
Magnetar Flares: Starquakes 
or Stellar Flares?

Maxim Lyutikov (Purdue)

1

Friday, July 22, 2011



Neutron stars are born in 
supernova explosions

2NS
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Observations of NS 
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- Pulsars: 1800  pulsars observed in radio 
- The youngest  seen also at higher energies
- Mostly isolated    
- Typical rotation periods:    1.5 ms  – 5 s 

 Accreting NSs:  several hundreds in High 
Mass and Low Mass X-ray binaries
 - May be transients 

- Typical rotation periods   0.1-1000 s

 3. CCO: thermal spectra, T~ keV 

4. Magnetars
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Magnetars
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Old definition: 

- isolated, 

- youngish ~ 104 yrs,

- LX >> Edot (not rotationally powered)

- SGRs

- AXP

Now: 

- magnetar-like bursts from young PSR 
J1846-0258 (Gavriil et al 2008)

- Low B-field magentar SGR 0418+5729, 
t~24 Myr (Rea et al. 2010)

- Perhaps all NSs show magnetar-like 
behavior to some extent
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Magnetars A: Soft Gamma Ray 
repeaters (SGRs)
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-  SGRs emit short  ( < 1 s )  
repeating  bursts  of   hard X / soft 
gamma- rays with soft spectrum     
Lx ~ 1040 – 1041  erg/s   (Super 
Eddington for a NS )
- Pulsations   2.6 – 8 sec  
- Isolated

T~ 30 keV
Hurley	  et	  al.	  1999

Friday, July 22, 2011



7

1979
SGR	  1900+14

1998
SGR	  1627-‐41

2008
SGR	  0501+45

1979
SGR	  1806-‐20

1979
SGR	  0526-‐66

Loca4on	  and	  discovery	  date	  	  of	  	  the	  	  5	  	  SGRs

S.Mereghetti

-  SGRs  were initially confused with GRBs.
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SGR Giant flares: 
0.1 sec

250µsec

Night ionosphere became like a day

Compton reflection from the Moon

Lpeak ∼ 1047erg/s

Tail with oscillations
 @ TNS

“CME” is seenRise time  250µs

250µsec
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Magnetars B: Anomalous X-ray 
pulsars (AXPs)
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-Persistent   Lx ˜ 1034 - 1036  erg s-1 

-   soft X-ray spectrum  (kT~0.5 keV) 
+ hard tail up to 200 keV
-  3 are   in Supernova Remnants 
-  3  are transients
- Also bursting

1E1048-59  Gavriil et al. 
Den Hartog 2008
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Radio emission: high variable, 
extending to very high freq.
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(a)

(b)

(c)

(d)

Camilo et al 

Brightest pulsar at 40 GHz
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(Classic) Magnetars are powered 
by dissipation of superstrong

 B-field, B~            G

11

1014−15

- LX = 1034 - 1036 erg s-1  > 100 Lspindown , 

Lspindown = I Ω    (not rotationally powered)

- Spin periods P = 5 – 12 s - slow

- Characteristic ages 3 10 3 -- 4 105  yr 

Ω̇

- From spindown

- From flare energetics: 

IΩΩ̇ ∼ B2R2
NSc

�
ΩRNS

c

�4

Eflare ∼ Etail ∼ B2R3
NS

} B ∼ 1014 − 1015G

Thompson & Dunkan
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Origin of B-field: dynamo
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Stretch-twist-fold (and cut&glue)

- Note: time scale for B-field generation, 
11 yrs, unrelated to flares onset, ~ 1min.

 Solar dynamo
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Magnetar dynamo: only ~ 10 
sec after birth.

13

NS with tangled B-field

ν

Field may be limited to outer layers, 
- Turbulence is most efficient at tau ~ 1

- Buoyancy will bring B-field “up”
- will be later locked in a crust - 
assumption of the model.

Just compressed B-field? 
Probably not: magnetic flux >> 
flux of most magnetized  WDs 

- In magnetars, convection 
time scale, ~ msec, is << than 
rotation (?),

 - Rossby number  R~ Prot/tconv > 1; 
typically alpha-omega dynamo 
needs R < 1. 
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 B-field relaxes to MHD 
equilibrium (10-100 secs)

14

 Turbulence dies out @ ~ 10 sec,

 NS relaxes to  an MHD equilibrium.
 B-field must be a combination of toroidal and poloidal 
field, otherwise unstable 

Friday, July 22, 2011



 B-field relaxes to MHD 
equilibrium (10-100 secs)

14

 Turbulence dies out @ ~ 10 sec,

 NS relaxes to  an MHD equilibrium.
 B-field must be a combination of toroidal and poloidal 
field, otherwise unstable 

a
a

a

a

N

S
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 B-field relaxes to MHD 
equilibrium (10-100 secs)

14

 Turbulence dies out @ ~ 10 sec,

 NS relaxes to  an MHD equilibrium.
 B-field must be a combination of toroidal and poloidal 
field, otherwise unstable 

a
a

a

a

(Prendergast, Dungey, Fawley & Ruderman, Braithwaite)

N

S N

S

Need toroidal B-field to stabilize poloidal and vice versa
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Poloidal-toroidal equilibria of 
fluid stars

15

(Braithwaite)

large toroidal field - 
stable

small toroidal field - 
unstable

Friday, July 22, 2011



Poloidal-toroidal equilibria of 
fluid stars

15

(Braithwaite)

large toroidal field - 
stable

small toroidal field - 
unstable

Ask me later about 
mathematical structure 
of these solutions
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III. @ ~ 100 sec crust freezes, 
dynamics is Electron MHD (EMHD)

16

3. Crust freezes,  t ~ 100 sec 
(no shear tresses at freezing)

EMHD: After freezing, ions form a fixed lattice, electrons flow 

as fluid,  velocity= current: J = - n e v

E = −v ×B =
J
ne
×B

∂B
∂t

= − c

4πe
∇×

�
∇×B

n
×B

�

- Electrons flow as an inertialess fluid
- Hall-dominated plasma

Note: no inertia!

, J =
c

4π
∇×B

Kingsep, 1989
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∇× J×B
ρ

= −∇p×∇ρ

ρ2

  MHD equilibrium is, generally,  
not EMHD equilibrium

17

J×B = ∇p + ρ∇ΦMHD:

∇× J×B
n

= 0
EMHD: E = −v ×B =

J
ne
×B
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∇× J×B
ρ

= −∇p×∇ρ

ρ2

  MHD equilibrium is, generally,  
not EMHD equilibrium

17

J×B = ∇p + ρ∇ΦMHD:

∇× J×B
n

= 0
EMHD:

Non-barotropic EoS

E = −v ×B =
J
ne
×B
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∇× J×B
ρ

= −∇p×∇ρ

ρ2

  MHD equilibrium is, generally,  
not EMHD equilibrium

17

J×B = ∇p + ρ∇ΦMHD:

∇× J×B
n

= 0
EMHD:

Non-barotropic EoSmu-gradient 

E = −v ×B =
J
ne
×B

n & p are well coupled
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∇× J×B
ρ

= −∇p×∇ρ

ρ2

  MHD equilibrium is, generally,  
not EMHD equilibrium

17

J×B = ∇p + ρ∇ΦMHD:

∇× J×B
n

= 0
EMHD:

Non-barotropic EoSmu-gradient 

E = −v ×B =
J
ne
×B

Freezing of MHD equilibrium 
results in non-equilibrium 
EMHD state

- At freezing there are no shear stresses, but state is not EMHD equilibrium
- Whistler waves are launched. Whistlers exert shear stress on the crust an 
may break it.
- Not clear what state a Hall plasma wants to achieve

n & p are well coupled
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∇× J×B
ρ

= −∇p×∇ρ

ρ2

  MHD equilibrium is, generally,  
not EMHD equilibrium

17

J×B = ∇p + ρ∇ΦMHD:

∇× J×B
n

= 0
EMHD:

Non-barotropic EoSmu-gradient 

E = −v ×B =
J
ne
×B

Freezing of MHD equilibrium 
results in non-equilibrium 
EMHD state

- At freezing there are no shear stresses, but state is not EMHD equilibrium
- Whistler waves are launched. Whistlers exert shear stress on the crust an 
may break it.
- Not clear what state a Hall plasma wants to achieve

4. Shear stresses build on Hall time τH =
L2ω2

p

c2ωB

= 4× 103L2
4B

−1
14 yrs

n & p are well coupled
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Lorentz force on
the crust

5. If shear stress due to Lorentz force 
is strong enough, it breaks the crust

 Magnetar years
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6. Unwinding of internal B-field can be 
a. sudden (cracking)

b. plastic (magnetospheric 
instability of B-field)

18

Lorentz force on
the crust

Unwinding of internal, winding 
up of external B-field

5. If shear stress due to Lorentz force 
is strong enough, it breaks the crust

Cannot lift the crust, only rotate

 Magnetar years
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6. Unwinding of internal B-field can be 
a. sudden (cracking)

b. plastic (magnetospheric 
instability of B-field)

18

Lorentz force on
the crust

Unwinding of internal, winding 
up of external B-field

7. High energy emission/flares are 
generated in the twisted magnetosphere

5. If shear stress due to Lorentz force 
is strong enough, it breaks the crust

Cannot lift the crust, only rotate

 Magnetar years
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1. At freezing, no shear stresses: newborn stars are not 
magnetars

2. Stresses build on Hall time scale

 Production of burst and (giant) 
flares

19

Flares: release of crustal stresses

- cracking (star-quake)

- plastic (a la Solar flares & CMEs)
(Thompson & Dunkan)

(Lyutikov)

τH =
L2ω2

p

c2ωB

= 4× 103L2
4B

−1
14 yrs
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1. At freezing, no shear stresses: newborn stars are not 
magnetars

2. Stresses build on Hall time scale

 Production of burst and (giant) 
flares

19

Flares: release of crustal stresses

- cracking (star-quake)

- plastic (a la Solar flares & CMEs)

Ω

Antiochos

(Thompson & Dunkan)
(Lyutikov)

Sensitive to parameters, can vary highly
τH =

L2ω2
p

c2ωB

= 4× 103L2
4B

−1
14 yrs
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Dynamics of magnetic field-
induced cracking (with Yu. Levin)

20

•Not clear if the crust is brittle or plastic? 

- Brittle fracture needs voids at the tip: vshear> vs 

- Not satisfied in NS crusts (or deep Earth quakes)

- Horowitz: very fast shearing.

• If crust is plastic: no fast cracks

• Let’s assume that fracture is brittle.
 Critical stress

B0Bx

µ
≈ c2A

c2el
= σ0 = 10−5 − 10−2
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Dynamics of magnetic field-
induced cracking (with Yu. Levin)

20

•Not clear if the crust is brittle or plastic? 

- Brittle fracture needs voids at the tip: vshear> vs 

- Not satisfied in NS crusts (or deep Earth quakes)

- Horowitz: very fast shearing.

• If crust is plastic: no fast cracks

• Let’s assume that fracture is brittle.
 Critical stress

B0Bx

µ
≈ c2A

c2el
= σ0 = 10−5 − 10−2

Main point: even if the crust is brittle, magnetic 
crack cannot release a lot of energy quickly enough
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Ideal magneto-elastic medium

21

z

x

cel =
�

µ/ρ

cA = Bz/
�
4πρ

ρζ̈ = Bz,0B
�
x/(4π) + µζ ��

Ḃx = Bz,0ζ̇
�

ζ̈ − (c2A + c2el)∂
2
zζ = 0

�1-D dynamics

No stress

Friday, July 22, 2011



Ideal magneto-elastic medium

21

ζ
z

x

cel =
�

µ/ρ

cA = Bz/
�
4πρ

ρζ̈ = Bz,0B
�
x/(4π) + µζ ��

Ḃx = Bz,0ζ̇
�

ζ̈ − (c2A + c2el)∂
2
zζ = 0

�1-D dynamics
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“Usual”  cracking

22

ζ̈ − c2tot∂
2
zζ = 0

Friday, July 22, 2011



“Usual”  cracking

22

maximal stress σ → max

ζ̈ − c2tot∂
2
zζ = 0
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“Usual”  cracking

22

maximal stress σ → max
Crack!

ζ̈ − c2tot∂
2
zζ = 0
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“Usual”  cracking

22

Crack!
σ = 0

Large     gradientsσ
σ �= 0

ζ̈ − c2tot∂
2
zζ = 0
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“Usual”  cracking

22

Crack!
σ = 0

- Rarefaction wave propagates
- finite velocity @ t=+0,  

Large     gradientsσ
σ �= 0

ζ̈ − c2tot∂
2
zζ = 0
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“Usual”  cracking

22

Crack!
σ = 0

- Rarefaction wave propagates
- finite velocity @ t=+0,  

Large     gradientsσ
σ �= 0

ζ = ζ0(x)− (x− vt)ζ �0(0)

ζ̈ − c2tot∂
2
zζ = 0
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“Usual”  cracking

22

Crack!
σ = 0

- Rarefaction wave propagates
- finite velocity @ t=+0,  

Large     gradientsσ
σ �= 0

ζ = ζ0(x)− (x− vt)ζ �0(0)

Magnetic field is torn!

∂tBx = ∂z(Bzvx) = Bzv0δ(z)

ζ̈ − c2tot∂
2
zζ = 0

- Infinitely large Bz
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Magnetic cracking

23

Additional condition: continuity of B-field: must take resistivity into account

ρζ̈ = Bz,0B
�
x/(4π) + µζ ��

Ḃx = Bz,0ζ̇
� + ηresB

��
x

�
∂t − η∂2

z

� �
∂2
t − c2s∂

2
z

�
ζ = v2A∂t∂

2
zζ

shear waveresistive wave
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�
4

�
2

0

2

4

�
1.5

�
1.0

�
0.5

0.0
0.5

1.0
1.5

z�z 0

x�x0
ζ(z, t) = ζ0(z) + ζ0�(0)




2
√
ηc3el

�
t− z

ct
Θ
�
t− z

ct

�

√
πcA2ct

+
2
√
ηtcele

− z2c2t
4tηc2

el

√
πct

− zErfc

�
zct

2
√
ηtcel

�




Amplitude of shear wave is negligibly small

Evolution proceeds on resistive time scale
∝ √

η

v(z = 0) =
celct
c2A

�
η

πt
ζ0

�(0)

Solve using Laplace transform, in the limit eta -> 0
No in-going shear or resistive wave, zero stress and continuous B-field at z=0
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Crack evolution is slow, on 
resistive time

25

- Amplitude of shear wave is 
negligibly small
- Evolution proceeds on 
resistive time scale

∝ √
η

B-field line, 
(neglecting the 

small shear 
wave)

Even if crust allows cracking, the post-crack evolution 
proceeds on slow, resistive time-scale. Only B-field energy 
within the crack is released (not within the shear wave-
affected volume).

�3

�2

�1

0

1

2

3

�1.0
�0.5

0.0
0.5

1.0

Note: B-field 
is continuous
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Where energy is stored before the 
flare, crust or magnetosphere?

26

Shear time scale ~ 0.1 sec, but  
magnetic crack are not sudden, 
they are slow!

0.1 sec

250µsec

Tail with oscillations
 @ TNS

1. Flare rise time: 250 mu-sec: magnetospheric, 
~ 10 RNS/c= 10 RNS/vA

2. Flare energy stored and dissipated in the  
magnetosphere

3. Similar to Solar  flares and  Coronal Mass 
ejections
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“Solar flares” paradigm of 
magnetars

27

- Magnetic field is generated inside the star by a dynamo mechanism

- Non-potential (current-carrying) field is pushed outside

- Instability of twisted (current-carrying) fields leads to magnetic 
dissipation: flares (generating sometimes CME-like ejections)

- Radio emission: from active regions (~Solar type III radio bursts)

~
?
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Pre- and post-flare evolution

28

1. Main prediction of  the “Solar flare” model for 
magnetars: 

- Before flare: larger current → larger  
persistent luminosity, harder spectra, 
larger spindown 

- Post-Flares: twist  is smaller → spectra softer, 
profile simpler

2. Giant flares:
- Aug 27 giant flare of SGR 1900+14: Simpler 

profile, Spectrum: power-law index 1.9 → 
2.5 (Woods et al)

- Dec  2004 flare of 1806 
- Before the flare: 
- Spindown increased 
-  Spectrum hardened

- After the flare
- Pulsed fraction decreased(10%→ 3%),
- Spindown decreased
-  Spectrum softened 

(Mereghetti et al, Tiego et al)

All in agreement with
 “Solar flare model”
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Overall evolution of B-fields in 
NS crusts remain unclear

29

•Initial MHD state (eg. torus or twisted)

•Stability of various EMHD configurations

-  There are indications that EMHD configurations

-  are generically unstable

- Not clear what state EMHD system wants to 
achieve

- Turbulent cascade vs non-local (in k space) 
formation of current sheets (and ensuring resistive 
decays)

- Statistics of stresses (flares) for  a given statistics of 
field fluctuations?
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Things to remember

30

- Crust may not need to be cracking to produce flares: plastic 
deformations may do
- Magnetically-induced cracks cannot release a large amount of 
energy in short time
- B-field is dissipated  outside in Solar flares-like events. Electric 
currents  are pushed out through crustal deformations

- Activity peaks at the end of magnetar phase
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Axisymmetric B-fields in fluid 
stars

32

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Region 1

Region 2
Bφ = 0

Region 3

I = 0
ρ = 0

I = 0
ρ �= 0

I �= 0
ρ �= 0

B poloidal - given
 B toroidal - given (=0)
Demand no current sheets

- Poloidal current I=I(P) 
-> I=0 on field lines leaving the 
star,                outside

- Must be non-zero inside for 
stability, limited to some region                       

Bφ = 0
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Trapped toroidal field

33

0 0.5 1 1.5 2

0

0.5

1

1.5

2

I = 0
n = 0

I = 0
n �= 0

Unknown a priori distributions 
of poloidal currents & pressure

Need to find an equation and its solution that satisfies over-
determined boundary conditions, given P and P’ on the border.

∂2
rP +

sin θ

r2
∂θ

�
1

sin θ
∂θP

�
+ 4I(P )I �(P ) = F (P )nr2 sin2 θ

Bp =
∇P × eφ

r sin θ

Bφ =
2I(P )
r sin θ

An elliptical equation with  both Neumann and Dirichlet boundary 
conditions and having two unknown functions of the solution I(P) and F(P).
- We devised a procedure to simultaneously construct flux function P and  
unknown functions I(P) and F(P).
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Over-determined problem (?!)

34

Known P0, P0’, I=I(P0), F=F(P0) on the boundary. 
Can find P’’.
By taking derivatives, can find            as function of            

                               and                                   (these 
are numbers to be determined). Require smooth 
convergence at O.  

P (n)

I(P0)...I(P0)(n−2) F (P0)...F (P0)(n−2)

I =
�

i

I(P0)(i)
(P − P0)i

i!

F =
�

i

F (P0)(i)
(P − P0)i

i!

O

Determine simultaneously 
expansion of I, F and P in terms of 
P-P0

P0, P0’
∂2

rP +
sin θ

r2
∂θ

�
1

sin θ
∂θP

�
+ 4I(P )I �(P ) = F (P )nr2 sin2 θ

P = P0 + P �s +
�

i

Ci
si

i!
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Over-determined problem (?!)

34

Known P0, P0’, I=I(P0), F=F(P0) on the boundary. 
Can find P’’.
By taking derivatives, can find            as function of            

                               and                                   (these 
are numbers to be determined). Require smooth 
convergence at O.  

P (n)

I(P0)...I(P0)(n−2) F (P0)...F (P0)(n−2)

I =
�

i

I(P0)(i)
(P − P0)i

i!

F =
�

i

F (P0)(i)
(P − P0)i

i!

O

Determine simultaneously 
expansion of I, F and P in terms of 
P-P0

P0, P0’
∂2

rP +
sin θ

r2
∂θ

�
1

sin θ
∂θP

�
+ 4I(P )I �(P ) = F (P )nr2 sin2 θ

P = P0 + P �s +
�

i

Ci
si

i!

s
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