Cecilia Lunardini Arizona State University RIKEN BNL Research Center

SUPERNOVA NEUTRINOS AT FUTURE DETECTORS

INT - Seattle, July 2011

20+ years back: the impact of SN1987A

What did we learn?

The only SN neutrino data

February 23, 1987: SN1987A

Plot from: http://astro.berkeley.edu/~bmetzger/sn1987a.html

~ 1 Kt water/scintillator detectors

- Inverse beta decay: anti- v_{e} + p \rightarrow n + e⁺

Bionta et al., PRL 58,1987, Hirata et al., PRL 58,1987, Alekseev et al. JETP Lett. 45 (1987)

First confirmation of theory

- Luminosity ≈ total energy budget
 - Energy emitted is of *gravitational* nature:

 $L_v \approx G M_f^2 / R_f - G M_i^2 / R_i \sim 3 \ 10^{53} \text{ ergs } \checkmark$ (R_f ~ 10 Km)

- Energy spectrum: ~ *Fermi Dirac (thermal)* E ≈ 3.15 T ~ 15-20 MeV ✓
- Duration of neutrino burst ~ diffusion time
 Time ≈ (size²)/(mean free path) ~ 10 s ✓

Open questions

- Precision?
 - Time structure (accretion, cooling,)
 - Oscillations (MSW, neutrino-neutrino,..)
 - Model discrimination (Eq. of state, neutrino transport,...)
 - New physics
- Total energy?
 - All neutrino species
- What is typical?

The situation now: opening a new phase

New focus on supernovae

- Solar, atmospheric fluxes down to precision phase (~10-40%)
 - Time to approach more distant, more complex sources: supernovae, GRBs, Dark Matter, ...
 - Solar/atmospheric become backgrounds!
- New phase of detectors coming
 Larger (0.1 1 Mt) & more sensitive

The next generation

Liquid scintillator, 10-50 kt LENA, Hano Hano

LENA

Low-Energy Neutrino Astrophysics

LANNDD

DUSEL

Water Cherenkov, 0.3 -1 Mt HyperK , UNO, MEMPHYS, DeepTITAND

Liquid Argon, 10-100 kt LANNDD, GLACIER • Complementary designs:

- For neutrino channel: He + Pb (HALO)

http://www.snolab.ca/halo/detailedPhysics.html

- For all-flavor: noble gas TPC (NOSTOS)

Giomataris & Vergados, Phys.Lett.B634,2006

- For luminosity: Km³ ice/water (IceCUBE)

IceCUBE coll. , arXiv:0908.0441

Looking farther...

- 1 -5 Mt mass
 - ~ few Mpc reach → ~ 1 SN every decade!

Ando, Beacom & Yuksel, PRL95, 2005

... and in more detail

Events for Galactic SN	(K. Scholberg,	, talk at Neutrino	2006,	Sante Fe,	, NM)
------------------------	----------------	--------------------	-------	-----------	-------

Detector	Type	Mass (kton)	Location	Events at $8.5 \ \rm kpc$	Status	
Super-K[22]	H_2O	32	Japan	7000	Running	
SNO[41]	D_2O	$1 (D_2O)$	Canada	400	Running unti	1
		$1.4 (H_2O)$		450	end 2006	
LVD[17]	$C_n H_{2n}$	1	Italy	200	Running	
KamLAND[18]	C_nH_{2n}	1	Japan	300	Running	
Borexino[20]	C_nH_{2n}	0.3	Italy	100	200x	
Baksan[15]	C_nH_{2n}	0.33	Russia	50	Running	
Mini-BooNE[12]	C_nH_{2n}	0.7	USA	200	Running	
AMANDA/	Long string	0.4/PMT	South Pole	N/A	Running	
IceCube[28]					Running	
SAGE[42]	Ga	Russia	0.06	few	Running	
Icarus[31]	LAr	2.4	Italy	200	200x	
Daya Bay[43]	C_nH_{2n}	0.3	China	100	Proposed	
SNO+[44]	C_nH_{2n}	1	Canada	300	Proposed	
CLEAN[40]	Ne, Ar	0.01	Canada/USA?	30	Proposed	
HALO[37]	Pb	0.1	Canada	40	Proposed	
MOON[45]	¹⁰⁰ Mo	0.03	?	20	Proposed	
$NO\nu A[46]$	C_nH_{2n}	20	USA	4000	Proposed	
OMNIS[29]	Pb	2-3	USA?	>1000	Proposed	
LANNDD[32]	LAr	70	USA?	6000	Proposed	
MEMPHYS[49]	H_2O	440	Europe	>100,000	Proposed	
UNO[48]	H_2O	500	USA	>100,000	Proposed	
Hyper-K[47]	H_2O	500	Japan	>100,000	Proposed	
LENA[50]	C_nH_{2n}	60	Europe	18,000	Proposed	
HSD[51]	C_nH_{2n}	100	USA	30,000	Proposed	

Themes for the future: what will we learn?

Timing

Pons et al., Phys.Rev.Lett.86,2001

- < 1 s: SASI (Standing Accretion Shock Instability)
 - Oscillations of shock front modulates
 neutrino luminosity
 - Probes large scale convection

Blondin, Mezzacappa & DeMarino, ApJ 584 Marek, Janka & Mueller, Astron. Astrophys. 496, 475 (2009) T. Lund, A. Marek. C.L., H.T. Janka & G. Raffelt, arXiv:1006.1889

v_e sensitivity

Detector type	process	Expected mass	Number of events (galactic SN)
Water Cherenkov	v _e (¹⁶ O, ¹⁶ F)e⁻	~1 Mt	<i>O</i> (10 ³)
Liquid Argon	v _e (⁴⁰ Ar, ⁴⁰ K)e⁻	<100 Kt	< <i>O</i> (10 ³)
Scintillator	v _e (¹² C, ¹² B)e⁻	< 50 kt	< <i>O</i> (10 ²)

Why are v_e important?

- Total energy of SN
 Eq. of state
- Neutronization/ deleptonization
 – e⁻ (p,n) v_e
- Oscillation effects
 - Neutrino mass spectrum
 - flavor mixings
 - progenitor type

Survival of neutronization burst in ONeMg Sne!

Duan et al., PRL. 100, 2008 C.L., B. Mueller, H.T. Janka PRD, 2008

Oscillations: spectral distortions

Neutrino oscillations

- refraction frequency \approx vacuum frequency
- Neutrino-neutrino, neutrino-electron scattering

High MSW: θ_{13} resonant dependence

- Unique resonance: $\sin^2 \theta_{13} \sim 1$ in matter if: $\Delta m_{31}^2/2E \sim 2^{1/2} G_F \rho/m_N$
- Realized for $\rho \sim 10^3 g \ cm^{-3}$

Dighe and Smirnov, Phys. Rev. D62, 2000 C.L. & A. Y. Smirnov, JCAP 0306, 2003 Sensitivity down to sin² θ₁₃~ 10⁻⁵ !

Monitor the shockwave

Schirato & Fuller, astro-ph/0205390

ONeMg: revealing density step

- *Profile becomes smoother: early (~1 s) increase* of conversion
 - Opposite of Fe-core supernovae! (decrease of conversion)

ν_e survival probability

• *Reveals existence of density step and shock propagation*

Neutrino-neutrino: spectral swaps

- Step-like probability as function of energy
- Work in progress

Groups: Munich, San Diego, LANL, North Carolina S., Trieste, Bari, Orsay, Tata Inst., New Mexico U., Minnesota U., ...

Plot from Dasgupta et al., arXiv:1002.2943

• Still, a galactic SN might take a while...

Diffuse flux: everything and now

• Sum over all SNe in the universe

- Now: alternative to a galactic supernova!
 - Continuous flux, no waiting time
 - might be everyday physics in future!
 - ~20 events/year at Mt water Cherenkov

- **Everything**: probes the whole supernova population of the universe
 - What's typical?
 - Cosmological SNe
 - Diversity: Fe-core, ONeMg core, black hole core, ...

Cosmological rate of SNe

- *increases* with z
 - ~ 40% of flux from z>0.5

Dwek, 2009

What can we learn? Rates only

- Model discrimination
 - E.g., distinguish combinations of spectra + SNR
 - Distinguish models of spectra if SNR is known
- Basic exclusion potential

Energy bins: testing spectra

- Test spectral parameters E_0 , α
 - Effective, after oscillations
- Background-limited

Spectral sensitivity: water only

C.L., Phys.Rev.D75:073022,2007 Error bars from Fogli et al, JCAP 0504:002,2005

- <u>Dashed</u> : ratio of bins
- <u>solid</u>: number of events
 - Assume SNR known
- □ : Hypothetical measurement
 - Arrows indicate errors

C.L., Phys.Rev.D75:073022,200

Spectral sensitivity: Water+Gd or liquid scintillator

- <u>Dashed</u> : ratio of bins
- <u>solid</u>: number of events
 - Assume SNR known
- □ : Hypothetical measurement
 - Arrows indicate errors

Probe oscillation probabilities

• water (anti- v_e) / Ar (v_e) rates:

 $-r_{N} = N_{H2O}(19.3 - 31.3 \text{ MeV})/N_{Ar}(19-39 \text{ MeV})$

(p, p)	Θ ₁₃ , hierarchy	r _N		
(0.68, 0)	Large, any	2.7 – 4.5	Variation with emission spectra	
(0.68,0.32)	Small, normal	3.8 - 5.8		
(0.,0)	Small, inverted	5.0 - 6.0		
(0,0.32)	Large, inverted, No self-interactions	7.2 – 7.8		

"small" =
$$\sin^2 \theta_{13} < 10^{-6}$$
,
"large" = $\sin^2 \theta_{13} > 10^{-4}$

C.L., in preparation

Reveal rare SN types: failed SNe

- M > 25-40 M_{sun} , 9-22% of collapses
 - Too rare to expect a galactic one!
- Collapse *directly* into black hole, no explosion
- Neutrinos hotter and more luminous
 - <E> ≈ 20 MeV for all flavors

failed SNe may dominate!

- *10-100% effect* on diffuse flux
 - Spectral distortion

C.L., Phys. Rev. Lett., 2009, J. Keehn & C.L., arXiv:1012.1274

Wrap up

The post-solar phase: supernovae, etc..

- **~2020 : Discovery** No precision! diffuse SN neutrino flux
 - SN neutrinos become everyday physics
 - Complement SN1987A
 - Cosmological supernovae
 - Averaged over whole SN population

The post-solar phase: supernovae, etc..

- ~... 2100: Precision Precision! Galactic supernova
 - All flavor-detection
 - Model discrimination
 - Timing
 - **Oscillation effects**
 - New physics

