Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

Structure and Shear Modulus of the Neutron Star Crust

Joe Hughto

3 August 2011

Joe Hughto

Outline

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Introduction

Shear Modulus

Crystal vs. Amorphous

2 Shear Modulus

3 Crystal vs. Amorphous

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

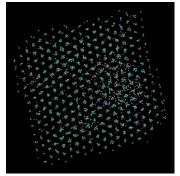


Figure: Horowitz, Caballero, Berry (2009)

Simulations

- MD simulations can be used to model a variety of microphysical processes
 - Shear modulus, shear speed
 - Breaking strain
 - Bulk modulus
 - Shear viscosity
 - Thermal conductivity
 - Electrical conductivity
 - Diffusion coefficients
 - Heat capacity
 - Pycnonuclear and electron capture reaction rates
 - Phase diagram (melting point and chemical separation) (André's talk)

▲□▶▲圖▶▲≣▶▲≣▶ ▲国 ● ● ●

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

Molecular Dynamics

- We use a screened Yukawa potential, $V(r) \propto \frac{e^{-r/\lambda}}{r}$
- λ is the Thomas-Fermi screening length, $\lambda^{-1} = 2\alpha^{1/2} k_F / \pi^{1/2}$
- Atoms are completely pressure ionized so *n_e* = *Zn* and the electrons form a degenerate Fermi gas
- Simulations are characterized by the Coulomb Parameter

$$\Gamma \equiv \frac{PE}{KE} = \frac{Z^2 e^2}{aT},$$
(1)

(2)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

where inter-ion spacing

$$a=\left(\frac{3}{4\pi n}\right)^{1/3}.$$

MD code

Structure and Shear Modulus of the Neutron Star Crust

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

- Our potential is very long range, so MD simulations are essentially $\mathcal{O}\left(\textit{N}^{2}\right)$
- · We need scalable code that can run on many nodes
- Hybrid OpenMP/MPI scheme
 - MPI
 - One MPI rank per node
 - Copies data between nodes
 - OpenMP
 - Four (Big Red) to twelve (Kraken) OpenMP threads per node
 - Computes forces and updates positions and velocities

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

Shear Modulus: Method 1

- Use Kubo formalism and compute correlations of free energy change under virtual deformations D_m with m = 1,...,6
- $D_{1,2,3}$ are stretching and $D_{4,5,6}$ are shearing deformations
- The magnitude of the deformation is given by ϵ and the angle-averaged shear modulus

$$\mu_{eff} = \frac{1}{5} \left(\frac{2}{9} \sum_{m=1}^{3} f_m + \sum_{m=4}^{6} f_m \right),$$
 (3)

where

$$f_m = \frac{1}{V} \left\{ \left\langle \frac{d^2 V}{d\epsilon^2} \right\rangle - \frac{1}{T} \left[\left\langle \frac{d V}{d\epsilon}^2 \right\rangle - \left\langle \frac{d V}{d\epsilon} \right\rangle^2 \right] \right\}.$$
 (4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

Shear Modulus: Method 1

- Finite size effects are large due to the long tail of our screened potential
- Ogata et al. used a standard Coulomb potential whereas we use a Yukawa
- Screening gives $\sim 10\%$ reduction in shear modulus

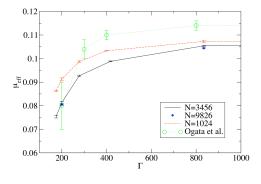
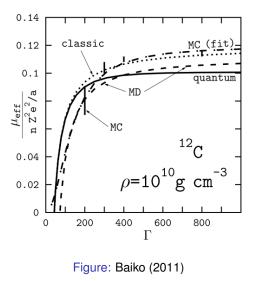


Figure: Horowitz, Hughto (2008)

Joe Hughto


Introduction

Shear Modulus

Crystal vs. Amorphous

Shear Modulus: Method 1

- Finite size effects are large due to the long tail of our screened potential
- Ogata et al. used a standard Coulomb potential whereas we use a Yukawa
- Screening gives $\sim 10\%$ reduction in shear modulus

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

Shear Modulus: Method 2

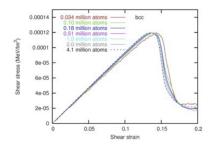


Figure: Horowitz, Kadau (2009)

- Physically shear the system
- Slope of stress vs. strain is the shear modulus
- This method also allows for a breaking strain calculation at the same time
- This method is more efficient for large systems (pasta)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

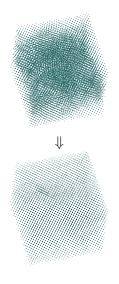
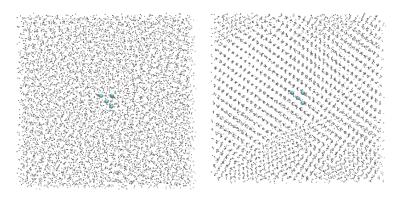


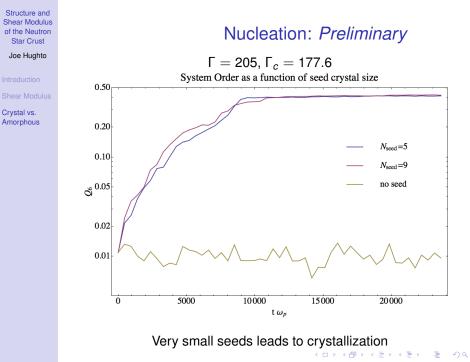
Figure: Hughto et al. (2011)

Solid Diffusion

- Completely pressure-ionized ions have soft 1/r cores
- Diffusion is very fast in solid systems
- Fast enough that quenched systems can initially freeze with many different domains but then evolve into few-domain crystals in very short timescales
- This fast diffusion suggests that NS crusts are remarkably good crystals with few defects

Joe Hughto


Introduction


Shear Modulus

Crystal vs. Amorphous

Nucleation: Preliminary

- Put a small (few ions) fixed seed crystal in a supercooled liquid
- Compute global bond order parameter *Q*₆ and test for crystallization

Crust cooling

 KS1731-260 accreted for ≥ 12.5 years then crust was observed to cool

Structure and Shear Modulus of the Neutron

Star Crust Joe Hughto

Crystal vs.

Amorphous

- Curve 5 is from an amorphous crust, while the others are from a crystalline crust
- There are strong observational and theoretical data pointing to a nearly perfect crystalline crust

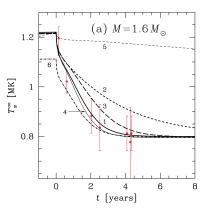


Figure: Shternin et al. (2007)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

Future Work

- Shear modulus of pasta phases
- Solid diffusion with multicomponent systems
- Molecular dynamics with high magnetic fields

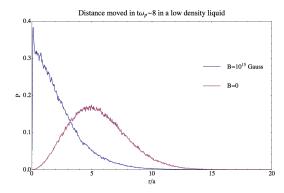


Figure: Preliminary

Summary

Structure and Shear Modulus of the Neutron Star Crust

Joe Hughto

Introduction

Shear Modulus

Crystal vs. Amorphous

- Molecular dynamics simulations allow us to explore a range of different observables
- NS crust is a nearly perfect crystal
- High thermal conductivity
- High breaking strain
- Stay tuned for André's talk on phase diagrams
- IU Group: Chuck Horowitz, André da Silva Schneider, Don Berry, Justin Mason