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Motivation and Outline

How uncertain is
- Inner crust composition
- Extent of various pasta phases
- Transition densities

due to uncertainties in
- Nuclear physics
- Crustal model

?

A simple crust model: compressible liquid drop
Nuclear physics constraints
Range of crustal properties
A more sophisticated crust model

Motivation:

Outline:



Compressible Liquid Drop Model (CLDM)

Shear modulus?
Pinning?
Bubbles: ‘free’ protons
- direct Urca
(Gusakov, Yakovlev, Haensel, Gnedin
2004)



Compressible Liquid Drop Model (CLDM)

Nakazato, Oyamatsu, Yamada 2009



Compressible Liquid Drop Model (CLDM)
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Wigner-Seitz approximation: unit cell is 
replaced by one which has the same 
geometry as the nuclear cluster 
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PROS:
• Physically transparent
• Easy and quick to calculate compositional quantities (A,Z,Xn...) 
for use in macroscopic NS models

CONS:
• Semi-classical, macroscopic; no shell effects
• WS approximation not good at the highest densities
of the inner crust.



PROS:
• Physically transparent
• Easy and quick to calculate compositional quantities (A,Z,Xn...) 
for use in macroscopic NS models
• Lots of CLDM crust models out there: which one to use?

CONS:
• Semi-classical, macroscopic; no shell effects
• WS approximation not good at the highest densities
of the inner crust.
• Exactly how wrong is CLDM near the crust-core transition?

Compressible Liquid Drop Model (CLDM)



Uniform nuclear matter EoS Surface energy

Compressible Liquid Drop Model (CLDM)
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Nuclear Experimental Constraints on L

Nuclear Matter EoS

isospin diffusion in heavy ion collisions involving 112Sn and 124Sn
1   62< L <107 MeV  Bao-An Li, Lei-Wen Chen and Che Ming Ko, Phys. Rep. 464, 113 (2008)

2 45< L <103 MeV  M.B. Tsang, Yingzun Zhang, P. Danielewicz, M. Famiano, Zhuxia Li, W.G. Lynch 

and A.W. Steiner, PRL 102, 122701 (2009)

Isoscaling from multifragmentation reactions
8 L≈ 66MeV    D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C76, 024606 (2007)

Pygmy dipole resonance 
4   27< L < 60 MeV     A. Klimkiewicz et al, Phys. Rev. C76, 051603(R) (2007)

Surface symmetry energies of nuclei over a wide range of masses 
5   75< L < 115 MeV    P. Danielewicz and J. Lee, AIPC Conf. Proc. 947, 301 (2007)

Neutron skins of a wide mass range of nuclei 
6   25< L <100 MeV    M. Centelles, X. Roca-Maza, X. Vinas and M. Warda, 

PRL 102, 122502 (2009)

N-skin of tin isotopes + heavy ion collision data
7  40 < L < 76 MeV    Lie-Wen Chen, Che Ming Ko, Bao-An Li and Jun Xu

Neutron-nucleus scattering, (p,n) charge exchange reactions and s.p.energies
8   30.2 < L < 73.2 MeV    Chang Xu, Bao-An Li and Lie-Wen Chen
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25 < J < 35 MeV
From, e.g., mass models



Nuclear Matter EoS

MSL EoS

Chen, Cai, Ko, Xu, Chen, Ming 2009
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Nuclear Matter EoS

Demanding consistency with low density PNM gives a phenomenological correlation between
the symmetry energy and its slope at saturation; other studies show similar correlations

HVH: Xu, Li Chen 2010
OI: Oyamatsu, Iida 2005
HS: Hebeler, Lattimer, Pethick, Schwenk 2010
GRC: Gandolfi, Carlson, Reddy 2011 



Inner crust: transition densities and pressures



Inner crust: transition densities and pressures

(c.f. Lorenz, Ravenhall, Pethick 1993)



Inner crust: mass fractions of pasta layers

(c.f. Lorenz, Ravenhall, Pethick 1993)



L = 25 MeV

L = 70 MeV

L = 115 MeV

Inner crust: spatial extent of crust layers



Inner crust: volume fraction of clustered matter; number fractions of 
‘dripped neutrons’



Inner crust: WS cell sizes and proton fractions



Inner crust: pressure



Inner crust: shear modulus



Inner crust: shear modulus



CONCLUSIONS and FUTURE

• Significant variation in crustal properties within liquid drop model

• Consistent treatment of core and crust EoS important

• Need to assess where liquid drop model breaks down
- comparison with more microscopic models (e.g. 3DHF)




