Chiral three-body forces and neutron- rich matter

Kai Hebeler (OSU)

Seattle, August 1, 2011

Astrophysical Transients: Multi-messenger Probes of Nuclear Physics

In collaboration with: J. Lattimer, C. Pethick, A. Schwenk

Traditional "hard" NN interactions

- constructed to fit low-energy nucleon-nucleon scattering data
- "hard" NN interactions contain repulsive core at small relative distance
- strong coupling between low and high-momentum components, hard to solve!

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

os:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}$ with the resolution parameter λ
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

s:
$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger$ with the resolution parameter λ
- basic idea: change resolution in small steps

$$\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$$

- elimination of coupling between low- and high momentum components, calculations much easier
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations
- RG transformation also changes three-body (and higher-body) interactions

Chiral three-nucleon forces (leading order)

• large uncertainties in 2π coupling constants at present:

$$c_1 = -0.9^{+0.2}_{-0.5}, c_3 = -4.7^{+1.5}_{-1.0}, c_4 = 3.5^{+0.5}_{-0.2}$$

leads to theoretical uncertainties in many-body observables

• c_D and c_E have to be determined in $A \ge 3$ systems

Chiral 3N interaction as density-dependent two-body interaction

(2) construct effective density-dependent NN interaction

Basic idea: Sum one particle over occupied states in the Fermi sea

(3) combine with free-space NN interaction

combinatorial factor c depends on type of diagram

Equation of state: Many-body perturbation theory

central quantity of interest: energy per particle E/N $H(\lambda) = T + V_{NN}(\lambda) + V_{3N}(\lambda) + ...$

- "hard" interactions require non-perturbative summation of diagrams
- with low-momentum interactions much more perturbative
- inclusion of 3N interaction contributions crucial

Properties of the effective interaction $\overline{V}_{3\mathrm{N}}$

General momentum dependence:

 $\overline{V}_{3N} = \overline{V}_{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

- \bullet ${\bf P}\text{-dependence}$ much weaker than ${\bf k}, {\bf k}'\text{-dependence}!$
- ullet neglect ${f P}$ -dependence, set ${f P}={f 0}$
- matrix elements have the same form like free-space
 NN interaction matrix elements

straightforward to include in existing many-body schemes

Properties of the effective interaction \overline{V}_{3N} $(\Lambda_{3N} = 2.0 \,\mathrm{fm}^{-1})$

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Neutron matter: Symmetry energy

$$E(\rho, \alpha = 1) = -a_V + \frac{K_0}{18\rho_0^2}(\rho - \rho_0)^2 + S_2(\rho)$$
$$S_2(\rho) = a_4 + \frac{p_0}{\rho_0^2}(\rho - \rho_0)$$

$c_1 \; [\text{GeV}]$	$c_3 \; [\text{GeV}]$	$a_4 [MeV]$	$p_0 [\mathrm{MeV fm^{-3}}]$
-0.81	-3.2	31.7	2.4/2.5
-0.81	-5.7	33.7	2.9/3.0
-0.7	-3.2	31.7	2.4/2.5
-1.4	-5.7	34.5	3.3/3.4

- uncertainties in c_i couplings lead to uncertainties in symmetry energy
- given the experimental constraint $a_4 = 30 \pm 4 \,\mathrm{MeV}$ smaller absolute values of c_3 seem to be preferred from our results

Constraints on the nuclear equation of state (EOS)

nature

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Credit: NASA/Dana Berry

Stru Tolm

 $\frac{dP}{dr}$

С

eutron star is determined by eimer-Volkov (TOV) equation:

$$\frac{P}{\epsilon c^2} \left[1 + \frac{4\pi r^3 P}{Mc^2} \right] \left[1 - \frac{2GM}{c^2 r} \right]^{-1}$$

dient: energy density $\epsilon = \epsilon(P)$

Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~1.4 M_{\odot}) theoretically not well constrained.

But: Radius of NS is relatively insensitive to high density region.

incorporation of beta-equilibrium: neutron matter \longrightarrow neutron star matter parametrize piecewise 37 crust EOS Γ_{2} high-density extensions of EOS: neutron star matter 36 with c_i uncertainties $\log_{10} P [dyne/cm^2]$ 35 • use polytropic ansatz Γ_1 $p \sim \rho^{\Gamma}$ 34 33 range of parameters 32 $\Gamma_1, \rho_{12}, \Gamma_2$ limited by physics 31 13.0 13.5 14.0 $\boldsymbol{\rho}_1$ ρ_{12} $\log_{10}\rho \ [g/cm^3]$ KH et al., PRL 05, 161102 (2010)

Neutron star radius constraints

Problem: Solution of TOV equation requires EOS up to very high densities. Radius of a typical NS (M~1.4 M_{\odot}) theoretically not well constrained.

But: Radius of NS is relatively insensitive to high density region.

without 3N forces EOS differs significantly from crust EOS around $ho_0/2$

- low-density part of EOS sets scale for allowed high-density extensions
- radius constraint after incorporating crust corrections: 10.7 13.4 km

Constraints on neutron star equations of state

 $1.97 M_{\odot}$ neutron star and causality constrain nuclear EOS at high densities

Constraints on neutron star equations of state

very stiff EOSs lead to low central densities in typical neutron stars

Conclusions

derivation of density-dependent effective NN interactions from 3N interactions

- effective NN interaction efficient to use and accounts for 3N effects in neutron and nuclear matter to good approximation
- good agreement with empirical symmetry energy and nuclear saturation properties
- constraints for the neutron star EOS and radii of neutron stars

Equation of state of symmetric nuclear matter

- empirical saturation at $n_S \sim 0.16 \,\mathrm{fm}^{-3}$ and $E_{\mathrm{binding}}/N \sim -16 \,\mathrm{MeV}$
- nuclear saturation delicate due to cancellations of large kinetic and potential energy contributions
- 3N forces are essential! Here: fit 3NF couplings to few-body systems:

 $E_{^{3}\text{H}} = -8.482 \,\text{MeV}$ and $r_{^{4}\text{He}} = 1.95 - 1.96 \,\text{fm}$

Equation of state of symmetric nuclear matter

- saturation point consistent with experiment, without new free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Hierarchy of many-body contributions

 binding energy results from cancellations of much larger kinetic and potential energy contributions

- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Basics concepts of chiral effective field theory

- choose effective degrees of freedom: here nucleons and pions
- short-range physics captured in few short-range couplings
- separation of scales: Q << Λ_b , breakdown scale Λ_b ~500 MeV
- power-counting: expand in powers Q/Λ_b
- systematic: work to desired accuracy, obtain error estimates

Plan: Use EFT interactions as input to RG evolution.

In collaboration with:

