Solving Large-scale Eigenvalue Problems in Nuclear Structure Calculation

Chao Yang, LBNL

in collaboration with

LBNL

Hasan Metin Aktulga Esmond Ng IBM ILOG Philip Sternberg

Iowa State University James Vary Pieter Maris

Feb 16, 2011

 2990

Outline

- \triangleright Overview of nuclear structure calculation using configuration interaction (CI)
	- \blacktriangleright Background
	- \triangleright Numerical methods for solving large-scale eigenvalue problems

KORK ERKER ADAM ADA

- \blacktriangleright Parallel implementation
	- \triangleright Constructing the matrix
	- \blacktriangleright Data distribution
	- \blacktriangleright Load balancing
	- \blacktriangleright Parallel sparse matrix vector multiplication
- \blacktriangleright Total-J calculation
	- \blacktriangleright Large-scale null space calculations
- \blacktriangleright Challenges

Nuclear Structure Calculation

...

 \triangleright Strong interactions among protons and neutrons, origin of the $12C$ formation in stars, foundation for nuclear reaction theory

 \blacktriangleright Quantum many-body problem

$$
\mathcal{H}\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_k)=\lambda \Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_k).
$$

- \triangleright H nuclear Hamiltonian describes kinetic energy and 2-body (NN), 3-body (NNN) potential;
- $\blacktriangleright \blacktriangleright \blacktriangleright$ nuclear wavefunction, $|\Psi({\bf r}_1,{\bf r}_2,...,{\bf r}_k)|^2$ probability density of finding nucleons $1, 2, ..., k$ at $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_k$;
- \blacktriangleright λ quantized energy level. Often interested in the ground state (λ_1) and a few (10-100) low excited states;
- \triangleright Solving the many-body problem directly is not feasible except for small k :

Nuclear Configuration Interaction

 \blacktriangleright Basis expansion $\Psi = \sum \alpha_{\mathsf a} \Phi_{\mathsf a}({\mathsf r}_1,{\mathsf r}_2,...,{\mathsf r}_k)$, where $a \equiv (a_1, a_2, ..., a_k), \ a_i \in [1, i_{\text{max}}].$

 \triangleright Many-body (MB) state (Slater determinant)

$$
\Phi_a(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_k) = \frac{1}{\sqrt{k!}} \begin{vmatrix} \phi_{a_1}(\mathbf{r}_1) & \phi_{a_2}(\mathbf{r}_1) & \dots & \phi_{a_k}(\mathbf{r}_1) \\ \phi_{a_1}(\mathbf{r}_2) & \phi_{a_2}(\mathbf{r}_2) & \dots & \phi_{a_k}(\mathbf{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{a_1}(\mathbf{r}_k) & \phi_{a_2}(\mathbf{r}_k) & \dots & \phi_{a_k}(\mathbf{r}_k) \end{vmatrix},
$$

- \blacktriangleright Single-particle state: ϕ_{a_i} is an eigenfunction of a harmonic oscillator, associated with a set of quantum numbers $\ket{n\ell jm_j}_{a_i}$;
- The size of the expansion (N) depends on i_{max} , k and several constraints

KORKAR KERKER E VOOR

$$
\sum_{a_i \in a} 2n_{a_i} + \ell_{a_i} \leq N_0 + N_{\text{max}};
$$

$$
\blacktriangleright \sum_{a_i\in a} m_{j_{a_i}}=M_0;
$$

parity constraint;

Finite-dimensional Eigenvalue Problem

$$
\blacktriangleright \widehat{H}x = \lambda x, \text{ where}
$$

$$
\widehat{H}_{a,b} = \int_{\Omega} (\Phi_a^* \mathcal{H} \Phi_b) d\mathbf{r}_1 d\mathbf{r}_2 \dots d\mathbf{r}_k, \quad x = (\alpha_1, \alpha_2, \dots, \alpha_N)^T,
$$

and
$$
a = (a_1, a_2, ..., a_k), b = (b_1, b_2, ..., b_k).
$$

- Dimension of \hat{H} can be quite large
- \blacktriangleright \hat{H} is quite sparse.
	- **In** Sparsity follows from the orthornormality of ϕ 's, and the 2 or 3-body interacting potential in H :

If a and b are many-body states that differ by more than 2 (or 3) single-particle states, the matrix element indexed by a and *b* is exactly zero.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright No "nice" pattern (e.g., banded structure)

Sparsity Structure for ⁶Li

 290 Þ **SEC**

Matrix size and sparsity

Rule of thumb: number of nonzeros $\sim O(N^{1.5})$

 $2Q$

Ε

イロト イ部 トイ君 トイ君 ト

Dimensions and sparsity of matrices

Estimates of aggregate memory needed for storage of sparse symmetric Hamiltonian matrix in compressed column format

(does not include memory for vectors)

(presented at Extreme Scale Computing Workshop - nuclear physics Washington DC Jan 2009)

■ Need high-performance computing on large-memory platforms

ICCS2010 - P. Maris - Scaling of ab-initio nuclear physics calculations on multicore computer architectures - p.9/3

KORK STRAIN A BAR SHOP

Types of Calculations

- In many cases, we are interested in the ground state of \hat{H} and a few low excited states,i.e., we compute 10-20 smallest eigenvalues of \hat{H}
- \triangleright In some applications, we are interested in a large number of low energy states with a prescribed total angular momentum J (Total-J calculation)
	- \triangleright Compute a large number of eigenvalues, then pick out the ones with the desired J
	- ► Use the fact that $[\hat{H}, \hat{J}^2] = \hat{H}\hat{J}^2 \hat{J}^2\hat{H} = 0$ to simultaneously diagonalize \hat{H} and \hat{J}^2
		- 1. Compute an invariant subspace Z of \widehat{J}^2 associated with a prescribed J (null space calculation)

KORKAR KERKER E VOOR

- 2. Project \widehat{H} into Z, i.e. $G = Z^T \widehat{H} Z$
- 3. Compute desired eigenvalues and eigenvectors of G
- 4. Back transformation

Basic Steps of MFDn

- \triangleright Generate (enumerate) and distribute MB states (to achieve load balance) (MB states viewed as column and row indices of H
- \blacktriangleright Matrix Hamiltonian construction
	- \blacktriangleright Figure out where the nonzeros are before evaluating and storing them
	- \blacktriangleright Efficient data structure
	- \triangleright Numerical evaluation
- \blacktriangleright (Compute desired invariant subspace of \widehat{J}^2)
- \triangleright Solve large sparse matrix eigenvalue problem by Lanczos
	- \triangleright Efficient and scalable matrix-vector (MATVEC) multiplication
	- \blacktriangleright Efficient and scalable orthogonalization
- \blacktriangleright Evaluate observables

 16 O, $\mathcal{N}_{\mathsf{max}}=8$, $\mathcal{N}\sim10^9$, 12,090 cores on Franklin

Processor Grid and Communication Groups

イロト イ母 トイミト イミト ニヨー りんぴ

MB State Generation and Distribution

Enumerate by lexigraphical order: let $a = (a_1, a_2, ..., a_k)$ and $b = (b_1, b_2, ..., b_k)$, where $a_i, b_i \in [1, i_{max}]$

 $a < b$ iff $\exists j$ such that $a_i < b_i$ and $a_i = b_i$ $\forall i < j$.

- \blacktriangleright Validity check
- \triangleright MB state distribution objectives:
	- Partition **valid** MB states into groups S_1 , S_2 ,..., S_{n_π} of approximately equal sizes;
	- The number of nonzeros $H_{a,b}$ in each (S_i, S_j) block is approximately the same;
	- \blacktriangleright Efficient and scalable;

Parallel MB State Generation & Cyclic Distribution

- \triangleright The *i*th processor increment the smallest possible MB state $i - 1$ times;
- Each processor performs n_{e} -fold increment simultaneously;
- \triangleright Discard MB state if it is not valid;

KORK ERKER ADAM ADA

Hamiltonian Matrix Construction

Rows/columns indexed by many-body states

$$
a = \overbrace{(a_1, a_2, \ldots, a_k)}^{\text{many-body state}} \qquad : \qquad a_i < a_{i+1}
$$

 a_i 's are single-particle states

Physics excludes most of the
$$
\binom{i_{\text{max}}}{k}
$$
 many-body states

If a and b are many-body states that differ by more than 2 (or 3) single-particle states, the matrix element indexed by a and b is exactly zero.

KORKAR KERKER E VOOR

If not, we call a and b an interacting pair.

Example

If a 2-body potential is used in H .

$$
a = (2, 3, 4, 7, 9, 12)
$$

\n
$$
b = (1, 2, 4, 7, 8, 12)
$$

\n
$$
c = (1, 4, 5, 7, 8, 9)
$$

are many-body states, then (a, c) is not an interacting pair, but (a, b) and (b, c) are interacting pairs.

 \blacktriangleright Implementation: bitwise operation

The Need for Blocking

- \blacktriangleright Exhaustive pairwise comparison is prohibitively expensive
- \triangleright Would like to identify large zero blocks without performing pairwise comparisons
- \triangleright Group MB states into clusters, create a cluster identifier for each cluster, compare cluster id's
- \triangleright Partition the single-particle states into bins, count how many single-particle states are in each bin.

KORKAR KERKER E VOOR

E.g., using the partition $\{[1-4],[5-8],[9-12]\}$, we have

The Need for Blocking (Continued)

E.g., using the partition
$$
\{[1-4],[5-8],[9-12]\}
$$
, we have

Claim: Let S and T be cluster identifiers with $||S-T||_1 > 4$. Then $\mathcal{H}_{\{S,T\}} = 0$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Tiny Example with Blocking

 $\{[1-2],[3-4],[5-6],[7-8],[9-10]\}$

Performance Gain from Multi-level Blocking

- \blacktriangleright Nucleus: 16 O
- **Configuration space:** $N_{\text{max}} = 8$, $N = 10^9$
- \blacktriangleright Number of processors: 12,090

Parallel Eigenvalue Computation

 \triangleright Solved by Lanczos iteration (with implicit restart)

$$
\widehat{H}V = VT + te_m^T, \quad V^T V = I_m
$$

- ► Perform $y \leftarrow \widehat{H}x$ many times
- \blacktriangleright Maintain $V^T V = I$
- \blacktriangleright Memory bound: 16 O Hamiltonian uses 6 terabytes
- \triangleright Store lower half of matrix, distributed across:

d diagonal processors

 $d(d+1)/2$ total processors

EXAEX E DAG

Matrix-Vector Multiply

Steps for MATVEC: input (x) and output (y) vectors are stored on diagonal processors

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \Rightarrow

 2990

Parallel Orthogonalization $f \to V(V^Ty)$

 $\mathbf f$

Overall Performance of MFDn

Scalability of MFDn

イロト イ御 トイミト イミト ニミー りんぴ

Total CPU time of MFDn on Cray XT4 with hybrid MPI/OpenMP

• For application scientist, time to completion, or CPU resource units used, is more important than speedup

■ Pure MPI more efficient than hybrid MPI/OpenMP for this case

ICCS2010 - P. Maris - Scaling of ab-initio nuclear physics calculations on multicore computer architectures - p.23/3.

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

 Ω

Hybrid MPI/OpenMP more efficient as problem size grows

¹⁴N, $N_{\text{max}} = 8$, 2-body interactions, on Franklin (XT4) and Jaguar (XT5)

For comparison: symbols at 8,128 (XT4) and at 12,090 (XT5) cores pure MPI with 1 MPI PE per core

ICCS2010 - P. Maris - Scaling of ab-initio nuclear physics calculations on multicore computer architectures - p.24/3

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \equiv

 QQ

Total-J Calculation

- \triangleright Want to compute low energy state of \hat{H} with a prescribed total angular momentum
- ▶ When there is no external field, $[\hat{H}, \hat{J}^2] = 0$. Thus \hat{H} and \hat{J}^2 are simultaneously diagonalizable
- \blacktriangleright Find Z such that

 $\widehat{J}^2 Z = Z \Omega,$

where

$$
Z^T Z = I_m, \text{ eig}(\Omega) = \lambda
$$

with a known λ (J-basis or null space calculation)

- Form $S = Z^T \hat{H} Z$
- \triangleright Solve $SG = G\Lambda$ iteratively
- Form $Y = 7G$

J-basis (null space) Calculation

 \triangleright Enumerate many-body states (MBS) in groups according to reduced set of quantum numbers associated with single particles states

 \blacktriangleright MBS within each group is invariant under \widehat{J}^2 .

$$
\widehat{J}^2 = \left(\begin{array}{cccc} \widehat{J}_1^2 & & & \\ & \widehat{J}_2^2 & & \\ & & \ddots & \\ & & & \widehat{J}_{n_g}^2 \end{array}\right)
$$

 \blacktriangleright Problem reduces to computing

$$
\widehat{J}_i^2 Z_i = Z_i \Omega_i, \quad \text{eig}(\Omega_i) = \lambda
$$

 \blacktriangleright \widehat{J}_i^2 is very sparse

- The dimension of \widehat{J}_i^2 is known, but can vary significantly from one i to another (1 to tens of thousands)
- ► rank (Z_i) (Z_i) [d](#page-26-0)[e](#page-28-0)pends [on](#page-46-0) λ λ λ $(10\% \sim 30\%$ $(10\% \sim 30\%$ $(10\% \sim 30\%$ of [th](#page-26-0)[e](#page-28-0) dime[nsi](#page-0-0)on [o](#page-0-0)[f](#page-46-0) $\widehat{J}_i^2)$

Sparsity of \widehat{J}_i^2

 \circ

The dimensions of \widehat{J}_i^2 's

 \cdot \circ

Methods for Computing Z_i

 \blacktriangleright Rank-revealing QR

$$
(\widehat{J}_i^2 - \lambda I)P = QR
$$

can use randomized algorithms (does not require pivoting) ▶ Shift-invert Lanczos. Apply Lanczos (or subspace iteration) to $(\widehat{J}_i^2 - \sigma I)^{-1}$, where σ is close to λ .

KORK STRAIN A BAR SHOP

 \triangleright Polynomial accelerated subspace iteration (PASI)

PASI

Apply subspace iteration to $p(H)$

- 1. Pick an initial guess to Z_i (V such that $V^T V = I$);
- 2. $W \leftarrow p(\widehat{H})V$;
- 3. $[V, R] = qr(W);$
- 4. go back to Step 2 if convergence not reached

The choices of polynomials:

- \blacktriangleright Chebyshev if λ is the smallest eigenvalue of \hat{J}_i^2 .
- \blacktriangleright Bandpass polynomial otherwise

 2990

Parallelization

Two inherently conflicting objectives:

- \blacktriangleright Limit the granularity of the parallelism.
- \blacktriangleright Limit the amount of communication overhead.

KORK ERKER ADAM ADA

Heuristic

Classify J_i^2 into small, medium, large blocks based on dimension, load estimation, ratio of flops over communication volume

- \triangleright Small blocks are assigned to single processors. An sequential algorithm is used to find the desired invariant subspace. (No communication)
- \triangleright Medium size blocks are mapped to a row group. The invariant subspace (Moderate amount of communication) is computed in parallel by processors within the same group
- \blacktriangleright Large size blocks ("outliers") are tackled by all processors simultaneously. (Lots of communication)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Greedy Load Balance

Once \hat{J}_i^2 's have been classified, the total amount of load (including communication cost) is fixed.

- 1. Compute the idea average load w per row group for medium-sized blocks;
- 2. Distribute medium-sized blocks (sorted in descending order in terms of their loads) in a cyclic fashion over n_r groups. If assigning a particular \widehat{J}_i^2 to a processor group p_r results in load overflow, skip p_r and try to assign \hat{J}_i^2 to the next available group without exceeding the w limit. If \hat{J}_i^2 cannot be assigned to any row group, set it aside for later assignment;
- 3. If there exits some medium-size \hat{J}_i^2 blocks that cannot be assigned to any of the row groups
	- raise w slightly and repeat step 2;
	- or, assign \widehat{J}_i^2 with the largest load to the processor group with the least amount of filled load ...
- 4. Distribute the small blocks to reduce load variation.

Load Balancing Null Space Computations

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

recen

Performance on Real Problems

K ロ K イロ K イミ K K モ K ミニ や R (^

Load Balance Performance

Table: The minimum, average and maximum wall clock time consumed by PASI when the greedy load balancing algorithm is used.

$$
wt_{avg} = \left[\sum_{j=1}^{n_p} \sum_{i=1}^{n_g} wt_j(\widehat{J}_i^2)\right] / n_p
$$

Performance Improvement Over Previous Implementation

イロト イ御 トイミト イミト ニミー りんぴ

Parallel Scalability (Strong scaling)

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Comparison of QR and PASI

イロト イ御 トイミト イミト ニミー りんぴ

Subspace Projection of the Hamiltonian

Each non-zero H_{ii} block defines a task:

- 1. construct H_{ii}
- 2. bring the data blocks, Z_i and Z_i
- 3. project block by block: $Z_i^T(H_i, Z_i)$

mm

KORK ERKER ADE YOUR

Out-of-core vs. In-Core Approaches

KOD KARD KED KED E YORA

mun

Out-of-core vs. In-Core Performance

KORK STRAIN A BAR SHOP

mm

Challenges

- \triangleright Numerical method for solving large-scale eigenvalue problem is a well studies subject. But large-scale parallel implementation for nuclear CI calculation is not trivial.
- \triangleright Optimizing the performance of individual pieces of the code (SpMV, orthogonalization etc.) is important. Optimizing the global performance of the code is even more important and difficult. A decision (data structure, data distribution, load balance) made for one part of the code often affects the performance of another part of the code.
- \triangleright Things will become more complicated for many core machines with hybrid OpenMP/MPI implementation. How do we address this additional level of complexity?
- \triangleright The current implementation is contrained by memory usage. Alternatives:
	- \triangleright Out-of-core
	- \triangleright Recompute matrix elements on the fly (when a MATVEC is performed)4 D > 4 P + 4 B + 4 B + B + 9 Q O

References

- 1. P. Sternberg, C. Yang, E. G. Ng, P. Maris, J. P. Vary, M. Sosonkina, and H. V. Le. Accelerating Configuration Interaction Calculations for Nuclear Structure. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (Austin, Texas, November 15 - 21, 2008).
- 2. J. P. Vary, P. Maris, E. Ng, C. Yang and M. Sosonkina. Ab initio nuclear structure – the large sparse matrix eigenvalue problem. Journal of Physics: Conference Series, 180:012083, 2009.
- 3. P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng and C. Yang. Scaling of ab-initio nuclear physics calculations on multicore computer architectures. International Conference on Computer Science, ICCS 2010, Procedia Computer Science, 1, 97 (2010).
- 4. H. M. Aktulga, C. Yang, E. Ng, P. Maris and J. Vary. Large-scale parallel null space calculation for nuclear configuration interation To appear in HPCS2011 proceedings, 2011
- 5. H. M. Aktulga, C. Yang, E. Ng, P. Maris and J. Vary. On Reducing I/O Overheads in Large-scale Invariant Subspace Projection Submitted to HPSS2011, 20114 D > 4 P + 4 B + 4 B + B + 9 Q O