Cooling of the Cas A Neutron Star

Craig Heinke, U. of Alberta, Canada Seattle INT meeting, July 28, 2011

Collaborators: W. Ho, D. Yakovlev, P. Shternin, A. Potekhin, D. Patnaude, M. van Kerkwijk, D. Kaplan, K. El-Shamouty

Central Compact Objects (CCOs)

- I0 CCOs: X-ray point sources inside supernova remnants (omit RCW 103)
- Thermal BB-like spectra, long-term variability <5% (Pavlov+03)
- Young NSs, not radio pulsars

Puppis A, ROSAT

Thermal X-ray Emission

- CCOs show thermal, BB-like X-ray emission, kT~0.1-0.4 keV, L_X~10³³-10³⁴ ergs/s
- No optical, radio, IR counterparts
- Seem to be quiet NSs

Vela Jr. CCO spectrum, Kargaltsev+02

IEI207.4-5209

0.424 s X-ray pulsations, 7% pulsed fraction

Zavlin+00

IEI207 spectrum

- 3-4 absorption lines (Zavlin+01, Bignami+03)
- Pulsations principally affect lines
- Cyclotron lines?
 Electron: B=8e10 G
 Proton: B=6e14 G
- Harmonics resonances in magnetic free-free opacity (Suleimanov+10)

Bignami+03

P change in IEI207

Gotthelf & Halpern 07: No P changes (1993-2005), dP/dt < 10⁻¹⁶

Halpern+II:Timing data give B=9.9e10 G or 2.4e11 G. Lower similar to e⁻ cyclotron line inference (8e10 G)

Low-B neutron stars

- 3 CCOs with P, dP/dt, thus B constraints
- Born with lower B fields, ~longer P than normal pulsars
- Large fraction of NSs in young SNRs
- Do CCO B fields emerge, turn on as pulsars? (Ho 2011)

Pulsars, ATNF; blue Δ , binary; squares, other; red CCOs marked

Cassiopeia A CCO

Chandra discovery 1999

Youngest known supernova remnant with central NS

Is Cas A a Pulsar?

L: Cas A (Chakrabarty+01)

> R: GII.2-0.3, M. Roberts

 No extended X-ray emission (Chakrabarty+01,Pavlov+09)
 No radio pulsations

Spectrum of Cas A CCO

Consistent with blackbody

Inferred radius ~0.3 km

Pavlov+00

Pulsations

- Active radio pulsars show hot spots at poles
- Hot spots should produce pulsations, unless special geometry

XMM phase-resolved spectra of PSR 1055-52

Timing Tests on Cas A

Variability not seen 2000-2003 (Teter+04)
No pulsations seen, pulsed fraction ~<12% (Mereghetti+02, Halpern+10)

XMM limits on pulsed fraction of Cas A CCO, Mereghetti+02

NS Atmospheric Opacities

lonized H, He Opacity ~ V^{-3} , free-free absorption

Magnetic fields important above B~10¹⁰ G

Zavlin+96

Low-B NS Atmospheres

H, He shift flux to higher E vs. blackbodies Infer larger radius for given spectrum

Zavlin+96

Low-BH for Cas A CCO?

- Low-B H atmosphere gives good fit to Cas A
- Inferred radius ~5 km, requires tiny quark stars

Constraints for H atmosphere, Pavlov+09

H hot spots?

Two components (full surface + hot spot) explain spectra for R~12 km

 But should probably produce pulsations

Pavlov+09

Alternative atmospheres

- Variety of low-B NS atmospheres, using Opacity Project data
- N, O, Fe give features
- C harder than H, He

Ho & Heinke 09

Carbon Atmosphere

- Fit I Ms of Chandra data
- Only carbon atm. fit consistent with NS radius, ~10-12 km; also best fit

Ho & Heinke 09

Why a C atmosphere?

- Cas A is youngest NS
- NSs likely accrete many elements
- H, He diffuse down to hotter layers, are burned (Chang +03,Chang+10.)
- Low-B NSs burn away H, He for first 1000 years, then new H atm accretes?

Cas A NS constraints

- Range of M, R are consistent with standard NS EOSs (blue region)
- Uncertainty in atmosphere composition, B, temp. homogeneity affect constraints

Yakovlev+11

Evidence of Variability

- Best-calibrated observations over 10 years show flux decrease
- Spectral uniformity rules out known calibration effects

Heinke & Ho 2010

Observing Cas A Cooling

- T drops by 4% over 10 years
- First measured cooling of young NS
- Strong constraint on cooling models

Heinke & Ho 2010

More evidence of cooling

Shternin+11; new datapoint & explanation (w/Page+11)

El-Shamouty in prep; HRC-S, ACIS-I countrate declines

NS cooling Dominated by Vs Nucleon direct URCA, $n \rightarrow p + e + v$ p+e→n+V Modified URCA (requires **3-nucleon** interaction) or URCA-like reactions via condensates (K, π) URCA suppressed if particles are superfluid;

n-n bremss allowed

Yakovlev & Pethick 2004

Superfluidity

Quantum pairing of the spins of particles produces superfluid state, with frictionless flow

Requires "low" temperatures, e.g. liquid helium <3 K.

Superfluid helium has no viscosity, ang. mom. quantized in vortices

Glitches

Vela Glitch Radh. & Manchester 1969

Radio pulsars show glitches; speed-ups in spin

Understood by differing rotation of nuclear lattice, n SF in crust

Glitches represent transfer of ang. mom. to lattice

Only previous direct evidence for SF in NSs, & only in crust (singlet n SF in crust, triplet n SF in core expected)

Effects of core superfluidity

- Superfluid p or n prevent URCA processes
- NS cores well below SFT_C cool by slow n-n bremss
- Around n SFT_C, brief fast cooling phase; n pairing releases V-V pair. At T_C, pairs break, re-form, producing rapid (brief) cooling

Simple cooling picture

Modified URCA, moderate cooling

> Fast (URCA?) cooling

Slow cooling (SF suppression)

Superfluid n transition (brief SF cooling)

T_{core}

Only most massive NSs reach

NS Density

Superfluid transitions

- SF critical temperatures depend on density
- SF p, n T_Cs not known
- pT_C estimated higher than core (triplet) nT_C.

Gusakov+04; one T_C theory for n, p SFs in NS

Cooling curves can have quick SF drop

Time at which NS hits SFTC depends on prior cooling, on NS mass, envelope structure

Gusakov+04; cooling curves with SFT drops

Cooling, with protons

Hot NS requires p SF

Normal (modified URCA) cooling suppressed by p SF (p pairing)

Page+11

Very rapid T drop of Cas A NS requires p SF to suppress Urca

Decline in T is quite large for t~300 yrs, requires p SF to suppress URCA, n SF to give sudden cooling

Agreement between Shternin group & Dany Page group

Probably strongest evidence for superfluidity in NS cores

Shternin et al. 2011

Cas A results

- First non-H NS atmosphere found
- Cooling directly measured
- Direct evidence fo n SF in core, indirect for p SF
- Future obs to test cooling, constrain superfluidity models
 Cas A (NASA Chandra/Hubble)

Other CCOs

G353.6-0.7, Tian+

Six more CCOs where pulsations not yet detected, pulsed fraction <7% for two

Are spectra consistent with uniformly emitting NSs, either H/He or C atm? Or are hot spots required?

Distances & ages not wellconstrained. Estimate distances from SNRs, NH (compare to extinction to horizontal-branch stars along line of sight)

Future for CCOs

- Pulsations give P, B; searches, timing critical
- Atmosphere modeling (understand hot spots, composition, lines), observe more CCOs for features
- Follow temp. decline in Cas A, search for temp changes in other CCOs
- D, kT, age for more CCOs to study NS cooling

Movie of NS interior T

Wynn Ho, from Shternin results

Neutron triplet superfluidity in NSs, Shternin+2011

Cooling by Cooper pair formation in neutron superfluid, T_{crit}~[6-9]*10⁸ K

Summarizing cooling

- Large variation in cooling rates requires fast neutrino cooling in some NSs
- Fast neutrino cooling must be suppressed in other NS cores, by (proton) superfluidity

 Sudden Cas A cooling requires new source of cooling, such as pair breaking from neutron superfluidity

Superconductivity

Similar physics to superfluids, but involving charged particles

Perfect electrical conductors; produce strong magnetic fields

Applications: medical (MRI), particle physics (LHC), maglev trains, power transport

Gives strong constraint on young NS cooling curves

 Options for T range; envelope elements, mass (superfluidity, URCA flavors)

Yakovlev+10

Superfluidity in NSs

NS n, p interactions may allow Cooper pairing, at "low" T

Expect singlet state SF n in outer crust, SF p throughout star

n repulsion stops singlet n SF in core, but triplet SF expected

Schematic, Bennett Link

Carbon atmosphere

Scale height of Earth's atmosphere ~neutron star diameter

Scale height of neutron star atmosphere ~10 cm

Cooling of young NSs

More massive NSs can access rapid cooling at center

Range of cooling rates set by NS v emission process

Young NSs give small range of cooling rates

Yakovlev & Pethick 2004

Kes 79: 64% Pulsed Fraction

Only CCO with >12% pulsed fraction

Kes 79, Gotthelf+05

Pulse profile, Halpern+10 0.105s

Kes 79: First Pdot

Kes 79 ephemeris, Halpern+10

Halpern+10 phaseconnected epochs to get Pdot=8.7e-18, B=3.1e10 G

Difficult problem: highly pulsed emission & low B field???

Spots where buried toroidal B field emerging? (Lai's talk)

Puppis A: Two spots

Lightcurves, Gotthelf+10

No overall modulation; pulsations at low, high energies; two spots?

Spot model, Gotthelf+10

Puppis A spectrum

X-ray spectrum thermal, with feature near I keV

Gotthelf+09 fit by two blackbodies, & gaussian line 0.8 keV

(Could be absorption line, ~0.9 keV, as in IEI207)

Spectrum, Gotthelf+09

Vela Jr. (RX J0852-4622)

Distance constrained by Vela Molecular Ridge, <2 kpc (Murphy & May 1991)

SNR expansion measured, 0.014±0.004%/yr (Allen+10), so ~3000 years old

Hard X-ray synchrotron in SNR requires v>3000 km/s, estimate D=720--2140 pc

Vela,Vela Jr. & Pup A SNRs, Red giant extinction, CCO L_X Becker+06 suggest D~2 kpc

Vela Jr. spectra

- Fit by blackbody, H, He, C atm, assume 1.4 Msun, 10 km radius
- Required distances:
 35 kpc for BB,
 9.2±0.5 kpc H,
 8.7±0.5 kpc He,
 2.8±0.3 kpc C (~2 MK)

 Suggests hot spot, but PF <7%

Fit with single-T C atm

G347.3-0.7 (RX J1713.7-3946)

SNR interacting ISM clouds, at D=1.3±0.4 kpc (Cassam-Chenai+04, Fukui+10)

Age ~1600 years, if SNR of 393 AD (Wang 97)

Single-T C atm fits ($T_s=2$ MK), but requires D=2-2.5 kpc

Seems to require hot spots, but again PF<7%

G347.3-0.7 (XMM), Cassam-Chenai+04

G350.1-0.3

- SNR colliding H₂ cloud, age 600-1200 years, D ~ 4.5 kpc
- Consistent with single-temp C atm, T_s =2.6 MK, If so, T >Cas A (T_s =2 MK)
- W. Ho & I proposing to look for cooling, pulsations

G350.1-0.3, Gaensler+08

3 more likely CCOs

- Poor limits on pulsed fraction
- Inferred D with H/He atm too high, C atm D ok
- Distances uncertain, spectral fits unclear; more data needed

G15.9+0.2, Reynolds+06

G330.2+1.0

S. Park+06

G353.6-0.7,

Tian+10

