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Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit low-energy nucleon-nucleon scattering data

• “hard” NN interactions contain repulsive core at small relative distance

• strong coupling between low and high-momentum components, hard to solve!

Traditional “hard” NN interactions
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Low-momentum interactions:
The (Similarity) Renormalization Group

• goal: generate unitary transformation of “hard” Hamiltonian

• basic idea: change resolution in small steps:

with the resolution parameter 
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Low-momentum interactions:
The (Similarity) Renormalization Group

• elimination of coupling between low- and high momentum components, 

calculations much easier

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

• RG transformation also changes three-body (and higher-body) interactions



• cD and cE have to be determined 
in A   3 systems 

• large uncertainties in 2   coupling 
constants at present:

π

             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

1.5

Chiral three-nucleon forces (leading order)

leads to theoretical uncertainties in
many-body observables 

≥



Chiral 3N interaction as density-dependent two-body interaction

π π π ππ ππ ππ ππ π= - - - + +

V NNV = + 1/ccombinatorial factor c depends 
on type of diagram

(1) calculate antisymmetrized 3N interaction

(2) construct effective density-dependent NN interaction

(3) combine with free-space NN interaction

V3N

k3σ3V3NV3N

V3N

Basic idea: 
Sum one particle over occupied 
states in the Fermi sea



VNN V3N

V3N

V3N

Equation of state: Many-body perturbation theory

E =

+ +

+ +

central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-momentum interactions much more perturbative

• inclusion of 3N interaction contributions crucial

+ . . .

Hartree-Fock

VNN

VNN

++ +
V3N

V3N

V3N

VNN

VNN

V3N

2nd-order

Hartree-Fock

kinetic energy

3rd-order 
and beyond

H(λ) = T + VNN(λ) + V3N(λ) + ...



General momentum dependence:
V 3N = V 3N(k,k′,P)

V3N

P/2 + k P/2− k

P/2 + k′ P/2− k′

•    -dependence much weaker than         -dependence!P k,k′

• neglect    -dependence, set 

• matrix elements have the same form like free-space 
NN interaction matrix elements 

• straightforward to include in existing many-body schemes

P P = 0

Properties of the effective interaction  V 3N
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• significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• energy sensitive to uncertainties in 3N interaction

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

ENN+3N,eff
(1) ENN+3N,eff

2.0 < 3N < 2.5 fm-1

0.05 0.10 0.15
 [fm-3]

5

10

15

20

E
ne

rg
y/

nu
cl

eo
n 

[M
eV

]

0
0

0.05 0.10 0.15
 [fm-3]

0

 = 1.8 fm-1

 = 2.0 fm-1

 = 2.4 fm-1

 = 2.8 fm-1

KH and Schwenk PRC 82, 014314 (2010)

0.05 0.10 0.15
 [fm-3]

0

5

10

15

20

E
ne

rg
y/

nu
cl

eo
n 

[M
eV

]

0

ENN+3N,eff+c3+c1 uncertainties

ENN+3N,eff+c3 uncertainty

ENN
(1) + ENN

(2)

3N

Hartree-Fock 2nd-order



• significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• energy sensitive to uncertainties in 3N interaction

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

ENN+3N,eff
(1) ENN+3N,eff

2.0 < 3N < 2.5 fm-1

0.05 0.10 0.15
 [fm-3]

5

10

15

20

E
ne

rg
y/

nu
cl

eo
n 

[M
eV

]

0
0

0.05 0.10 0.15
 [fm-3]

0

 = 1.8 fm-1

 = 2.0 fm-1

 = 2.4 fm-1

 = 2.8 fm-1

KH and Schwenk PRC 82, 014314 (2010)

0.05 0.10 0.15
 [fm-3]

0

5

10

15

20

E
ne

rg
y/

nu
cl

eo
n 

[M
eV

]

0

ENN+3N,eff+c3+c1 uncertainties
Schwenk+Pethick (2005)
Akmal et al. (1998)
QMC s-wave
GFMC v6
GFMC v8’

• good agreement with other approaches (different NN interactions)
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Neutron matter:
Symmetry energy

S2(ρ) = a4 +
p0

ρ2
0

(ρ− ρ0)

E(ρ, α = 1) = −aV +
K0

18ρ2
0

(ρ− ρ0)2 + S2(ρ)

• given the experimental constraint a4 = 30± 4 MeV
smaller absolute values of      seem to be preferred from our resultsc3

c1 [GeV] c3 [GeV] a4 [MeV] p0 [MeV fm−3]
−0.81 −3.2 31.7 2.4/2.5
−0.81 −5.7 33.7 2.9/3.0
−0.7 −3.2 31.7 2.4/2.5
−1.4 −5.7 34.5 3.3/3.4

• uncertainties in     couplings lead to uncertainties in symmetry energyci



Constraints on the nuclear equation of state (EOS)

Structure of a neutron star is determined by 
Tolman-Oppenheimer-Volkov (TOV) equation:

dP

dr
= −GMε

r2

[
1 +

P

εc2

] [
1 +

4πr3P

Mc2

] [
1− 2GM

c2r

]−1

crucial ingredient: energy density ε = ε(P )

LETTER
doi:10.1038/nature09466

A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chainMonte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Mmax = 1.65M! → 1.97± 0.04 M!



Neutron star radius constraints

Problem: Solution of  TOV equation requires EOS up to very high densities. 
Radius of a typical NS (M~1.4 M  ) theoretically not well constrained. 

But: Radius of NS is relatively insensitive to high density region. 
!

KH et al., PRL 05, 161102 (2010)
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• radius constraint after incorporating crust corrections:

Neutron star radius 
constraints

• low-density part of EOS sets scale for allowed high-density extensions 

use the constraints:

vs(ρ) =
√

dP/dε < c

Mmax > 1.97 M!

cf. KH et al., PRL 05, 161102 (2010)

causality

recent NS observation
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Constraints on neutron star equations of state

cf. KH et al., PRL 05, 161102 (2010)

            neutron star and causality constrain nuclear EOS at high densities1.97M!
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Conclusions

• derivation of density-dependent effective NN interactions from 3N 
interactions

• effective NN interaction efficient to use and accounts for 3N effects in 
neutron and nuclear matter to good approximation

• good agreement with empirical symmetry energy and nuclear saturation 
properties
 
• constraints for the neutron star EOS and radii of neutron stars
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Equation of state of symmetric nuclear matter
Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions

• 3N forces are essential! Here: fit 3NF couplings to few-body systems: 

KH et al., PRC(R) 83, 031301 (2011)

E3H = −8.482 MeV r4He = 1.95− 1.96 fmand

nS ∼ 0.16 fm−3

Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• empirical saturation at                         and                        Ebinding/N ∼ −16 MeV



• saturation point consistent with experiment, without new free parameters

• cutoff dependence at 2nd order significantly reduced

• 3rd order contributions small

• cutoff dependence consistent with expected size of 4N force contributions

ENN+3N,eff
(1) ENN+3N,eff

(2) ENN+3N,eff
(3,pp/hh)
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Hierarchy of many-body contributions 
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• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter
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• choose effective degrees of 
freedom: here nucleons and pions

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV 

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

Basics concepts of chiral effective field theory
                    NN       3N           4N

Plan: Use EFT interactions 
as input to RG evolution.
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