Electromagnetic signatures of merging and collapsing compacts (for LISA and LIGO sources)

Maxim Lyutikov (Purdue U.)

Wednesday, July 27, 2011

I. EM counterparts of BHs' mergers

MERGING OF BHs DUE TO

Disk generates B-field

- MRI dynamo (Velikhov-Chandrasekhar-Balbus-Hawley)
- BHs move in B-field generated by the disk

Non-zero second EM invariant

• BH moving across B-field: parallel E-field is generated

Wednesday, July 27, 2011

Luminosity and total energy

$$L_{EM} \approx \eta_E \frac{(GM)^2 m_p}{\xi_d^2 \sigma_T cR} \sim 10^{38} \,\mathrm{ergs}^{-1} m_6^2 \eta_{E,-1}$$
$$E_{EM} \approx \frac{(GM)^2 m_p \xi_d \eta_E}{c^2 \sigma_T} \approx 10^{43} - 10^{45} m_6^2 \mathrm{erg}$$

- Luminosity is low, unless $M = 10^8 M_{Sun}$
- Since inspiraling is slow, total energy is fairly large (winddriven cavities?)

Simulations

Charge density for head-on collision of two BH Palenzuela et al

The triangle anomaly and baryo-genesis

• Standard model of particle physics: non-zero second Poincare EM invariant leads to the appearance of sources of topological vector currents

$$\begin{split} J_{\nu} &= A^{\mu} ({}^{*}F_{\mu\nu}) \\ J_{0} &= \mathbf{A} \cdot \mathbf{B} = 0 \\ J_{i} &= \mathbf{E} \times \mathbf{A} + \frac{A_{0}}{\alpha} \mathbf{B} \\ J_{\mu;\mu} &= -\frac{7}{4} \sin 2\theta \cos \phi B_{0} E_{0} \frac{M}{r} = \frac{7}{4} \mathbf{E} \cdot \mathbf{B} \\ - \text{NB: Helicity J_{0}=0, } \mathbf{E^{*B}} \stackrel{!=}{=} 0 \text{ due to J}_{i,i} \end{split}$$

- E*B ~ 1/r - nonlocal $\Delta N_B \propto (?) = \int d^4 x J_{\mu\mu}$

II. Slowly balding black holes (NS collapse into BH)

"No hair theorem": not applicable to collapsing NSs.

11

"No hair theorem": Isolated BH is defined by mass, angular momentum and electric charge.

The proof assumes outside vacuum.

Plasma: **E.B** =0: frozen-in B-field

Rotating NS:

- generate plasma out of vacuum
- generate currents that open fields to infinity

BH rotates with finite

$$\Omega_H \approx \frac{\chi}{5} \frac{c^4 R_{\rm NS}^2}{(GM_{\rm NS})^2} \Omega_{\rm NS} = 2.9 \times 10^3 \text{rads}^{-1} \chi_{-1} P_{\rm NS,-3}^{-1}$$

(a = 0.04 for a ms NS, slows down!)

If a BH keeps producing plasma, like a NS, B-field cannot slide off.

Field lines that connected NS surface to infinity, has to connect horizon to infinity

No hair theorem not applicable: high plasma conductivity introduces topological constraint (frozen-in B-field).

Conserved number: open magnetic flux:

$$N_B = e \Phi_\infty/(\pi c \hbar)$$
 BH's hair!
$$\Phi_\infty \approx 2\pi^2 B_{NS} R_{NS}^3/(P_{\rm NS} c)$$

Time-dependent Grad-ShafranovequationLyutikov 2011b

Magnetic field line

Black hole

Dis

- Two types of time-dependent:
 - variable current for given shape of flux surfaces

$$\varpi^{2}\nabla\left(\frac{1-\varpi^{2}\Omega^{2}}{\varpi^{2}}\nabla P\right) + \frac{4I(\nabla P \cdot \nabla I)}{(\nabla P)^{2}} + \varpi^{2}\Omega(\nabla P \cdot \nabla \Omega) = 0$$
$$\partial_{t}^{2}\Omega = \frac{\mathbf{B} \cdot \nabla(\mathbf{B} \cdot \nabla \Omega)}{B_{p}^{2}}$$

- motion of flux surfaces

$$\begin{split} \Delta^* P &- \partial_t^2 P + \frac{4I(\nabla P \cdot \nabla I)}{(\nabla P)^2} - 2\partial_t \left(\frac{I^2 \partial_t P}{(\nabla P)^2}\right) = 0\\ F'(\nabla P)^2 &= 2I \partial_t P\\ \partial_t I &= \frac{1}{2} \Delta^* F \end{split}$$

Wednesday, July 27, 2011

Time-dependent Michel's solution in Schwarzschild metric

- Magnetosphere of collapsing NS:

$$B_{\phi} = -\frac{R_s^2 \Omega \sin \theta}{\alpha r} B_s, \quad B_r = \left(\frac{R_s}{r}\right)^2 B_s,$$

$$E_{\theta} = B_{\phi}, \quad j_r = -2\left(\frac{R_s}{r}\right)^2 \frac{\cos \theta \Omega B_s}{\alpha}$$

$$\Omega \equiv \Omega \left(r - t + r(1 - \alpha^2) \ln(r\alpha^2)\right) \quad \alpha = \sqrt{1 - 2M/r}$$

$$B_s R_s^2 = const$$

Simulations (McKinney)

- -Split-monopole magnetosphere
- Slow balding

Wednesday, July 27, 2011

As long as BH can produce pairs, open B-field does not slide off.

Field structure relaxes to split monopole

Isolated BH acts as a pulsar, spins down electromagnetically, generates Poynting wind (jets?).

Slow hair loss on **resistive** time scale

Application to GRBs

- Shorts and Longs are very similar, even though the progenitors are very different.
- Late times (t > 10^5 sec)- FS dominated -OK
- But prompt and early afterglows? (Plateaus, flares)
- Formation of magnetized BH that retains it's B-field for a long time and spins-down electromagnetically
- Millisecond magnetar (but: monopolar spindown is more efficient that dipolar). Need dynamo to bring $B \sim 10^{14}$ G.
- Early afterglows from internal dissipation in the wind (Lyutikov 2009)