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October 2006
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Hillebrandt & Janka 2006 (Sci Am)
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Neutrino Trapping

Electron-neutrino mean free path decreases much more rapidly with 
density than core size, and the neutrinos become trapped in the core. 

Degenerate electron-neutrino Fermi sea develops

During stellar core collapse, the neutrino opacity is 
dominated by coherent scattering on nuclei.

Freedman, PRD 9, 1389 (1974)

Arnett, ApJ 218, 815 (1977)
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Homologous collapse

• homologous collapse --> differences in core structure for 
different progenitors only appear after bounce 

18

Figure 4. Central lepton fraction Ylep (left panel) and central entropy per baryon
(right panel) as functions of the central density obtained in the core-collapse simulation
of a 15 M! star (solid lines). After the neutrino trapping ρc ≈ 1012 g cm−3, the lepton
fraction and entropy at the center becomes nearly constant. This figure is taken from
Rampp & Janka (2002)[296].

Figure 5. Infall velocity and sound velocity versus radius at the central density of
1012 g cm−3 of a 15 M! progenitor model. The region inside and outside the sonic
point (R ≈ 200 km, at which the two curves cross) roughly corresponds to the inner
core and the outer core, respectively.

huge amount of electron neutrinos just behind the shock. Before the shock arrives

at the neutrino sphere, these electron neutrinos cannot escape in the hydrodynamical

scale. Because these regions are opaque to the final state electron neutrinos and they

are effectively trapped because their diffusion time is much longer than that for the
shock propagation. As the shock waves move out in outer radius and pass through the

neutrino sphere, the previously trapped electron neutrinos decouple from the matter

and propagate ahead of the shock waves. This sudden liberation of electron neutrinos

is called the neutronization burst (or “breakout” burst) (see the top panel of Figure 6).
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Spherically symmetric collapse

Messer(2000)
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Post-bounce profile

Hillebrandt & Janka 2006 (Sci Am)
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Newtonian versus GR Bruenn, DeNisco, and Mezzacappa, Ap.J. 560, 326 (2001)
Liebendoerfer et al. Ap.J. 620, 840 (2005)

25 M¤ Model 15 M¤ Model
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How is the supernova shock revived?

� Gravity
� Neutrino Heating
� Convection
� Shock Instability (SASI)
� Nuclear Burning
� Rotation
� Magnetic Fields

Known, Potentially Important 
Ingredients

Need 3D models with all of 
the above, treated with 
sufficient realism.
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Stationary Accretion Shock Instability

Blondin, Mezzacappa, & DeMarino, Ap.J. 584, 971 (2003)

SASI has axisymmetric and nonaxisymmetric modes 
that are both linearly unstable!

– Blondin and Mezzacappa, Ap.J. 642, 401 (2006)
– Blondin and Shaw, Ap.J. 656, 366 (2007)

Shock wave unstable to 
non-radial perturbations.

• Decreases advection velocity in gain region.
• Increases time in the gain region.
• Generates convection.

shock

gain radius

!-sphere

neutrinos

matter

Heating

Cooling

SASI

convection
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CHIMERA 

•  “RbR-Plus” MGFLD Neutrino Transport

•  O(v/c), GR time dilation and redshift, GR aberration

•  2D PPM Hydrodynamics

•  GR time dilation, effective gravitational potential,

•  adaptive radial grid

•  Lattimer-Swesty EOS

•  Nuclear (Alpha) Network

•  14 alpha nuclei between helium and zinc

•  2D Effective Gravitational Potential

•  Marek et al. A&A, 445, 273 (2006)

•  Neutrino Emissivities/Opacities

•  “Standard” + Elastic Scattering on Nucleons + Nucleon–Nucleon Bremsstrahlung
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2D simulations Bruenn et al., J. Phys. Conf. Ser., 46, 393 (2006)
Mezzacappa et al., AIP Conf. Proc., 924, 234 (2007)
Messer et al., J. Phys. Conf. Ser., 78, 012049 (2007)
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Important Neutrino Emissivities/Opacities

€ 

e− + p,A↔ν e + n,A'
e+ + e− ↔ν e,µ,τ + ν e,µ,τ

v + n, p,A→ v + n, p,A

v + e−,e+ → v + e−,e+

N + N↔ N + N + ν e,µ,τ + ν e,µ,τ

ν e + ν e ↔ν µ,τ + ν µ,τ

¬
 

Reddy, Prakash, and Lattimer, PRD, 58, 013009 (1998)
Burrows and Sawyer, PRC, 59, 510 (1999)

• (Small) Energy is exchanged due to nucleon recoil.
• Many such scatterings.

Hannestadt and Raffelt, Ap.J. 507, 339 (1998)
Hanhart, Phillips, and Reddy, Phys. Lett. B, 499, 9 (2001) 

• New source of neutrino-antineutrino pairs.

“Standard” Emissivities/Opacities

¬
 

Bruenn, Ap.J. Suppl. (1985) 
• Nucleons in nucleus independent.
• No energy exchange in nucleonic scattering.

Langanke et al. PRL, 90, 241102 (2003)
• Include correlations between nucleons in nuclei.

Janka et al. PRL, 76, 2621 (1996)
Buras et al. Ap.J., 587, 320 (2003)
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Determining what’s important to include...Solving the Boltzmann equation on adaptive mesh

(Mezzacappa & Bruenn 1993, Liebendörfer 2000, Liebendörfer et al. 2004)

Evolution of specific
neutrino distr. function:

F(t,m,µ,E) = f(t,r,µ,E)/!

=> 3D implicit problem

Comoving metric:

Stress-energy tensor:

observer corrections

energy-exchanging processes
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CHIMERA 1D simulations
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AGILE-Boltztran 

Lentz et al. in prep
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Impact of resolution
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Example of observables: Anatomy of a GW signature

21

• Prompt Convection
• Early Shock Deceleration

• Lower-frequency 
envelope: SASI-induced 
shock excursions

• Higher-frequency 
variations: Impingement 
of downflows on 
PNS from neutrino-
driven convection and 
SASI

• Later Rise: Prolate Explosion/Deceleration at Shock 

Yakunin et al. Class. Quantum Grav. 27 194005 (2010)
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Using Tracers for GW Diagnostics

Yakunin et al. 2010, Class. Quant. Grav. 27, 194005 
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The primary purpose of tracers: nucleosynthetic 
post-processing

Chertkow, PhD thesis (2011)
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ν signatures in terrestrial detectors
Sanchez, Messer, et al. in prep.

Shock breakout signature in Super Kamiokande   15 M¤ progenitor     10 kpc distance
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Recovering “realistic” ν fluxes from RbR 
simulations 

raw

 1 polar ray

average

180 km

Sanchez, Messer, et al. in prep.
cf. Lund, et al., Phys. Rev. D 82, 063007 (2010)
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Recovering “realistic” ν fluxes from RbR 
simulations 

raw

Sanchez, Messer, et al. in prep.
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Recovering “realistic” ν fluxes from RbR 
simulations 

limb-darkened

Sanchez, Messer, et al. in prep.

Tuesday, July 12, 2011



SASI in 3D

Blondin & Mezzacappa Nature 445, 58 (2007)
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3D simulations

29

• “RbR-Plus” MGFLD Neutrino Transport
• O(v/c), GR time dilation and redshift, 
•  GR aberration (in flux limiter)

• 3D PPM Hydrodynamics
• GR time dilation, effective gravitational 
potential
•   adaptive radial grid

• Lattimer-Swesty EOS
• 180 MeV nuclear compressibility
• 29.3 MeV symmetry energy

• Nuclear (Alpha) Network

• 3D Effective Gravitational Potential
• Marek et al. A&A, 445, 273 (2006)

• Neutrino Emissivities/Opacities
• “Standard” + Elastic Scattering on Nucleons 
+ Nucleon–Nucleon Bremsstrahlung

Resolution
304 X 76 X 152
⇒ 11,552 processors

576 X 96 X 192 (current production size)
⇒ 18,432 processors

512 X 256 X 512
⇒ 131,072 processors
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Summary

• Improved neutrino interaction physics + convection + SASI + 
nuclear burning + sufficient simulation time leads to explosions 
across a range of stellar progenitor models in 2D simulations.

• The inherently three-dimensional nature of both convection and the 
SASI demands three-dimensional simulations.

• These simulations produce a raft of multi-messenger observables.
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Bellerophon

• Revision control, regression testing, viz, workflow... what else ya 
got?
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