A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis

Aimee Hungerford INT - July 28, 2011

Cas A Properties

- Fast moving Nitrogen knots
- Ejecta Mass
- ⁴⁴Ti mass
- ⁵⁶Ni mass
- Compact remnant mass

Simulation Properties

- Explosion Energy
- Progenitor (stellar evolution)
- Explosive Nucleosynthesis

Cas A Properties

- Fast moving Nitrogen knots
- Ejecta Mass
- ⁴⁴Ti mass
- ⁵⁶Ni mass
- Compact remnant mass

Simulation Properties

- Explosion Energy
- Progenitor (stellar evolution)
- Explosive Nucleosynthesis

Cas A Properties

- Fast moving Nitrogen knots
- Ejecta Mass
- ⁴⁴Ti mass
- ⁵⁶Ni mass
- Compact remnant mass

Simulation Properties

- Explosion Energy
- Progenitor (stellar evolution)
- Explosive Nucleosynthesis

Nitrogen Knots

Roughly fifty Nitrogen-rich knots moving at ~9000km/s Most are Hydrogen-poor as well

- Such fast velocities indicate that this material was near the outside of the star when it exploded.
- Composition is consistent with pure CNO ashes.
- Existence of these knots suggests the need for a layer of CNO ashes on outer layer of the star.

Ejecta Mass

X-ray spectral line-fitting of XMM data are fit to infer the mass of emitting material in the supernova remnant.

Infer a mass of the ejecta to be roughly 2.5 solar masses

Chevalier & Oishi 2003 take the position of the forward and reverse shock and expansion rate to derive a mass of the supernova ejecta (using selfsimilarity arguments.)

		vr	M_{\odot}	$E_{\rm th}$	$E_{\rm r}$	E_{tot}
		km s ⁻¹		10 ⁴³ J	10 ⁴³ J	10 ⁴³ J
1	hot CSM:	1740	7.9	6.5	2.4	8.9
2	hot ejecta	1740	0.4	0.3	0.1	0.4
3	cool ejecta	1780	1.7	0.2	0.5	0.7
4	cold ejecta	5290	0.1	0.0	0.3	0.3
Σ_1^2	hot diffuse	-	8.3	6.8	2.5	9.3
Σ_3^4	cool clumpy	-	1.8	0.2	0.8	1.0
Σ_2^4	ejecta	-	2.2	0.5	0.9	1.5
Σ_1^4	total	_	10.1	7.0	3.3	10.3

Willingale et al. 2002, 2003

Ejecta mass is determined to be ~3.5 solar masses

⁴⁴Ti Mass

X-ray lines from the ⁴⁴Ti->⁴⁴Sc->⁴⁴Ca decay chain have been observed with CGRO, BeppoSAX, INTEGRAL...

Consistent suggestion for a ⁴⁴Ti mass of ~10⁻⁴ solar masses

⁵⁶Ni Mass

More slippery to constrain, since we didn't actually see the supernova...

Or did we?

Flamsteed – August of 1680

• Recorded a transient 6th magnitude object at the position of Cas A roughly 330 years ago.

• If this was the outburst, then this places constraints on how much ⁵⁶Ni could have been ejected in the supernova.

$$L_{\text{peak}} = M_{\text{Ni}} \Theta(t_{\text{peak}}) \Lambda(t_{\text{peak}}),$$

$$\Theta(t) = \frac{N_{\text{Av}}}{56} \left[\frac{E_{\text{Ni}}}{\tau_{\text{Ni}}} e^{-t/\tau_{\text{Ni}}} + \frac{E_{\text{Co}}}{\tau_{\text{Co}} - \tau_{\text{Ni}}} \left(e^{-t/\tau_{\text{Co}}} - e^{-t/\tau_{\text{Ni}}} \right) \right], \quad \text{Arnett 1982}$$

Infer an upper limit to the 56Ni produced of ~0.2 Msun

 Can also get a lower limit ~0.05 Msun from inventory of iron using X-ray lines

Constraining the Models

40 Msun Single 23 Msun Single

23 Msun Binary 16 Msun Binary

Asymmetry, Explosion Energy

EXPLOSION SIMULATIONS

Simulation	$M_{ m prog} \ (M_{\odot})$	Energy (×10 ⁵¹ ergs)	Bin	Asym.Jet2ª	$M_{ m rem}$ (M_{\odot})	$M_{ m ejecta}$ (M_{\odot})	44 Ti Yield (M_{\odot})	56 Ni Yield (M_{\odot})
M40E7.6	40	7.6	N	N	1.75	6.0	7.5×10^{-5}	0.33
M23E0.8	23	0.8	N	N	5.4	7.5	<10 ⁻⁵	<10 ⁻⁵
M23E2.3	23	2.3	N	N	4.6	8.3	1.2×10^{-5}	2.6×10^{-4}
M23E2.3A	23	2.3	N	Y	5.5	7.4	1.8×10^{-4}	0.19
M23E1.1Bin	23	1.1	Y	N	2.6	3.6	1.2×10^{-5}	2.6×10^{-4}
M23E1.1BinA	23	1.1	Y	Y	3.2	3.0	1.6×10^{-5}	0.02
M23E2.0B in	23	2.0	Y	N	2.3	3.9	5.7×10^{-5}	0.055
M23E2.0BinA	23	2.0	Y	Y	2.6	3.6	8.0×10^{-5}	0.075
M16E1.3Bin	16	1.3	Y	N	1.8	3.25	<10 ⁻⁵	<10 ⁻⁵
M16E1.1BinA	16	1.12	Y	Y	1.85	3.2	<10 ⁻⁵	<10 ⁻⁵
M16E3.1Bin	16	3.1	Y	N	1.18	3.87	1.2×10^{-5}	0.15
M16E3.1BinA	16	3.1	Y	Y	1.19	3.86	1.2×10^{-5}	0.15

^a See Hungerford et al. (2003) for details.

Constraining the Models

Assumptions:

• we want their to be a little Hburning ash on the star surface at explosion (a la the N knots)

we want this to happen at an enclosed mass of 4-7 Msun (a la the ejecta mass)

The single star models do not satisfy these constraints They still have Abar indicating the

Carbon/Oxygen layer out to an enclosed mass of >8 Msun.

⁴⁴Ti / ⁵⁶Ni

The ratio places an even stronger constraint because Nickel and Titanium are largely speaking synthesized in the same place in the explosion.

- So if the titanium was ejected for all the world to see, so was the nickel!
- Uncertainty box for ⁴⁴Ti / ⁵⁶Ni is consistent with solar abundance of ⁴⁴Ca/⁵⁶Fe

While very uncertain, this is still a nice constraint for the models as it probes the "mass cut"

⁵⁶Ni

Recent work going beyond the simple arguments for ⁵⁶Ni mass estimates has been done by Eriksen et al. 2009

Nucleosynthesis

Heavy element synthesis in stellar collapse occurs either:

- near the surface of the compact star (neutrino driven winds)
- In the outward-moving shock, a.k.a. explosive nucleosynthesis.
- Detailed studies of a handful of trajectories insufficient.
- The simple picture from 1-dimensional models is too simple!
- We need to broaden our studies, studying a larger variety of trajectories.

The critical rates for ⁴⁴Ti production depend upon the peak temperature and density

The explosion determines the peak temperature/densities as well as the density/temperature evolution of the ejecta.

The ⁵⁶Ni yield is rather insensitive to both

Blue: 1D Cas A model (Young et al. 2006), Gray: 2D rotating E15B explosion (Fryer & Heger 2000), Pink: hypernova model (Fryer et al. 2006), cyan: 2D magnetohydrodynamic collapsar Magkotsios et al. 2010 But for ⁴⁴Ti, the yield can change dramatically based on both the explosion energy and the evolution of the ejecta.

Blue: 1D Cas A model (Young et al. 2006), Gray: 2D rotating E15B explosion (Fryer & Heger 2000), Pink: hypernova model (Fryer et al. 2006), cyan: 2D magnetohydrodynamic collapsar Magkotsios et al. 2010

Cas A ⁴⁴Ti simulation

Input flux: 2.5 10⁻⁵ ph/cm²/s @ 68 keV line Simulation: Background & ⁴⁴Ti line only! Observation time: 1 Ms

et al. Remnant Mass Estimates Using single star models from Fryer et al. 2011. The binary 23Msun model from Young 2006 is closer to a 16 Msun model.