + \nabla_b v_a - \frac{2}{3}\delta_{ab}\nabla_c v_c\right)^2 - \zeta \left(\vec{\nabla} \cdot \vec{v}\right)^2$$
shear bulk

- SHEAR VISCOSITY DUE TO PARTICLE SCATTERING HAS USUALLY A POWER LAW TEMPERATURE DEPENDENCE  $\eta = \tilde{\eta} T^{\sigma}$
- BULK VISCOSITY DUE TO LOCAL DENSITY OSCILLATION ...  $n\left(\vec{r},t\right) = \bar{n} + \Delta n\left(\vec{r}\right) \sin\left(\frac{2\pi t}{\tau}\right)$

... WHICH INDUCES A CORRESPONDING CHEMICAL POTENTIAL OSCILLATION

WITH SUSCEPTIBILITIES THAT CHARACTERIZE THE MATTER

ING  

$$\mu_{\Delta} = C \frac{\delta n}{\bar{n}} + B \bar{n} \delta x$$
  
(E.G.  $\mu_{\Delta} = \mu_n - \mu_p - \mu_e$ )

$$C \equiv \bar{n} \frac{\partial \mu_{\Delta}}{\partial n}$$
 and  $B \equiv \frac{1}{\bar{n}} \frac{\partial \mu_{\Delta}}{\partial x}$ 

# BULK VISCOSITY

- STRONG PROCESSES ARE VERY FAST AND LEAD TO AN IMMEDIATE THERMAL EQUILIBRATION WHEREAS WEAK PROCESSES CAN BE SLOW SO THAT CHEMICAL EQUILIBRIUM IS NOT ESTABLISHED
- GENERAL FORM ARISING FROM MICROSCOPIC COMPUTATIONS:  $\Gamma^{(\leftrightarrow)} = -\tilde{\Gamma}T^{\delta}\mu_{\Delta} \left(1 + \sum_{j=1}^{N}\chi_{j}\left(\frac{\mu_{\Delta}^{2}}{T^{2}}\right)^{j}\right) \quad \text{(where } \Gamma^{(\leftrightarrow)} \equiv \Gamma - \Gamma^{(inv)}\text{)}$
- □ NON-LINEAR TERMS IMPORTANT AT LARGE AMPLITUDE --> MARK ALFORDS TALK
- GENERAL ANALYTIC EXPRESSION IN THE SUBTHERMAL LIMIT  $\zeta^{<} = \frac{C^{2} \tilde{\Gamma} T^{\delta}}{\omega^{2} + \left(B \tilde{\Gamma} T^{\delta}\right)^{2}}$

 $\Box$  TWO ASYMPTOTIC LIMITS  $\omega \leq B \tilde{\Gamma} T^{\delta}$ 

## DAMPING PROCESSES

HADRONIC MATTER: "APR" EOS A. AKMAL, ET. AL., PRC 58 (1998) 1804

SHEAR VISCOSITY FROM LEPTONIC SCATTERING

P.S. SHTERNIN, D.G. YAKOVLEV, PRD 78 (2008) 063006

BULK VISCOSITY FROM WEAK URCA PROCESSES:

 $\Box \quad \text{STANDARD MODIFIED } n + n \to n + p + e + \bar{\nu}_e \ , \ n + p + e \to n + n + \nu_e$ R.F. SAWYER, PLB 233 (1989) 412

□ OR DIRECT AT HIGH DENSITY  $n \rightarrow p + e + \bar{\nu}_e$ ,  $p + e \rightarrow n + \nu_e$ P. HAENSEL AND R.SCHAEFFER, PRD 45 (1992) 4708

 $\exists \text{STRANGE QUARK MATTER:} \ p_{par} = \frac{1-c}{4\pi^2} \left( \mu_d^4 + \mu_u^4 + \mu_s^4 \right) - \frac{3m_s^2 \mu_s^2}{4\pi^2} - \mathcal{B} + \frac{\mu_e^4}{12\pi^2} \\ \text{M. ALFORD, ET. AL., APJ 629 (2005) 969} \end{bmatrix}$ 

SHEAR VISCOSITY FROM QUARK SCATTERING H. HEISELBERG, C.J. PETHICK, PRD 48 (1993) 2916

BULK VISCOISTY FROM NON-LEPTONIC WEAK PROCESSES  $s + u \leftrightarrow d + u$  J. MADSEN, PRD 46 (1992) 3290; M. ALFORD, S. MAHMOODIFAR, K. S., J. PHYS. G 37 (2010) 125202

#### PARAMETERS

#### □ STRONG INTERACTION PARAMETERS:

| ,                              |                              | $\rightarrow A$                                       | В                                                                            | C                                                                |
|--------------------------------|------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|
| $A \equiv \frac{d\rho}{dr}$    | hadronic matter              | $m_N \left(\frac{\partial p}{\partial n}\right)^{-1}$ | $\frac{8S}{n} + \frac{\pi^2}{(4(1-2x)S)^2}$                                  | $4(1-2x)\left(n\frac{\partial S}{\partial n}-\frac{S}{3}\right)$ |
| ENTERS IN<br>R-MODE<br>PROFILE | (hadronic gas)               | $\frac{3m_N^2}{\left(3\pi^2n\right)^{\frac{2}{3}}}$   | $\frac{4m_N^2}{3(3\pi^2)^{\frac{1}{3}}n^{\frac{4}{3}}}$                      | $\frac{\left(3\pi^2n\right)^{\frac{2}{3}}}{6m}$                  |
|                                | quark matter (gas: $c = 0$ ) | $3 + \frac{m_s^2}{(1-c)\mu_q^2}$                      | $\frac{2\pi^2}{3(1-c)\mu_q^2} \left(1 + \frac{m_s^2}{12(1-c)\mu_q^2}\right)$ | $-\frac{m_s^2}{3(1-c)\mu_q}$                                     |

| BULK VISCOSITY | Weak process           | $\tilde{\Gamma} \left[ \mathrm{MeV}^{(3-\delta)}  ight]$              | δ | $\chi_1$               | $\chi_2$               | $\chi_3$              |
|----------------|------------------------|-----------------------------------------------------------------------|---|------------------------|------------------------|-----------------------|
| PARAMETERS:    | quark non-leptonic     | $6.59 \times 10^{-12} \left( \frac{\mu_q}{300  \text{MeV}} \right)^5$ | 2 | $\frac{1}{4\pi^2}$     | 0                      | 0                     |
|                | hadronic direct Urca   | $5.24 \times 10^{-15} \left(\frac{x n}{n_0}\right)^{\frac{1}{3}}$     | 4 | $\frac{10}{17\pi^2}$   | $\frac{1}{17\pi^4}$    | 0                     |
|                | hadronic modified Urca | $4.68 \times 10^{-19} \left(\frac{x n}{n_0}\right)^{\frac{1}{3}}$     | 6 | $\frac{189}{367\pi^2}$ | $\tfrac{21}{367\pi^4}$ | $\frac{3}{1835\pi^6}$ |

SHEAR VISCOSITY
 PARAMETERS:
 (NON-FERMI LIQUID
 ENHANCED SCATTERING)

| Strong/EM process   | $\tilde{\eta} \left[ \mathrm{MeV}^{(3+\sigma)} \right]$                                               | $\sigma$      |
|---------------------|-------------------------------------------------------------------------------------------------------|---------------|
| quark scattering    | $1.98 \times 10^9 \alpha_s^{-\frac{5}{3}} \left(\frac{\mu_q}{300 \mathrm{MeV}}\right)^{\frac{14}{3}}$ | $\frac{5}{3}$ |
| leptonic scattering | $1.40 \times 10^{12} \left(\frac{x n}{n_0}\right)^{\frac{14}{9}}$                                     | $\frac{5}{3}$ |
| nn-scattering       | $5.46 \times 10^9 \left(\frac{\rho}{m_N n_0}\right)^{\frac{9}{4}}$                                    | 2             |

STAR MODELS



□ SOLUTIONS OF STATIC TOLMAN-OPPENHEIMER-VOLKOV EQS.

 $\square$  both  $1.4M_{\odot}$  and heavy  $2M_{\odot}$  star models

P. B. DEMOREST, ET. AL., NATURE 467 (2010) 1081

SLOW ROTATION" EXPANSION IN  $\Omega$  AND LINEAR MODE ANALYSIS ,L. LINDBLOM, ET. AL., PRL 80 (1998) 4843; PRD 60 (1999) 064006

## GENERAL DAMPING TIME EXPRESSIONS

THE DAMPING TIMES FOR GENERAL FORMS OF DENSE MATTER CAN BE WRITTEN IN A SEMI-ANALYTIC FORM WHERE ALL DEPENDENCE ON THE MICROPHYSICS (EQUATION OF STATE, TRANSPORT PROPERTIES) AND THE STAR MODEL (DENSITY PROFILES) IS CONTAINED IN A FEW DIMENSIONLESS CONSTANTS:

 $\begin{aligned} \frac{1}{\tau_{G}} &= -\frac{32\pi \left(m-1\right)^{2m}}{\left(\left(2m+1\right)!!\right)^{2}} \left(\frac{m+2}{m+1}\right)^{2m+2} \tilde{J}_{m} GMR^{2m} \Omega^{2m+2} & \tilde{J}_{m} \equiv \frac{1}{MR^{2m}} \int_{0}^{R} \rho(r) r^{2m+2} dr \\ \frac{1}{\tau_{S}} &= \frac{\left(m-1\right)\left(2m+1\right)\tilde{S}_{m}\Lambda_{QCD}^{3+\sigma}R}{\tilde{J}_{m}MT^{\sigma}} & \text{WITH} \\ \frac{1}{\tau_{S}^{6}} \xrightarrow{f \ll 1} \frac{16m}{\left(2m+3\right)\left(m+1\right)^{5}\left(\kappa-m\right)^{2}} \frac{\Lambda_{QCD}^{9-\delta}\tilde{V}_{m}R^{5}\Omega^{2}T^{\delta}}{\Lambda_{EW}^{4}\tilde{J}_{m}M} & \text{WITH} \\ \frac{1}{\tau_{S}^{6}} \xrightarrow{f \gg 1} \frac{16m}{\left(2m+3\right)\left(m+1\right)^{5}} \frac{\Lambda_{EW}^{4}\Lambda_{QCD}^{\delta-1}\tilde{W}_{m}R^{5}\Omega^{4}}{\tilde{J}_{m}MT^{\delta}} & \tilde{W}_{m} \equiv \frac{1}{R^{3}\Lambda_{EW}^{4}\Lambda_{QCD}^{\delta-1}} \int_{R_{i}}^{R_{o}} dr r^{2}A^{2}C^{2}\tilde{\Gamma} \left(\delta\Sigma(r)\right)^{2} \\ \frac{1}{\tau_{S}^{6}} \xrightarrow{f \gg 1} \frac{16m}{\left(2m+3\right)\left(m+1\right)^{5}} \frac{\Lambda_{EW}^{4}\Lambda_{QCD}^{\delta-1}\tilde{W}_{m}R^{5}\Omega^{4}}{\tilde{J}_{m}MT^{\delta}} & \tilde{W}_{m} \equiv \frac{1}{R^{3}\Lambda_{EW}^{4}\Lambda_{QCD}^{\delta-1}} \int_{R_{i}}^{R_{o}} dr r^{2}\frac{A^{2}C^{2}}{\tilde{\Gamma}B^{2}} \left(\delta\Sigma(r)\right)^{2} \\ \square \quad \text{DEPENDENCE ON MACROSCOPIC PARAMETERS EXPLICIT} & \text{R-MODE} \\ \text{DENSITY} \\ \text{FLUCTUATION} & \text{COMPLENCE ON MACROSCOPIC PARAMETERS EXPLICIT} & \text{R-MODE} \\ \end{array}$ 

## INSTABILITY REGIONS

THE BOUNDARY OF THE INSTABILITY REGION IS GIVEN BY:

 $\frac{1}{\tau_G} + \sum_{s} \left( \frac{1}{\tau_S^{(s)}} + \frac{1}{\tau_B^{(s)}} \right) = 0$ 

SHELL

IN GENERAL COMPLICATED NON-ANALYTIC EQUATION IN T and  $\Omega$ 

YET THE DEPENDENCE OF THE INDIVIDUAL TERMS IS VERY PRONOUNCED SO THAT NEARLY ALWAYS ONE DAMPING TERM CLEARLY DOMINATES

APPROXIMATE ANALYTIC SOLUTION IN THIS REGIME

 $\Box$  CONDITION FOR BOUNDARY SEGMENT:  $au_V^{(i)} = | au_G|$ 

 $\Box$  condition for extrema:  $au_V^{(i)} = au_V^{(j)} = | au_G|/2$ 

# SEMI-ANALYTIC RESULTS

#### GENERAL RESULT FOR MINIMUM OF THE INSTABILITY REGION:



## ANALYTIC VS. NUMERIC



- VERY GOOD AGREEMENT BETWEEN THE SEMI-ANALYTIC AND NUMERIC RESULTS
- ANALYTIC EXPRESSIONS COVER THE BASICALLY ENTIRE INSTABILITY BOUNDARY

MASS DEPENDENCE



LARGE MASS STARS ARE SLIGHTLY MORE UNSTABLE

INDISTINGUISHABLE FROM ORDINARY NEUTRON STARS

HYBRID STARS WITH A SMALL QUARK CORE ARE

OTHER ASPECTS



DIRECT URCA HAS A SMALL EFFECT (NOTCH AT THE R.H.S)

HIGHER R-MODES MORE STABLE

# CONFRONTING DATA

- LMXB'S FAR INSIDE THE NEUTRON STAR INSTABILITY REGION
- ANALYTIC ANALYSIS: ROBUST STATEMENT!
  - POSSIBLE EXPLANATION: EXOTIC MATTER WHICH PROVIDES ENHANCED DAMPING
    - ] STABILITY WINDOW
  - ] OTHER OPTIONS:
    - CRUST EFFECTS
    - SUPERFLUIDITY?



# CONCLUSION

- SEMI-ANALYTIC EXPRESSIONS FOR THE BOUNDARY OF THE INSTABILITY REGION
- SURPRISINGLY INSENSITIVE TO THE DETAILED MICROPHYSICS FOR A GIVEN FORM OF DENSE MATTER
- I. BUT COULD DISTINGUISH CLEARLY BETWEEN DIFFERENT CLASSES OF DENSE MATTER
- DEFINITE CONCLUSIONS REQUIRE A BETTER UNDERSTANDING OF THE DYNAMIC R-MODE ASPECTS (SATURATION, EVOLUTION, ...)