Solving Large-scale Eigenvalue Problems in Nuclear Structure Calculation

Chao Yang, LBNL

in collaboration with

LBNL

Hasan Metin Aktulga Esmond Ng IBM ILOG Philip Sternberg Iowa State University James Vary Pieter Maris

Feb 16, 2011

Outline

- Overview of nuclear structure calculation using configuration interaction (CI)
 - Background
 - Numerical methods for solving large-scale eigenvalue problems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Parallel implementation
 - Constructing the matrix
 - Data distribution
 - Load balancing
 - Parallel sparse matrix vector multiplication
- Total-J calculation
 - Large-scale null space calculations
- Challenges

Nuclear Structure Calculation

 Strong interactions among protons and neutrons, origin of the ¹²C formation in stars, foundation for nuclear reaction theory

Quantum many-body problem

$$\mathcal{H}\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_k)=\lambda\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_k).$$

- *H* nuclear Hamiltonian describes kinetic energy and 2-body (NN), 3-body (NNN) potential;
- Ψ nuclear wavefunction, |Ψ(**r**₁, **r**₂, ..., **r**_k)|² probability density of finding nucleons 1, 2, ..., k at **r**₁, **r**₂, ..., **r**_k;
- λ quantized energy level. Often interested in the ground state (λ₁) and a few (10-100) low excited states;
- Solving the many-body problem directly is not feasible except for small k;

Nuclear Configuration Interaction

- ► Basis expansion $\Psi = \sum_{a} \alpha_a \Phi_a(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_k)$, where $a \equiv (a_1, a_2, ..., a_k)$, $a_i \in [1, i_{max}]$.
- Many-body (MB) state (Slater determinant)

$$\Phi_{a}(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{k}) = \frac{1}{\sqrt{k!}} \begin{vmatrix} \phi_{a_{1}}(\mathbf{r}_{1}) & \phi_{a_{2}}(\mathbf{r}_{1}) & \dots & \phi_{a_{k}}(\mathbf{r}_{1}) \\ \phi_{a_{1}}(\mathbf{r}_{2}) & \phi_{a_{2}}(\mathbf{r}_{2}) & \dots & \phi_{a_{k}}(\mathbf{r}_{2}) \\ \vdots & \vdots & & \vdots \\ \phi_{a_{1}}(\mathbf{r}_{k}) & \phi_{a_{2}}(\mathbf{r}_{k}) & \dots & \phi_{a_{k}}(\mathbf{r}_{k}) \end{vmatrix},$$

- ► Single-particle state: φ_{ai} is an eigenfunction of a harmonic oscillator, associated with a set of quantum numbers |nℓjm_j⟩_{ai};
- The size of the expansion (N) depends on i_{max}, k and several constraints

$$\sum_{a_i \in a} 2n_{a_i} + \ell_{a_i} \leq N_0 + N_{max};$$

$$\blacktriangleright \sum_{a_i \in a} m_{j_{a_i}} = M_0;$$

parity constraint;

Finite-dimensional Eigenvalue Problem

•
$$\hat{H}x = \lambda x$$
, where

$$\widehat{H}_{a,b} = \int_{\Omega} (\Phi_a^* \mathcal{H} \Phi_b) d\mathbf{r}_1 d\mathbf{r}_2 \dots d\mathbf{r}_k, \ x = (\alpha_1, \alpha_2, \cdots, \alpha_N)^T,$$

and
$$a = (a_1, a_2, ..., a_k)$$
, $b = (b_1, b_2, ..., b_k)$.

- Dimension of \hat{H} can be quite large
- *H* is quite sparse.
 - ► Sparsity follows from the orthornormality of φ's, and the 2 or 3-body interacting potential in H:

If a and b are many-body states that differ by more than 2 (or 3) single-particle states, the matrix element indexed by a and b is exactly zero.

No "nice" pattern (e.g., banded structure)

Sparsity Structure for ⁶Li

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Matrix size and sparsity

Rule of thumb: number of nonzeros $\sim O(N^{1.5})$

Dimensions and sparsity of matrices

 Estimates of aggregate memory needed for storage of sparse symmetric Hamiltonian matrix in compressed column format

does not	include	memory	for	vectors)
----------	---------	--------	-----	---------	---

nucleus	$N_{\rm max}$	dimension	2-body	3-body	4-body
⁶ Li	12	$4.9\cdot 10^7$	0.6 TB	33 TB	590 TB
12 C	8	$6.0\cdot 10^8$	4 TB	180 TB	4 PB
12 C	10	$7.8\cdot 10^9$	80 TB	5 PB	140 PB
16 O	8	$9.9\cdot 10^8$	5 TB	300 TB	5 PB
16 O	10	$2.4\cdot 10^{10}$	230 TB	12 PB	350 PB
⁸ He	12	$4.3\cdot 10^8$	7 TB	300 TB	7 PB
¹¹ Li	10	$9.3\cdot 10^8$	11 TB	390 TB	10 PB
14 Be	8	$2.8\cdot 10^9$	24 TB	1100 TB	28 PB
20 C	8	$2 \cdot 10^{11}$	2 PB	150 PB	6 EB
²⁸ 0	8	$1\cdot 10^{11}$	1 PB	56 PB	2 EB

(presented at Extreme Scale Computing Workshop - nuclear physics Washington DC Jan 2009)

Need high-performance computing on large-memory platforms

ICCS2010 - P. Maris - Scaling of ab-initio nuclear physics calculations on multicore computer architectures - p.9/3:

Types of Calculations

- In many cases, we are interested in the ground state of H and a few low excited states, i.e., we compute 10-20 smallest eigenvalues of H
- In some applications, we are interested in a large number of low energy states with a prescribed total angular momentum J (Total-J calculation)
 - Compute a large number of eigenvalues, then pick out the ones with the desired J
 - Use the fact that $[\hat{H}, \hat{J}^2] = \hat{H}\hat{J}^2 \hat{J}^2\hat{H} = 0$ to simultaneously diagonalize \hat{H} and \hat{J}^2
 - 1. Compute an invariant subspace Z of \hat{J}^2 associated with a prescribed J (null space calculation)
 - 2. Project \hat{H} into Z, i.e. $G = Z^T \hat{H} Z$
 - 3. Compute desired eigenvalues and eigenvectors of G
 - 4. Back transformation

Basic Steps of MFDn

- Generate (enumerate) and distribute MB states (to achieve load balance) (MB states viewed as column and row indices of *Ĥ*)
- Matrix Hamiltonian construction
 - Figure out where the nonzeros are before evaluating and storing them
 - Efficient data structure
 - Numerical evaluation
- (Compute desired invariant subspace of \widehat{J}^2)
- Solve large sparse matrix eigenvalue problem by Lanczos
 - Efficient and scalable matrix-vector (MATVEC) multiplication
 - Efficient and scalable orthogonalization
- Evaluate observables

Hamiltonian construction	~ 1500 wall clock seconds
Lanczos	\sim 2500 wall clock seconds

 $^{16}\text{O},~\textit{N}_{\text{max}}=$ 8, $\textit{N}\sim10^9,~12,090$ cores on Franklin

Processor Grid and Communication Groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

MB State Generation and Distribution

• Enumerate by lexigraphical order: let $a = (a_1, a_2, ..., a_k)$ and $b = (b_1, b_2, ..., b_k)$, where $a_i, b_i \in [1, i_{max}]$

 $a < b \ \text{iff} \ \exists j \ \text{such that} \ a_j < b_j \ \text{and} \ a_i = b_i \ \forall i < j.$

- Validity check
- MB state distribution objectives:
 - Partition valid MB states into groups S₁, S₂,..., S_{ng} of approximately equal sizes;
 - ► The number of nonzeros *H*_{a,b} in each (S_i, S_j) block is approximately the same;
 - Efficient and scalable;

Parallel MB State Generation & Cyclic Distribution

- ► The *i*th processor increment the smallest possible MB state *i* − 1 times;
- Each processor performs n_g-fold increment simultaneously;
- Discard MB state if it is not valid;

	ar da Saturna da	ini ta di kana da kana Kana da kana da	i te ar
1955 - 1944 - 1949 1957 - 1944 - 1949 1957 - 195		- The Second	anab
		der i stradius seri	
Station of the			
Contraction and the state	STAR PARK, INTON	THE REAL PROPERTY.	SHE STATES
	in the second second	C. I Dista	

Hamiltonian Matrix Construction

Rows/columns indexed by many-body states

Physics excludes most of the
$$\binom{i_{max}}{k}$$
 many-body states

If a and b are many-body states that differ by more than 2 (or 3) single-particle states, the matrix element indexed by a and b is exactly zero.

If not, we call *a* and *b* an **interacting pair**.

Example

• If a 2-body potential is used in \mathcal{H} ,

$$a = (2,3,4,7,9,12)$$

$$b = (1,2,4,7,8,12)$$

$$c = (1,4,5,7,8,9)$$

are many-body states, then (a, c) is not an interacting pair, but (a, b) and (b, c) are interacting pairs.

Implementation: bitwise operation

The Need for Blocking

- Exhaustive pairwise comparison is prohibitively expensive
- Would like to identify large zero blocks without performing pairwise comparisons
- Group MB states into clusters, create a cluster identifier for each cluster, compare cluster id's
- Partition the single-particle states into bins, count how many single-particle states are in each bin.

many-body states	cluster identifiers
(2,3,4,7,9,12)	(3,1,2)
(1,2,4,7,9,12)	(3,1,2)
(1,4,5,7,8,9)	(<mark>2</mark> ,3,1)
(1,2,9,10,11,12)	(2,0,4)

E.g., using the partition $\{[1-4], [5-8], [9-12]\}\$, we have

The Need for Blocking (Continued)

E.g., using the partition
$$\left\{ [1-4], [5-8], [9-12] \right\}$$
, we have

many-body states	cluster identifiers	
(2,3,4,7,9,12)	(<mark>3</mark> ,1,2)	
(1,2,4,7,9,12)	(3 ,1, 2)	
(1,4,5,7,8,9)	(2,3,1)	
(1,2,9,10,11,12)	(2,0,4)	

Claim: Let S and T be cluster identifiers with $||S - T||_1 > 4$. Then $\mathcal{H}_{\{S,T\}} = 0$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Tiny Example with Blocking

{[1-2],[3-4],[5-6],[7-8],[9-10]}

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ りへぐ

Performance Gain from Multi-level Blocking

- ▶ Nucleus: ¹⁶O
- Configuration space: $N_{\rm max}=$ 8, $N=10^9$
- Number of processors: 12,090

Number of	time	element	block
levels	(seconds)	comparisons	comparisons
2	29,996	$1.9 imes10^{12}$	$1.7 imes10^8$
3	4,630	$3.0 imes10^{11}$	$5.6 imes10^8$
4	1,483	$7.6 imes10^{10}$	$2.1 imes10^9$
5	1,251	$3.0 imes10^{10}$	$5.5 imes10^9$

Parallel Eigenvalue Computation

Solved by Lanczos iteration (with implicit restart)

$$\widehat{H}V = VT + fe_m^T, \quad V^TV = I_m$$

- Perform $y \leftarrow \widehat{H}x$ many times
- Maintain $V^T V = I$
- Memory bound: ¹⁶O Hamiltonian uses 6 terabytes
- Store lower half of matrix, distributed across:

d diagonal processors

d(d+1)/2 total processors

1	6	10
2	7	11
3	8	12
4	9	13
5	15	14

き▶ ★ き▶ = • • • • •

Matrix-Vector Multiply

Steps for MATVEC: input (x) and output (y) vectors are stored on diagonal processors

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Parallel Orthogonalization $f \rightarrow V(V^T y)$

у

 \times w f \mathbf{V}

SAXPY

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Overall Performance of MFDn

Scalability of MFDn

Total CPU time of MFDn on Cray XT4 with hybrid MPI/OpenMP

For application scientist, time to completion, or CPU resource units used, is more important than speedup

Pure MPI more efficient than hybrid MPI/OpenMP for this case

ICCS2010 - P. Maris - Scaling of ab-initio nuclear physics calculations on multicore computer architectures - p.23/3:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Hybrid MPI/OpenMP more efficient as problem size grows

¹⁴N, $N_{\text{max}} = 8$, 2-body interactions, on Franklin (XT4) and Jaguar (XT5)

For comparison: symbols at 8,128 (XT4) and at 12,090 (XT5) cores pure MPI with 1 MPI PE per core

ICCS2010 - P. Maris - Scaling of ab-initio nuclear physics calculations on multicore computer architectures - p.24/3:

イロト 不得 トイヨト イヨト

-

Total-J Calculation

- Want to compute low energy state of H with a prescribed total angular momentum
- When there is no external field, [*Ĥ*, *J*²] = 0. Thus *Ĥ* and *J*² are simultaneously diagonalizable
- ▶ Find Z such that

 $\widehat{J}^2 Z = Z\Omega,$

where

$$Z^T Z = I_m$$
, $\operatorname{eig}(\Omega) = \lambda$

with a known λ (J-basis or null space calculation)

- Form $S = Z^T \widehat{H} Z$
- Solve $SG = G\Lambda$ iteratively
- Form Y = ZG

J-basis (null space) Calculation

- Enumerate many-body states (MBS) in groups according to reduced set of quantum numbers associated with single particles states
- MBS within each group is invariant under \widehat{J}^2 .

$$\hat{J}^2 = \left(egin{array}{ccc} \hat{J}_1^2 & & & & \\ & \hat{J}_2^2 & & & \\ & & \ddots & & \\ & & & & \hat{J}_{n_g}^2 \end{array}
ight)$$

Problem reduces to computing

$$\widehat{J}_i^2 Z_i = Z_i \Omega_i, \ ext{eig}(\Omega_i) = \lambda$$

- \hat{J}_i^2 is very sparse
- The dimension of J_i² is known, but can vary significantly from one *i* to another (1 to tens of thousands)
- ► rank(Z_i) depends on λ (10% ~ 30% of the dimension of \widehat{J}_i^2)

Sparsity of \widehat{J}_i^2

.0

The dimensions of \widehat{J}_i^2 's

, . C

Methods for Computing Z_i

Rank-revealing QR

$$(\widehat{J}_i^2 - \lambda I)P = QR$$

can use randomized algorithms (does not require pivoting)
 Shift-invert Lanczos. Apply Lanczos (or subspace iteration) to (Ĵ_i² - σI)⁻¹, where σ is close to λ.

Polynomial accelerated subspace iteration (PASI)

PASI

Apply subspace iteration to $p(\widehat{H})$

- 1. Pick an initial guess to Z_i (V such that $V^T V = I$);
- 2. $W \leftarrow p(\widehat{H})V;$
- 3. [V, R] = qr(W);
- 4. go back to Step 2 if convergence not reached

The choices of polynomials:

- Chebyshev if λ is the smallest eigenvalue of \hat{J}_i^2 .
- Bandpass polynomial otherwise

Parallelization

Two inherently conflicting objectives:

- Limit the granularity of the parallelism.
- Limit the amount of communication overhead.

Heuristic

Classify \hat{J}_i^2 into small, medium, large blocks based on dimension, load estimation, ratio of flops over communication volume

- Small blocks are assigned to single processors. An sequential algorithm is used to find the desired invariant subspace. (No communication)
- Medium size blocks are mapped to a row group. The invariant subspace (Moderate amount of communication) is computed in parallel by processors within the same group
- Large size blocks ("outliers") are tackled by all processors simultaneously. (Lots of communication)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Greedy Load Balance

Once \hat{J}_i^2 's have been classified, the total amount of load (including communication cost) is fixed.

- 1. Compute the idea average load *w* per row group for medium-sized blocks;
- 2. Distribute medium-sized blocks (sorted in descending order in terms of their loads) in a cyclic fashion over n_r groups. If assigning a particular \hat{J}_i^2 to a processor group p_r results in load overflow, skip p_r and try to assign \hat{J}_i^2 to the next available group without exceeding the *w* limit. If \hat{J}_i^2 cannot be assigned to any row group, set it aside for later assignment;
- 3. If there exits some medium-size \hat{J}_i^2 blocks that cannot be assigned to any of the row groups
 - raise w slightly and repeat step 2;
 - ▶ or, assign J_i² with the largest load to the processor group with the least amount of filled load ...
- 4. Distribute the small blocks to reduce load variation.

Load Balancing Null Space Computations

mm

Performance on Real Problems

nucleus	(N_{\max},J)	ng	k	п
	(10,0)	$7.8 imes10^4$	3.3×10^{5}	$9.7 imes10^{6}$
	(10,1)	$7.8 imes10^4$	9.4×10^{5}	$9.7 imes10^{6}$
⁶ Li	(12,0)	$2.5 imes10^5$	$1.4 imes 10^6$	4.9×10^7
	(12,1)	$2.5 imes10^5$	3.9×10^{6}	4.9×10^7
	(12,12)	$2.5 imes10^5$	2.8×10^5	4.9×10^7
120	(4,0)	$5.8 imes10^3$	$5.5 imes10^4$	$1.1 imes 10^{6}$
C	(6,0)	$5.6 imes10^4$	$1.3 imes10^{6}$	3.3×10^7
	(6,2)	$5.6 imes10^4$	$3.5 imes10^6$	3.3×10^7
	(6,12)	$5.6 imes10^4$	$3.1 imes 10^4$	3.3×10^7

Load Balance Performance

Table: The minimum, average and maximum wall clock time consumed by PASI when the greedy load balancing algorithm is used.

nucleus	N _{max}	wt _{min}	wt _{avg}	wt _{max}	%comm
	8	0.95	1.10	1.35	17%
⁶ Li	10	9.5	12.0	13.0	21%
	12	126	129	132	39%
120	4	3.3	4.0	5.2	20%
	6	848	902	995	20%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$wt_{avg} = \left[\sum_{j=1}^{n_p}\sum_{i=1}^{n_g}wt_j(\widehat{J}_i^2)\right]/n_p$$

Performance Improvement Over Previous Implementation

nucleus	N _{max}	alg	n _p	cyclic	greedy	ideal
⁶ Li	10	PASI	120	12.9	13.0	12.0
⁶ Li	12	PASI	120	131	132	129
¹² C	4	PASI	120	6.1	5.2	4.0
¹² C	6	PASI	120	1015	995	902
¹² C	6	PASI	496	608	295	275
⁶ Li	10	QR	120	24.1	17.8	14.7
⁶ Li	12	QR	120	233	193	176
¹² C	4	QR	120	18.7	17.0	15.5
¹² C	6	QR	496	1220	900	860

Parallel Scalability (Strong scaling)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Comparison of QR and PASI

nucleus	(N_{\max},J)	QR	PASI	n _p
⁶ Li	(10, 0)	17.8	13.0	120
⁶ Li	(10, 1)	17.8	34.9	120
⁶ Li	(12, 0)	193	132	120
⁶ Li	(12, 1)	195	464	120
⁶ Li	(12, 12)	140	95	496
¹² C	(6, 0)	900	295	496
¹² C	(6, 1)	890	> 1800	496
¹² C	(6, 12)	840	105	496

Subspace Projection of the Hamiltonian

Each non-zero H_{ii} block defines a task:

- 1. construct H_{ii}
- 2. bring the data blocks, Z_i and Z_i
- 3. project block by block: Z_i^{T} ($H_{ij}^{T}Z_j$)

recent

Out-of-core vs. In-Core Approaches

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

mm

Out-of-core vs. In-Core Performance

mm

Challenges

- Numerical method for solving large-scale eigenvalue problem is a well studies subject. But large-scale parallel implementation for nuclear CI calculation is not trivial.
- Optimizing the performance of individual pieces of the code (SpMV, orthogonalization etc.) is important. Optimizing the global performance of the code is even more important and difficult. A decision (data structure, data distribution, load balance) made for one part of the code often affects the performance of another part of the code.
- Things will become more complicated for many core machines with hybrid OpenMP/MPI implementation. How do we address this additional level of complexity?
- The current implementation is contrained by memory usage. Alternatives:
 - Out-of-core
 - Recompute matrix elements on the fly (when a MATVEC is performed)

References

- 1. P. Sternberg, C. Yang, E. G. Ng, P. Maris, J. P. Vary, M. Sosonkina, and H. V. Le. Accelerating Configuration Interaction Calculations for Nuclear Structure. In *Proceedings of the 2008 ACM/IEEE Conference on Supercomputing* (Austin, Texas, November 15 - 21, 2008).
- J. P. Vary, P. Maris, E. Ng, C. Yang and M. Sosonkina. Ab initio nuclear structure – the large sparse matrix eigenvalue problem. *Journal of Physics: Conference Series*, 180:012083, 2009.
- 3. P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng and C. Yang. Scaling of ab-initio nuclear physics calculations on multicore computer architectures. *International Conference on Computer Science, ICCS 2010, Procedia Computer Science,* 1, 97 (2010).
- 4. H. M. Aktulga, C. Yang, E. Ng, P. Maris and J. Vary. Large-scale parallel null space calculation for nuclear configuration interation *To* appear in *HPCS2011* proceedings, 2011
- H. M. Aktulga, C. Yang, E. Ng, P. Maris and J. Vary. On Reducing I/O Overheads in Large-scale Invariant Subspace Projection Submitted to HPSS2011, 2011