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Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

dp

dr
= − G

c2
(m + 4πpr3)(ε+ p)

r(r − 2Gm/c2)
dm

dr
= 4π

ε

c2
r2

-

-
--maximum mass

p(ε)

M(R)

J.M. Lattimer Radius and Mass Determinations from Neutron Star Observations



Extreme Properties of Neutron Stars

I The most compact and massive configurations occur when the
low-density equation of state is ”soft” and the high-density equation
of state is ”stiff” (Koranda, Stergioulas & Friedman 1997).
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Extreme Properties of Neutron Stars

I Mmax = 4.1 (εs/ε0)1/2 M� (Rhoades & Ruffini 1974)

I MB,max = 5.41 (mBc
2/µo)(εs/ε0)1/2 M�

I Rmin = 2.82 GM/c2 = 4.3 (M/M�) km

I µB,max = 2.09 GeV

I εc,max = 3.034 ε0 ' 51 (M�/Mlargest)
2 εs

I pc,max = 2.034 ε0 ' 34 (M�/Mlargest)
2 εs

I nB,max ' 38 (M�/Mlargest)
2 ns

I BEmax = 0.34 M

I Pmin = 0.74 (M�/Msph)1/2(Rsph/10 km)3/2 ms =
0.20 (Msph,max/M�) ms
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Maximum Energy Density in Neutron Stars

p = s(ε− ε0)
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Mass-Radius Diagram and Theoretical Constraints

GR:

R > 2GM/c2

P <∞ :

R > (9/4)GM/c2

causality:

R >∼ 2.9GM/c2

— normal NS

— SQS

— R∞ = R√
1−2GM/Rc2

contours
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Black hole? ⇒
Firm lower mass limit?⇒

M > 1.68 M�{
95% confidence

Although simple
average mass of
w.d. companions
is 0.27 M� larger,
weighted average is
0.08 M� smaller

Freire et al. 2007 { } w.d. companion?
statistics?

Champion et al. 2008

Demorest et al. 2010
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PSR J1614-2230

3.15 ms pulsar in 8.69d orbit with 0.5 M� white dwarf companion.
Shapiro delay tightly confines the edge-on inclination: sin i = 0.99984
Pulsar mass is 1.97± 0.04 M�
Distance > 1 kpc, B ' 1.8× 108 G

Demorest et al. 2010∆
t(
µ
s)
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Black Widow Pulsar PSR B1957+20

1.6ms pulsar in circular 9.17h orbit with a Mc ∼ 0.03 M� companion.
Pulsar is eclipsed for 50-60 minutes each orbit; eclipsing object has a
volume much larger than the companion or its Roche lobe.
It is believed the companion is ablated by the pulsar leading to mass loss
and an eclipsing plasma cloud. Companion nearly fills its Roche lobe.
Ablation by pulsar leads to eventual disappearance of companion.
The optical light curve does not represent the center of mass of the
companion, but the motion of its irradiated hot spot.

pulsar radial velocity

NASA/CXC/M.Weiss

eclipse
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Implications of Maximum Masses

Mmax > 2 M�

I Upper limits to energy density,
pressure and baryon density:

I ε < 13.1εs
I p < 8.8εs
I nB < 9.8ns

I Lower limit to spin period:
P > 0.56 ms

I Lower limit to neutron star radius:
R > 8.5 km

I Upper limits to energy density,
pressure and baryon density in the
case of a quark matter core
(s = 1/3):

I ε < 7.7εs
I p < 2.0εs
I nB < 6.9ns

Mmax > 2.4 M�

I Upper limits to energy density,
pressure and baryon density:

I ε < 8.9εs
I p < 5.9εs
I nB < 6.6ns

I Lower limit to spin period:
P > 0.68 ms

I Lower limit to neutron star radius:
R > 10.4 km

I Upper limits to energy density,
pressure and baryon density in the
case of a quark matter core
(s = 1/3):

I ε < 5.2εs
I p < 1.4εs
I nB < 4.6ns
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Neutron Star Matter Pressure and the Radius

p ' Knγ

γ = d ln p/d ln n ∼ 2

R ∝ K 1/(3γ−4)M(γ−2)/(3γ−4)

R ∝ p
1/2
f n−1f M0

(1 < nf /ns < 2)

⇑

⇓
Wide variation:

1.2 < p(ns )
MeV fm−3 < 7

GR phenomenological result

(Lattimer & Prakash 2001)

R ∝ p
1/4
f n

−1/2
f

pf = n2dEsym/dn

Esym(n) = Eneutron(n)− Esymmetrical(n)

↓ns
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The Uncertain Esym(n)

C. Fuchs, H.H. Wolter, EPJA 30(2006) 5
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Radiation Radius

I The measurement of flux and
temperature yields an apparent
angular size (pseudo-BB):

R∞
d

=
R

d

1√
1− 2GM/Rc2

I Observational uncertainties
include distance, interstellar H
absorption (hard UV and X-rays),
atmospheric composition

I Best chances for accurate radii:
I Nearby isolated neutron stars

(parallax measurable)
I Quiescent X-ray binaries in

globular clusters (reliable
distances, low B H-atmosperes)
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Inferred M-R Probability Estimates from Thermal Sources

Steiner, Lattimer & Brown 2010
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Photospheric Radius Expansion X-Ray Bursts

Galloway, Muno, Hartman, Psaltis & Chakrabarty (2006)

⇐ FEdd = GMc
κD2

√
1− 2GM

Rphc2 ⇐ FEdd

A = f −4c (R∞/D)2 A = f −4c (R∞/D)2

EXO 1745-248
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Systematics with Rph = R

FEdd =
GMc

κD2

√
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If Rph >> R, α < 1/
√

27 ' 0.192
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M − R Probability Estimates from PRE Bursts

EXO 1745-248
α = 0.14± 0.01

4U 1608-52
α = 0.26± 0.10

4U 1820-30
α = 0.18± 0.02

α = 0.21± 0.06

EXO 1745-248
α = 0.14± 0.01

4U 1608-52
α = 0.26± 0.10

4U 1820-30
α = 0.18± 0.02

α = 0.21± 0.06
Özel et al. 2009, 2010, 2011 Steiner, Lattimer & Brown 2010, 2011

Rph = R Rph > R
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Bayesian TOV Inversion

I ε < 0.5ε0: Known crustal EOS

I 0.5ε0 < ε < ε1: EOS
parametrized by K ,K ′,Sv , γ

I ε1 < ε < ε2: n1; ε > ε2:
Polytropic EOS with n2

I EOS parameters
(K ,K ′,Sv , γ, ε1, n1, ε2, n2)
uniformly distributed

I M and R probability distributions
for 7 neutron stars treated equally.

inferred p(ε)

inferred M(R)

Steiner, Lattimer & Brown 2010
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Inferred Model EOS Parameters

Steiner, Lattimer & Brown 2010

K K ′

Sv γ
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Consistency with Neutron Matter and Heavy-Ion Collisions
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Neutron Matter and Mass Fit Symmetry Correlations
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With More Extreme Assumptions
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Radius and Maximum Mass Limits

Hebeler et al. 2010
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Neutron Matter and the Symmetry Energy

I Fits to nuclear binding energies result in a strong, nearly linear,
correlation between volume and surface symmetry energy coefficients
of the liquid droplet model.

I This correlation is dependent on the nature of the liquid droplet
model and how it treats the interaction between the Coulomb effects
on the nuclear surface, and does not translate directly into a
correlation between Sv and L = 3(dSv/d ln n)ns .

I Finite nucleus models, such as Thomas-Fermi and Hartree or
Hartree-Fock, for a particular nuclear interaction, can be fit to
binding energies to obtain the correlation between Sv and L.

I Neutron matter studies (Hebeler & Schwenk; Carlson et al.) indicate
that Esym and (dEsym/d ln n)ns are also correlated.

I Comparing these correlations could constrain the properties of the
symmetry energy. It could be dependent on the nature of the nuclear
interaction model, but this has not been thoroughly explored.
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