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Nuclear Structure Calculation

» Strong interactions among protons and neutrons, origin of the
12C formation in stars, foundation for nuclear reaction theory

» Quantum many-body problem
HW(I‘l, ro, ..., I‘k) = )\W(I’l, ro, ..., I‘k).

» H — nuclear Hamiltonian describes kinetic energy and 2-body
(NN), 3-body (NNN) potential;

» W — nuclear wavefunction, |W(ry,ra, ..., rx)|? probability density
of finding nucleons 1,2, ..., k at ry, ra, ..., Fg;

» )\ — quantized energy level. Often interested in the ground
state (A1) and a few (10-100) low excited states;

» Solving the many-body problem directly is not feasible except
for small k;



Nuclear Configuration Interaction

>

Basis expansion ¥ = Zaad)a(rl, ra,...,rx), where

a
a= (311 az, ..., ak)v aj € [1> imax]-
Many-body (MB) state (Slater determinant)
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Single-particle state: ¢, is an eigenfunction of a harmonic
oscillator, associated with a set of quantum numbers |nfjm;).,,;

d)a(l’l,l’z,

The size of the expansion (/) depends on imax, k and several
constraints

> Za;gaznai +£a,- < No + Npax;

> Za,-ea mja,- = MO’

> parity constraint;



Finite-dimensional Eigenvalue Problem

» Hx = Ax, where
Ha,b = /(q’ZHCDb)drldrz-.-drk, x = (a1, 00, ,an)T,
Q

and a = (a1, a2, ...,ak), b= (b1, ba, ..., by).
» Dimension of H can be quite large
» His quite sparse.

» Sparsity follows from the orthornormality of ¢'s, and the 2 or
3-body interacting potential in H:

If a and b are many-body states that differ by more than 2
(or 3) single-particle states, the matrix element indexed by
a and b is exactly zero.

» No "nice” pattern (e.g., banded structure)



Sparsity Structure for °Li




Matrix size and sparsity
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Dimensions and sparsity of matrices

® Estimates of aggregate memory needed for storage of sparse
symmetric Hamiltonian matrix in compressed column format
(does not include memory for vectors)

nucleus | Npmax | dimension | 2-body 3-body | 4-body
6L 12 49.107 | 0.67TB 33TB | 590 TB
2c 8 6.0 108 4TB | 180TB 4PB
12¢ 10 7.8 109 80TB 5PB | 140 PB
150 8 9.9.108 5TB | 300TB 5PB
160 10 2.4.10' | 230 TB 12PB | 350 PB
BHe 12 4.3-108 7TB | 300TB 7PB
1 10 9.3-108 | 11TB | 390TB | 10PB
liBe 8 2.8-10° | 24TB | 1100TB | 28PB
20¢ 8 2.101 2PB | 150PB 6EB
20 8 1-10"t 1PB 56 PB 2EB

(presented at Extreme Scale Computing Workshop — nuclear physics Washington DC Jan 2009)

® Need high-performance computing on large-memory platforms

ICCS2010 - P. Maris — Sealing of ab-initio nuclear physics calculations on mullicore computer architectures — p 013



Types of Calculations

» In many cases, we are interested in the ground state of H and
a few low excited states,i.e., we compute 10-20 smallest
eigenvalues of H

» In some applications, we are interested in a large number of
low energy states with a prescribed total angular momentum J
(Total-J calculation)

» Compute a large number of eigenvalues, then pick out the
ones with the desired J N
» Use the fact that [H J2] = HJ? — J2H = 0 to simultaneously

diagonalize H and J2

1.

w

Compute an invariant subspace Z of J? associated with a
prescrlbed J (null space calculation)

Project Hinto Z, ie. G=ZTHZ

Compute desired eigenvalues and eigenvectors of G

Back transformation



Basic Steps of MFDn

» Generate (enumerate) and distribute MB states (to achieve

load balance) (MB states viewed as column and row indices of
H)

» Matrix Hamiltonian construction
» Figure out where the nonzeros are before evaluating and
storing them
» Efficient data structure
» Numerical evaluation
» (Compute desired invariant subspace of J2)
» Solve large sparse matrix eigenvalue problem by Lanczos
» Efficient and scalable matrix-vector (MATVEC) multiplication
» Efficient and scalable orthogonalization
» Evaluate observables

Hamiltonian construction | ~ 1500 wall clock seconds
Lanczos ~ 2500 wall clock seconds

160, Npax = 8, N ~ 10%, 12,090 cores on Franklin




Processor Grid and Communication Groups
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MB State Generation and Distribution

» Enumerate by lexigraphical order: let a = (a3, ap, ..., ax) and
b= (bl, by, ..., bk), where a;, b; € [1, imax]

a< b iff 3j suchthat a; < b; and a; = b; Vi <.
» Validity check
» MB state distribution objectives:

» Partition valid MB states into groups 51, S»,..., S, of
approximately equal sizes;

The number of nonzeros H,  in each (S;, S;) block is

approximately the same;

» Efficient and scalable;




Parallel MB State Generation & Cyclic Distribution

» The ith processor increment the smallest possible MB state
i — 1 times;

» Each processor performs ng-fold increment simultaneously;
» Discard MB state if it is not valid;




Hamiltonian Matrix Construction

Rows/columns indexed by many-body states

many-body state

a=(a,a,...,ak) : aj < aj+1

a;'s are single-particle states

Physics excludes most of the (im,jx> many-body states

If a and b are many-body states that differ by more
than 2 (or 3) single-particle states, the matrix
element indexed by a and b is exactly zero.

If not, we call a and b an interacting pair.



Example

» If a 2-body potential is used in H,

a = (2,3,4,7,9,12)
— (1,2,4,7,8,12)
c = (1,4,5,7,8,9)

are many-body states, then (a, ¢) is not an interacting pair,
but (a, b) and (b, c) are interacting pairs.

» Implementation: bitwise operation

1.2 3 4 5 6 7 8 9 10 11 12

a: I |1|1I1I l I1| I1| | I1I
b ] A T AT T T T4]
o DT T T« T 1]
xor@b: [1] [t [T T M T 1]

xoR@ey: [1[1[1] T4 [ 1] [ [ [1]




The Need for Blocking

» Exhaustive pairwise comparison is prohibitively expensive

» Would like to identify large zero blocks without performing
pairwise comparisons

» Group MB states into clusters, create a cluster identifier for
each cluster, compare cluster id’s

» Partition the single-particle states into bins, count how many
single-particle states are in each bin.

E.g., using the partition {[1—4],[5—8],[9—12]} , we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3.1,2)
(1,2,4,7,9,12) (3.1,2)
(1,4,5,7,8,9) (2.3.1)
(1,2,9,10,11,12) (2,0,4)



The Need for Blocking (Continued)

E.g., using the partition {[1-4],[5-8],[9-12]} , we have

many-body states cluster identifiers
(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,9,12) (3,1,2)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)

Claim: Let S and T be cluster identifiers with HS - THl > 4.
Then Hs 1y =0.



Tiny Example with Blocking
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Performance Gain from Multi-level Blocking

» Nucleus: 0

» Configuration space: Nmax = 8, N = 10°

» Number of processors: 12,090

Number of time element block
levels (seconds) | comparisons | comparisons
2 29,996 | 1.9 x 10'2 1.7 x 108
3 4630 | 3.0x 10 | 5.6 x 108
4 1,483 | 7.6 x 10%° 2.1 x 10°
5 1,251 | 3.0 x 10%° 5.5 x 10°




Parallel Eigenvalue Computation
» Solved by Lanczos iteration (with implicit restart)
HV =VT +f], VIV=I,

Perform y « Hx many times
Maintain VTV =1/
Memory bound: O Hamiltonian uses 6 terabytes

v vy

v

Store lower half of matrix, distributed across:
d diagonal processors

d(d + 1)/2 total processors

\ 11610
6 D 217 n
10 |7 r— 3]s |12
13 |11]8 4191183
15 |1af12]9 |5 s |15] 14




Matrix-Vector Multiply

Steps for MATVEC: input (x) and output (y) vectors are stored on
diagonal processors

—\l | ﬂm.l l1\-
1 | -] '
N == by
BCast(x) y + Ax Reduce(y)
S B
). | | I~ 1
BN I~ TN

BCast(x) v+ Alx Reduce(y)



Parallel Orthogonalization f — V(V y)
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Overall Performance of MFDn
6000

13 . . _
C NN-+NNN interaction - Nmax' 6

1 I MFDn-v10_b05 (Pre - SciDAC)
40004 [l MFDn-v12_b01

n (4950 pe's)

2000

Wallclock Time (S) on Frankl

Evaluate H
(o]
TOTAL

3

500 Lanczos
Suite Observs



Scalability of MFDn
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Total CPU time of MFDn on Cray XT4 with hybrid MPI/OpenMP

1200

total CPU hours
g
=3

.
S
=)

® For application scientist, time to completion,

or CPU resource units used, is more important than speedup

+—= Total time
#—% 500 Lanczos its.
»—x Construct matrix
+—+ Evaluation of obs.[]

Setup and 10

1
2000
number of cores

I
3000

LI, Nipax = 12,
2-body interactions
on Franklin (NERSC)

solid: hybrid MPI/OMP
1 MPI PE per node
with 4 threads

dotted: pure MPI
4 MPI PE’s per node

dimension 49 - 105
#nonzerom.e. 74 - 10
memory for matrix: 600 GB

# Pure MPI more efficient than hybrid MP1/OpenMP for this case

ICCS2010 - P Maris - Scaling of ab-hitis nuclear physics caleulations en mulisare computer architeetures - p.23(3:



Hybrid MPI/OpenMP more efficient as problem size grows

N, Noax = 8, 2-body interactions, on Franklin (XT4) and Jaguar (XT5)
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total CPU hours

5000
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* ! #—k 400 Lanczos iterations
»— Construct matrix
/ +—+ Evaluation of observables
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solid: hybrid OMP/MPI
1 MPI PE per node
with 4 threads (XT4)

dashed: hybrid OMP/MPI
1 MPI PE per NUMA node
with 6 threads (XT5)

dot-dashed: hybrid OMP/MPI
1 MPI PE per compute node
with 12 threads (XT5)

dimension 1.1 - 10°
#nonzerom.e. 1 -10'2
memory for matrix; 8 TB

For comparison: symbols at 8,128 (XT4) and at 12,090 (XT5) cores
pure MPI with 1 MPI PE per core

ICCS2010 - P Maris - Scaling of ab-hitis nuclear physics caleulations en mullicare computer architeetures — p.24/3:



Total-J Calculation

» Want to compute low energy state of H with a prescribed
total angular momentum

» When there is no external field, [I/-\I,jz] = 0. Thus H and J2
are simultaneously diagonalizable

» Find Z such that R
Jz=2zQ,
where
Z7Z = I, eig(Q) =\

with a known A (J-basis or null space calculation)
» Form S = ZTHZ
» Solve SG = GA iteratively
» Form Y = ZG



J-basis (null space) Calculation

>

Enumerate many-body states (MBS) in groups according to
reduced set of quantum numbers associated with single
particles states

MBS within each group is invariant under 2.

I3
J? =

J2

ng

Problem reduces to computing
/j?Z,' = 7Z;Q;, eig(Q,-) = A

312 is very sparse

The dimension of 7,2 is known, but can vary significantly from
one i to another (1 to tens of thousands)

rank(Z;) depends on A (10% ~ 30% of the dimension of J?)



Sparsity of J?
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The dimensions of J2's
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The spectrum of a J?
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Methods for Computing Z;

» Rank-revealing QR
(J2=A)P = QR

can use randomized algorithms (does not require pivoting)

> Shift-invert Lanczos. Apply Lanczos (or subspace iteration) to
(J2 —al)7L, where o is close to .

» Polynomial accelerated subspace iteration (PASI)



PASI

~

Apply subspace iteration to p(H)
1. Pick an initial guess to Z; (V such that VTV = I);
2. W« p(H)V;
3. [V,R] = qr(W);
4. go back to Step 2 if convergence not reached
The choices of polynomials:
> Chebyshev if A is the smallest eigenvalue of 7,2

» Bandpass polynomial otherwise

p(®) R



Parallelization

Two inherently conflicting objectives:
» Limit the granularity of the parallelism.

» Limit the amount of communication overhead.

loads processors loads processors

00 []

O B

YYX XY
YYX XY
BIBIEEEIE



Heuristic
Classify 712 into small, medium, large blocks based on dimension,
load estimation, ratio of flops over communication volume
» Small blocks are assigned to single processors. An sequential
algorithm is used to find the desired invariant subspace. (No
communication)
> Medium size blocks are mapped to a row group. The invariant
subspace (Moderate amount of communication) is computed
in parallel by processors within the same group
> Large size blocks ( “outliers”) are tackled by all processors
simultaneously. (Lots of communication)

( 1 4 ) row group




Greedy Load Balance

Once 7,25 have been classified, the total amount of load (including
communication cost) is fixed.

1. Compute the idea average load w per row group for
medium-sized blocks;

2. Distribute medium-sized blocks (sorted in descending order in
terms of their loads) in a cyclic fashion over n, groups. If
assigning a particular 7,2 to a processor group p, results in
load overflow, skip p, and try to assign 712 to the next
available group without exceeding the w limit. If 7,2 cannot be
assigned to any row group, set it aside for later assignment;

3. If there exits some medium-size 312 blocks that cannot be
assigned to any of the row groups

> raise w slightly and repeat step 2;
> or, assign J? with the largest load to the processor group with
the least amount of filled load ...

4. Distribute the small blocks to reduce load variation.
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Load Balancing Null Space Computations
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Performance on Real Problems

nucleus | (Nmax,J) ng k n
(10,0) | 7.8 x10* 3.3 x 10° 9.7 x 10°
(10,1) || 7.8 x10* 9.4 x10° 9.7 x 10°
OLi (12,0) | 25x10° 1.4x10° 4.9 x 107
, 5 x .9 x 4.9 x
(12,1) | 25x10° 3.9x 10° 4.9 x 107
12,12) | 25x10° 2.8x10° 4.9x10
( ) 5 5 7
12¢ (40) | 58x10° 55x10* 1.1x10°
(6,0) 5.6 x 10+ 1.3 x10° 3.3 x 107
(6,2) 5.6 x 10* 3.5 x10% 3.3 x 107
(6,12) | 5.6 x 10* 3.1 x10* 3.3 x 107




Load Balance Performance

Table: The minimum, average and maximum wall clock time consumed
by PASI when the greedy load balancing algorithm is used.

nucleus | Nmax | Wtmin  Wtayg Wtmax | %ocomm
8 095 1.10 1.35 17%
oL 10 95 120 13.0 21%
12 126 129 132 39%

3.3 4.0 5.2 20%
848 902 995 20%

12C

n, ng
Wtavg = WtJ )| /np
j=1i=1



Performance Improvement Over Previous Implementation

] nucleus \ Ninax \ alg \ np H cyclic greedy ideal ‘
OLj 10 | PASI | 120 ] 129 13.0 12.0
6 12 | PASI | 120 || 131 132 129
12C 4 | PASI| 120 | 6.1 5.2 4.0
12¢c 6 | PASI| 120 || 1015 995 902
12¢C 6 | PASI | 496 | 608 205 275
6L 10 | QR [ 120 241 178 147
OLi 12 QR | 120 || 233 193 176
12c 4 QR [ 120 || 187 17.0 155
12¢c 6 QR | 496 || 1220 900 860




Parallel Scalability (Strong scaling)

Time (s)
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Comparison of QR and PASI

nucleus || (Nmax,J) | QR PASI Np

6Lj 17.8  13.0 | 120

6Lj 193 132 120

(10, 0)
OLi (10, 1) | 17.8 349 | 120
(12, 0)
6Li ( ) | 195 464 | 120

OLi (12, 12) | 140 95 | 496

12¢ (6,0) | 900 295 | 496

12¢ (6, 1) 890 > 1800 | 496

12¢ (6,12) | 840 105 | 496
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Subspace Projection of the Hamiltonian

feecer |...

ZT

L : diagonal blocks
: diff-1 non-zero blocks |
: diff-2 non-zero blocks

Each non-zero H; block defines a task:
1. construct H;
2. bring the data blocks, Z;and Z;

3. project block by block: ZT (H; Z))

H: lower half of Z
the Hamiltonian

(2

—_—
-HI u
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Out-of-core vs. In-Core Approaches

1/0 System
N\ oocore incore
data blocks data blocks
organized into distributed over
files = one for row&col groups
; / each diag proc
P | P each proc reads One-sided MPI

po | 0 | P, data blocks from communication
2 files (1 if diag) with bundling

[Pn Pu | P | Py
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Out-of-core vs. In-Core Performanéé&™
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Challenges

» Numerical method for solving large-scale eigenvalue problem
is a well studies subject. But large-scale parallel
implementation for nuclear Cl calculation is not trivial.

» Optimizing the performance of individual pieces of the code
(SpMV, orthogonalization etc.) is important. Optimizing the
global performance of the code is even more important and
difficult. A decision (data structure, data distribution, load
balance) made for one part of the code often affects the
performance of another part of the code.

» Things will become more complicated for many core machines
with hybrid OpenMP/MPI implementation. How do we
address this additional level of complexity?

» The current implementation is contrained by memory usage.
Alternatives:

» Out-of-core
» Recompute matrix elements on the fly (when a MATVEC is
performed)
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