MAXIMALLY MODEL INDEPENDENT EQUATION OF STATE FOR NEUTRON STAR MATTER

Sergey Postnikov Instituto de Astronomía UNAM, México D.F. México

instituto de astronomía

unam

<u>Collaborators:</u> Madappa Prakash (OU), Andrew Steiner (INT) and Jim Lattimer (Stony Brook)

Talk at INT-2011, Seattle, USA

July 29, 2011

Content

- Objectives.
- The Tolman-Oppenheimer-Volkov (TOV) equations.
- Potentially observable parameters of a NS.
- Observational data with errors and their effects on the inferred Equation of State (EOS).
- Argument for smoothness of EOS.
- Schemes to generate wide class of EOS.
- Simplest inference from 5 stars using X-ray bursts data.
- Sequential Bayesian analysis.
- The TOOL for astronomers.
- Recent 2 Solar mass star
- **Taking steps further.**
- **Summary.**

Objectives

1. Use observations of masses and radii (binding energy, moment of inertia, Love number, period and etc.) of several individual NS stars to determine the dense nuclear matter EOS.

2. To provide a benchmark maximally modelindependent dense matter EOS for ongoing microscopic studies.

Neutron Star in hydrostatic equilibrium Tolman-Oppenheimer-Volkov (TOV) equations

Ser

1) Equations of stellar structure connects the matter pressure P(r) and the enclosed gravitational mass M(r) at the macrophysical level

2) Equation of State (EOS): $P \equiv P(\rho)$ connects pressure and energy density through microphysics of dense matter

3) Due to compactness, gravitational force is large and General Relativity (GR) must be considered

Center:
$$\begin{cases} \rho(0) = \rho_{c} & \text{TOV} \\ P(0) = P_{c} = P(\rho_{c}) & \text{EOS} & \text{Surface:} \\ \end{cases} \begin{cases} M(R) \text{ total mass} \\ P(R) = 0 \\ \text{microphysics} & \text{the bridge} & \text{macrophysics} \end{cases}$$

Potentially observed properties of a NS

(http://nobelprize.org/nobel_prizes/physics/laureates/1993/press.html)

 $\beta \equiv GM/Rc^2$

Radiation radius R_{∞} and effective temperature T_{∞} is measured from photon flux spectra.

$$\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - 2\beta}} = \sqrt{\frac{F_{\infty}}{\sigma}} \frac{1}{f_c^2 T_{\infty}^2}$$

Redshift z can be measured from lines or peak curvature of spectrum.

$$z = (1 - 2\beta)^{-1/2} - 1$$

And the other ways and parameters...

Sergey Postnikov, IA-UNAM

Love number of a star

An external tidal field \mathcal{E}_{ij} induces a quadrupole moment Q_{ij} in the star, disturbing it from its spherical configuration.

$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$

λ is the Love number.

 k_2 is its dimensionless form.

A good analogy is the electric dipole moment of an atom in an external electric field. λ carries the info about the structure of the compact object.

Sergey Postnikov, IA-UNAM

First order DE and surface parameter y

$$\begin{aligned} -\frac{dy}{dh}\nu'/2 + y^2/r(h) - y/r(h) + y\left(2/r(h) + e^{\lambda}\left[2m(h)/r^2(h) + 4\pi r(h)(p-\rho)\right]\right) + \\ + \left(-6e^{\lambda}/r(h) + 4\pi r(h)e^{\lambda}(5\rho + 9p + (p+k)/c_s^2) + \nu'^2\right) = 0. \\ h \text{ defined through } dh = \frac{dp}{\rho+p}, \ y(r) = r\frac{H'(r)}{H(r)}, \end{aligned}$$

with initial condition at the star's center
$$y = 2 - \frac{9}{7} \frac{5\rho_c + 9p_c + (p_c + \rho_c)/c_{sc}^2}{3p_c + \rho_c}(h_c - h) + O\left((h_c - h)^2\right). \\ y = y\left(h = 0\right). \qquad y(r_d + \epsilon) = y(r_d - \epsilon) - \frac{\rho(r_d + \epsilon) - \rho(r_d - \epsilon)}{m(r_d)/(4\pi r_d^3)} \\ k_2(C) = \frac{8}{5}C^5(1 - 2C)^2(2 + 2C(y - 1) - y) \times \\ \times \left[2C(6 - 3y + 3C(5y - 8)) + 4C^3(13 - 11y + C(3y - 2) + 2C^2(1 + y)) + \\ + 3(1 - 2C)^2(2 - y + 2C(y - 1)\log(1 - 2C))\right]^{-1} \end{aligned}$$

Love Numbers for NS

Supernovae and Binding Energy

$$M = 4\pi \int_0^R \epsilon r^2 dr.$$
(3)

This is the mass which is measured by Kepler's law when a satellite orbits the star. For this reason, Mis often called the "gravitational mass". The baryon mass, M_0 , of the star is given by the volume integral

$$M_0 = m_B N = 4\pi m_B \int_0^R n \left(1 - 2m(r)/r\right)^{-1/2} r^2 dr.$$

 $\mathbf{B.E.}=\mathbf{M}_{0}-\mathbf{M}$

"Neutrino observations of supernovae, validated by the serendipitous observations of SN 1987A, which yielded about 20 neutrinos, should detect thousands of neutrinos from a galactic supernova. This could yield neutron star binding energies to a few percent accuracy and provide estimates of their masses, radii, and interior compositions, as well as details of neutrino opacities in dense matter." (Lattimer and Prakash, Nature **304** (2004): 536-542)

Mass and radius of a NS

"The American Pie"

Many exotic scenarios for interior composition, but none confirmed!

Sergey Postnikov, IA-UNAM NS-2011, St.-Petersburg, 13 July 2011

Direct approach: from EOS to M vs R

Note: Diverse predictions for masses and radii; not satisfactory!

How several observed individual stars determine the EOS.

Sergey Postnikov, IA-UNAM

Smoothness of the EOS in NS matter

Phase transitions with more than one conserved charge Glendenning Phys Rev D 46 (1992) 1274

Gibbs' rules

- P₁=P₂ (mechanical equilibrium)
- E.g. , $\mu_n = \mu_u + \mu_d$ (chemical eq.)
- System with one conserved charge
 - Maxwell construction
 - NS profile ρ(r) has discontinuity
- Charge and baryon number conservation
 - Chemical beta equilibrium: E.g. : $d(or s) \leftrightarrow u + e^{-} + V_{e}$
 - Global charge neutrality
 - NS profile $\rho(\mathbf{r})$ is continuous
 - dP/dp discontinuities

In NS matter we can have desired EOS's by constructing its derivative

"Pressure, energy density, and chemical potentials as a function of baryon density when there is one conserved charge." (Glendenning 1992)

Scheme for generating EOS's

Use low density "known" EOS to set starting point 0.

1. Recast the hypothetical EOS as speed of sound squared

 $c_s^2(h) = dP/d\rho$ vs h (where $dh = dp/(p + \rho)$) in the unknown region

Since c_s²(h) is chosen to be piecewise, at each next step in h 2. we can generate a linear piece of curve with deviation in its slope from the previous step: "tree"

$$\alpha_{\text{next slope}} = \alpha_{\text{previous slope}} (1 + \delta j/N_{\alpha})$$

where

 $\mathbf{\tilde{0}}$ – relative deviation $j = -N_{a}, N_{a} - 1, ..., 0, ..., N_{a} - branch index$ $2 N_{a} + 1 - branching$ [movie]

- For every piecewise $c_{e}^{2}(h)$, calculate corresponding $P(\rho)$
- Now I am checking adoptive <u>grid</u> algorithm: c²(ln[h]) 4.
- Also into using faster Monte Carlo scheme 5.

Masses are well measured in binary systems but radii are not precisely

The other systems, in which the radiation radius \mathbf{R}_{∞} is measured, do not have reliable masses.

	Object	R_{∞}	D	$kT_{eff,\infty}$	Ref.
	-	(km)	(kpc)	(eV)	
	Omega Cen	13.5 ± 2.1	$5.36\pm6\%$	66^{+4}_{-5}	Rutledge
	(Chandra)				et al. ('02)
	Omega Cen	13.6 ± 0.3	$5.36\pm6\%$	67 ± 2	Gendre
	(XMM)				et al. ('02)
	M13	12.6 ± 0.4	$7.80\pm2\%$	76 ± 3	Gendre
	(XMM)				et al. ('02)
	47 Tuc X7	$14.5^{+1.6}_{-1.4}$	$5.13\pm4\%$		Rybicki
	(Chandra)	$(1.4 M_{\odot})$			et al. ('05)
	M28	$14.5^{+6.9}_{-3.8}$	$5.5\pm10\%$	90^{+30}_{-10}	Becker
	(indra)				et al. ('03)
08v	0748-676	13.8 ± 1.8	9.2 ± 1.0		Ozel ('06)
	(Chandra)	$(2.10\pm 0.28~M_{\odot})$			
	67				
	$R_{\infty} = R/$	$1 - (2GM/c^2R)$;	F = 4z	$\pi T^4_{eff}(R$	$_{\infty}/D)^2$

Atmospheric (sometimes magnetic) modeling required.

Sergey Postnikov, IA-UNAM

Thermonuclear X-ray Bursts

NASA

Unstable nuclear burning of accreted matter on the neutron star surface causes type I (thermonuclear) X-ray bursts

Accretion on neutron star

Rise time $\approx 0.5 - 5$ seconds Decay time $\approx 10 - 100$ seconds Recurrence time \approx hours to day Energy release in 10 seconds $\approx 10^{39}$ ergs

Sun takes more than a week to release this energy.

Why is *unstable* burning needed? Energy release:

Gravitational ≈ 200 MeV / nucleon Nuclear ≈ 7 MeV / nucleon

Accumulation of accreted matter for hours \rightarrow Unstable nuclear burning for seconds \Rightarrow Thermonuclear X-ray burst.

Sudip Bhattacharyya NASA's Goddard Space Flight Center

M & R from X-Ray Bursts

Generating EOS with "seed" SLY4 ($n < n_0 = 0.16 \text{ fm}^{-3}$)

Generating EOS with "seed" SLY4 ($\rho < \rho_0 = 0.16$)

Sergey Postnikov, IA-UNAM

The band vs model EOSs and Andrew's work.

Sequential Bayesian analysis

- 1. $P(H_i) = 1/(\text{total number of curves})$
- 2. Likelihood: $P(D | H_i) = ?$
 - integral of <u>o</u> along the curve

Μ

- 2. maximum [crossed σ along the curve]
- 3. division into smaller boxes and then proper curve counting
- 3. Normalization: $P(D) = \sum P(D | H_i) P(H_i)$
- 4. Prior: $P(H_i) \leftarrow P(H_i | D) = P(D | H_i) P(H_i) / P(D)$
- 5. If several (M & R)'s (e.g. data D) available, go to step 2.
- 6. Every curve acquires a weight $P(H_i)$

R

The TOOL

Dependence on seed EOS

Sergey Postnikov, IA-UNAM

Bayesian analysis with contours (AP3)

Resulting EOS band

Many seed EOSs

Sergey Postnikov, IA-UNAM

With many seed EOSs

Sergey Postnikov, IA-UNAM

Only 2 solar mass star, R-M

Sergey Postnikov, IA-UNAM

Only 2 solar mass star, EOSs

Sergey Postnikov, IA-UNAM

Together, 2 solar mass and 5 stars

Sergey Postnikov, IA-UNAM

Together, 2 solar mass and 5 stars

Relative probability of seed EOSs

5 stars		5	stars +	2 solar ma	ISS	2 solar	only
0.241338	ms2c		0.338644	GM1c		0.109664	ms2c
0.231626	ms00c		0.205141	PCLc		0.101387	ms00c
0.148553	GM2c		0.110367	WFF3e		0.0808058	psc
0.140887	pal32e		0.101353	PAL11c		0.067935	PCLc
0.0937868	GM1c		0.0902202	AP3c		0.0659151	WFF3e
0.0908382	GM3c		0.078366	FPSc		0.0604734	AP3c
0.052972	PAL11c		0.0759085	WFF1e		0.0554514	GM1c
0	WFF4c		0	WFF4c		0.0527658	ENGc
0	WFF3e		0	WFF2e		0.0509865	pal32e
0	WFF2e		0	SLY4e		0.0469431	FPSc
0	WFF1e		0	psc		0.046008	WFF4c
0	SLY4e		0	pal32e		0.0457392	GM2c
0	psc		0	ms2c		0.0450535	GM3c
0	PCLc		0	ms00c		0.0449179	MPA1c
0	MPA1c		0	MPA1c		0.0318951	SLY4e
0	FPSc		0	GM3c		0.028861	PAL11c
0	ENGc		0	GM2c		0.0280517	WFF1e
0	AP3c		0	ENGc		0.0188124	AP1c
0	AP1c		0	AP1c		0.0183353	WFF2e

Sergey Postnikov, IA-UNAM

Turning an ellipse

Turning an ellipse

Sergey Postnikov, IA-UNAM

Playing with 4 stars (SLY)

Sergey Postnikov, IA-UNAM

2 solar			1.4 & 2 solar		
0.0821313	SLY4e		0.130332	SLY4e	
0.0812719	GM1c		0.122328	AP3c	
0.0796758	WFF3e		0.11927	WFF3e	
0.0792627	AP3c		0.115924	WFF4c	
0.0788332	ms00c		0.107259	PAL11c	
0.0785774	PCLc		0.0808789	MPA1c	
0.0775472	WFF4c		0.0639204	ms2c	
0.0759901	MPA1c		0.0574244	PCLc	
0.0733188	ms2c		0.0493676	FPSc	
0.0515601	PAL11c		0.0441501	GM2c	
0.0508611	FPSc		0.0366995	GM1c	
0.039268	GM3c		0.0354675	WFF1e	
0.0375714	GM2c		0.0213773	WFF2e	
0.026417	WFF1e		0.0156012	ENGc	
0.0255262	pal32e		0	psc	
0.0235602	psc		0	pal32e	
0.0195336	WFF2e		0	ms00c	
0.019094	ENGc		0	GM3c	
0	AP1c		0	AP1c	

Next steps being taken

- Adaptive grid with jumps. Generation of complementary EOSs by TOV inversion schemes (M-R plane).
- Inclusion of more constraints.
 - Rotational period, redshift, B.E., Love number...
 - Data from nuclear experiments
 - Cooling and bursting data
- Sequential data analysis as more individual stars available.

Strange quark matter stars, very deferent seed EOS. Sergey Postnikov, IA-UNAM NS-2011, St.-Petersburg, 13 July 2011 43

Summary

- The way to use available observations of several stars to determine a EOS is being tested and developed.
- Schemes to generate EOS with incorporation of observational errors is constructed on the basis of sequential Bayesian analysis. It uses EOS expressed as the speed of sound c_s(h) and the variable h and complementary inversion scheme from M-R into EOS.
- Scheme is tested on 5 stars from X-ray burst data and produced reasonable and consistent band of EOSs.
- Additional theoretical constrains and phase transitions can be easily implemented.
- New measurements of several individual stars is expected to get us closer and closer to pinpointing benchmark EOS.

SQM vs NS

Sergey Postnikov, IA-UNAM

SQM vs NS

SQM EOS is given by MIT bag model with 3 parameters:

B, α_{s} and m_{s}

Sergey Postnikov, IA-UNAM

Reconstructing DE EOS

Acknowledgments

Prof. Madappa Prakash

Ohio University

Prof. Jim Lattimer

Stony Brook University

Dr. Andrew Steiner

INT

The end

Thank you! Questions?

Examples of generated "phase transition"

Sergey Postnikov, IA-UNAM

EQUATIONS OF STATE						
Symbol	Reference	Approach	Comp.			
FP	Friedman & Pandharipande	Variational	пр			
$_{\rm PS}$	Pandharipande & Smith	Potential	$n\pi^0$			
WFF(1-3)	Wiringa, Fiks & Fabrocine	Variational	пр			
AP(1-4)	Akmal & Pandharipande	Variational	пр			
MS(1-3)	Müller & Serot	Field Theoretical	пр			
MPA(1-2)	Muther, Prakash & Ainsworth	Dirac-Brueckner HF	пр			
ENG	Engvik et al.	Dirac-Brueckner HF	пр			
PAL(1-6)	Prakash, Ainsworth & Lattimer	Schematic Potential	пр			
GM(1-3)	Glendenning & Moszkowski	Field Theoretical	npH			
GS(1-2)	Glendenning & Schaffner-Bielich	Field Theoretical	прК			
PCL(1-2)	Prakash, Cooke & Lattimer	Field Theoretical	$_{\rm npHQ}$			
SQM(1-3)	Prakash, Cooke & Lattimer	Quark Matter	$\mathbf{Q}~(u,d,s)$			
HS	Haensel, Salgado & Bonazzola	Crust, Ref. [65]	Z,e,n			
BPS	Baym, Pethick & Sutherland	Crust, Ref. [66]	Z,e,n			

Table 7.1: Approach refers to the underlying theoretical technique. Composition (Comp.) refers to strongly interacting components (n=neutron, p=proton, Z=nucleus, H=hyperon, K=kaon, Q=quark); all models include leptonic contributions. The original table and references can be found in [13].

Maximum Mass, Minimum Period Theoretical limits from GR and causality

• $M_{max} = 4.2 (\epsilon_s/\epsilon_f)^{1/2} {
m M}_{\odot}$ Rhoades & Ruffini (1974), Hartle (1978)

• $R_{min} = 2.9GM/c^2 = 4.3(M/M_{\odot})$ km

Lindblom (1984), Glendenning (1992), Koranda, Stergioulas & Friedman (1997)

• $\epsilon_{central} < 4.5 \times 10^{15} (M_{\odot}/M_{largest})^2 \text{ g cm}^{-3}$

Lattimer & Prakash (2005)

• $P_{min} \simeq 0.74 (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$

Koranda, Stergioulas & Friedman (1997)

• $P_{min} \simeq 0.96 \pm 0.03 (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$

(empirical)

Lattimer & Prakash (2004)

- $\epsilon_{central} > 0.91 \times 10^{15} (1 \text{ ms}/P_{min})^2 \text{ g cm}^{-3}$ (empirical)
- $cJ/GM^2 \lesssim 0.5$ (empirical, neutron star)

J.M. Lattimer, NIC XI, Heidelberg, 20/07/10 - p. 6/31

Possible Kinds of Observations

- Maximum and Minimum Mass (binary pulsars)
- Minimum Rotational Period*
- Radiation Radii or Redshifts from X-ray Thermal Emission*
- Crustal Cooling Timescale from X-ray Transients*
- X-ray Bursts from Accreting Neutron Stars*
- Seismology from Giant Flares in SGR's*
- Neutron Star Thermal Evolution (URCA or not)*
- Moments of Inertia from Spin-Orbit Coupling*
- Neutrinos from Proto-Neutron Stars (Binding Energies, Neutrino Opacities, Radii)*
- Pulse Shape Modulations*
- Gravitational Radiation from Neutron Star Mergers* (Masses, Radii from tidal Love numbers)
- * Significant dependence on symmetry energy

J.M. Lattimer. NIC XI. Heidelberg. 20/07/10 – p. 14/31

Upper Limit from LIGOII

FIG. 3.—Range of Love numbers for the estimated NS parameters from X-ray observations. *Top to bottom sheets*: EXO 0748-676, ω Cen, M13, and NGC 2808. For an inspiral of two 1.4 M_{\odot} NSs at a distance of 50 Mpc, LIGO II detectors will be able to constrain λ to $\lambda \leq 20.1 \times 10^{36}$ g cm² s² with 90% confidence (Flanagan & Hinderer 2008).

The Nuclear (A)Symmetry Energy

Courtesy M. Prakash

ERROR: undefined OFFENDING COMMAND: II* STACK: