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Nuclear Structure Calculation

I Strong interactions among protons and neutrons, origin of the
12C formation in stars, foundation for nuclear reaction theory
...

I Quantum many-body problem

HΨ(r1, r2, ..., rk) = λΨ(r1, r2, ..., rk).

I H – nuclear Hamiltonian describes kinetic energy and 2-body
(NN), 3-body (NNN) potential;

I Ψ – nuclear wavefunction, |Ψ(r1, r2, ..., rk)|2 probability density
of finding nucleons 1, 2, ..., k at r1, r2, ..., rk ;

I λ – quantized energy level. Often interested in the ground
state (λ1) and a few (10-100) low excited states;

I Solving the many-body problem directly is not feasible except
for small k;



Nuclear Configuration Interaction

I Basis expansion Ψ =
∑
a

αaΦa(r1, r2, ..., rk), where

a ≡ (a1, a2, ..., ak), ai ∈ [1, imax].

I Many-body (MB) state (Slater determinant)

Φa(r1, r2, ..., rk) =
1√
k!

∣∣∣∣∣∣∣∣∣
φa1(r1) φa2(r1) . . . φak (r1)
φa1(r2) φa2(r2) . . . φak (r2)

...
...

...
φa1(rk) φa2(rk) . . . φak (rk)

∣∣∣∣∣∣∣∣∣ ,
I Single-particle state: φai is an eigenfunction of a harmonic

oscillator, associated with a set of quantum numbers |n`jmj〉ai ;
I The size of the expansion (N) depends on imax, k and several

constraints
I
∑

ai∈a 2nai + `ai ≤ N0 + Nmax ;
I
∑

ai∈a mj ai
= M0;

I parity constraint;



Finite-dimensional Eigenvalue Problem

I Ĥx = λx , where

Ĥa,b =

∫
Ω

(Φ∗aHΦb)dr1dr2 . . . drk , x = (α1, α2, · · · , αN)T ,

and a = (a1, a2, ..., ak), b = (b1, b2, ..., bk).

I Dimension of Ĥ can be quite large

I Ĥ is quite sparse.
I Sparsity follows from the orthornormality of φ’s, and the 2 or

3-body interacting potential in H:

If a and b are many-body states that differ by more than 2
(or 3) single-particle states, the matrix element indexed by

a and b is exactly zero.

I No “nice” pattern (e.g., banded structure)



Sparsity Structure for 6Li



Matrix size and sparsity

Rule of thumb: number of nonzeros ∼ O(N1.5)





Types of Calculations

I In many cases, we are interested in the ground state of Ĥ and
a few low excited states,i.e., we compute 10-20 smallest
eigenvalues of Ĥ

I In some applications, we are interested in a large number of
low energy states with a prescribed total angular momentum J
(Total-J calculation)

I Compute a large number of eigenvalues, then pick out the
ones with the desired J

I Use the fact that [Ĥ, Ĵ2] = ĤĴ2 − Ĵ2Ĥ = 0 to simultaneously

diagonalize Ĥ and Ĵ2

1. Compute an invariant subspace Z of Ĵ2 associated with a
prescribed J (null space calculation)

2. Project Ĥ into Z , i.e. G = ZT ĤZ
3. Compute desired eigenvalues and eigenvectors of G
4. Back transformation



Basic Steps of MFDn

I Generate (enumerate) and distribute MB states (to achieve
load balance) (MB states viewed as column and row indices of
Ĥ)

I Matrix Hamiltonian construction
I Figure out where the nonzeros are before evaluating and

storing them
I Efficient data structure
I Numerical evaluation

I (Compute desired invariant subspace of Ĵ2)
I Solve large sparse matrix eigenvalue problem by Lanczos

I Efficient and scalable matrix-vector (MATVEC) multiplication
I Efficient and scalable orthogonalization

I Evaluate observables

Hamiltonian construction ∼ 1500 wall clock seconds

Lanczos ∼ 2500 wall clock seconds
16O, Nmax = 8, N ∼ 109, 12,090 cores on Franklin



Processor Grid and Communication Groups



MB State Generation and Distribution
I Enumerate by lexigraphical order: let a = (a1, a2, ..., ak) and

b = (b1, b2, ..., bk), where ai , bi ∈ [1, imax]

a < b iff ∃j such that aj < bj and ai = bi ∀i < j .

I Validity check
I MB state distribution objectives:

I Partition valid MB states into groups S1, S2,..., Sng of
approximately equal sizes;

I The number of nonzeros Ĥa,b in each (Si ,Sj) block is
approximately the same;

I Efficient and scalable;



Parallel MB State Generation & Cyclic Distribution

I The ith processor increment the smallest possible MB state
i − 1 times;

I Each processor performs ng -fold increment simultaneously;

I Discard MB state if it is not valid;



Hamiltonian Matrix Construction

Rows/columns indexed by many-body states

a =

many-body state︷ ︸︸ ︷
(a1, a2, . . . , ak) : ai < ai+1

ai ’s are single-particle states

Physics excludes most of the
(
imax

k

)
many-body states

If a and b are many-body states that differ by more
than 2 (or 3) single-particle states, the matrix

element indexed by a and b is exactly zero.

If not, we call a and b an interacting pair.



Example

I If a 2-body potential is used in H,

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair,
but (a, b) and (b, c) are interacting pairs.

I Implementation: bitwise operation



The Need for Blocking
I Exhaustive pairwise comparison is prohibitively expensive
I Would like to identify large zero blocks without performing

pairwise comparisons
I Group MB states into clusters, create a cluster identifier for

each cluster, compare cluster id’s
I Partition the single-particle states into bins, count how many

single-particle states are in each bin.

E.g., using the partition
{

[1-4],[5-8],[9-12]
}

, we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,9,12) (3,1,2)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)



The Need for Blocking (Continued)

E.g., using the partition
{

[1-4],[5-8],[9-12]
}

, we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,9,12) (3,1,2)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)

Claim: Let S and T be cluster identifiers with
∥∥S − T

∥∥
1
> 4.

Then H{S ,T} = 0.



Tiny Example with Blocking
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Performance Gain from Multi-level Blocking

I Nucleus: 16O

I Configuration space: Nmax = 8, N = 109

I Number of processors: 12,090

Number of time element block
levels (seconds) comparisons comparisons

2 29,996 1.9× 1012 1.7× 108

3 4,630 3.0× 1011 5.6× 108

4 1,483 7.6× 1010 2.1× 109

5 1,251 3.0× 1010 5.5× 109



Parallel Eigenvalue Computation
I Solved by Lanczos iteration (with implicit restart)

ĤV = VT + feTm , V TV = Im

I Perform y ← Ĥx many times
I Maintain V TV = I
I Memory bound: 16O Hamiltonian uses 6 terabytes

I Store lower half of matrix, distributed across:

d diagonal processors

d(d + 1)/2 total processors



Matrix-Vector Multiply

Steps for MATVEC: input (x) and output (y) vectors are stored on
diagonal processors
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Parallel Orthogonalization f → V (V Ty)



Overall Performance of MFDn
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Scalability of MFDn
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Total-J Calculation

I Want to compute low energy state of Ĥ with a prescribed
total angular momentum

I When there is no external field, [Ĥ, Ĵ2] = 0. Thus Ĥ and Ĵ2

are simultaneously diagonalizable

I Find Z such that
Ĵ2Z = ZΩ,

where
ZTZ = Im, eig(Ω) = λ

with a known λ (J-basis or null space calculation)

I Form S = ZT ĤZ

I Solve SG = GΛ iteratively

I Form Y = ZG



J-basis (null space) Calculation
I Enumerate many-body states (MBS) in groups according to

reduced set of quantum numbers associated with single
particles states

I MBS within each group is invariant under Ĵ2.

Ĵ2 =


Ĵ2

1

Ĵ2
2

. . .

Ĵ2
ng


I Problem reduces to computing

Ĵ2
i Zi = ZiΩi , eig(Ωi ) = λ

I Ĵ2
i is very sparse

I The dimension of Ĵ2
i is known, but can vary significantly from

one i to another (1 to tens of thousands)
I rank(Zi ) depends on λ (10% ∼ 30% of the dimension of Ĵ2

i )



Sparsity of Ĵ2
i



The dimensions of Ĵ2
i ’s



The spectrum of a Ĵ2
i



Methods for Computing Zi

I Rank-revealing QR

(Ĵ2
i − λI )P = QR

can use randomized algorithms (does not require pivoting)

I Shift-invert Lanczos. Apply Lanczos (or subspace iteration) to
(Ĵ2

i − σI )−1, where σ is close to λ.

I Polynomial accelerated subspace iteration (PASI)



PASI

Apply subspace iteration to p(Ĥ)

1. Pick an initial guess to Zi (V such that V TV = I );

2. W ← p(Ĥ)V ;

3. [V ,R] = qr(W );

4. go back to Step 2 if convergence not reached

The choices of polynomials:

I Chebyshev if λ is the smallest eigenvalue of Ĵ2
i .

I Bandpass polynomial otherwise



Parallelization

Two inherently conflicting objectives:

I Limit the granularity of the parallelism.

I Limit the amount of communication overhead.



Heuristic
Classify Ĵ2

i into small, medium, large blocks based on dimension,
load estimation, ratio of flops over communication volume

I Small blocks are assigned to single processors. An sequential
algorithm is used to find the desired invariant subspace. (No
communication)

I Medium size blocks are mapped to a row group. The invariant
subspace (Moderate amount of communication) is computed
in parallel by processors within the same group

I Large size blocks (“outliers”) are tackled by all processors
simultaneously. (Lots of communication)



Greedy Load Balance

Once Ĵ2
i ’s have been classified, the total amount of load (including

communication cost) is fixed.

1. Compute the idea average load w per row group for
medium-sized blocks;

2. Distribute medium-sized blocks (sorted in descending order in
terms of their loads) in a cyclic fashion over nr groups. If
assigning a particular Ĵ2

i to a processor group pr results in

load overflow, skip pr and try to assign Ĵ2
i to the next

available group without exceeding the w limit. If Ĵ2
i cannot be

assigned to any row group, set it aside for later assignment;

3. If there exits some medium-size Ĵ2
i blocks that cannot be

assigned to any of the row groups
I raise w slightly and repeat step 2;
I or, assign Ĵ2

i with the largest load to the processor group with
the least amount of filled load ...

4. Distribute the small blocks to reduce load variation.
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Performance on Real Problems

nucleus (Nmax,J) ng k n

6Li

(10,0) 7.8× 104 3.3× 105 9.7× 106

(10,1) 7.8× 104 9.4× 105 9.7× 106

(12,0) 2.5× 105 1.4× 106 4.9× 107

(12,1) 2.5× 105 3.9× 106 4.9× 107

(12,12) 2.5× 105 2.8× 105 4.9× 107

12C
(4,0) 5.8× 103 5.5× 104 1.1× 106

(6,0) 5.6× 104 1.3× 106 3.3× 107

(6,2) 5.6× 104 3.5× 106 3.3× 107

(6,12) 5.6× 104 3.1× 104 3.3× 107



Load Balance Performance

Table: The minimum, average and maximum wall clock time consumed
by PASI when the greedy load balancing algorithm is used.

nucleus Nmax wtmin wtavg wtmax %comm

6Li

8 0.95 1.10 1.35 17%

10 9.5 12.0 13.0 21%

12 126 129 132 39%

12C
4 3.3 4.0 5.2 20%

6 848 902 995 20%

wtavg =

 np∑
j=1

ng∑
i=1

wtj(Ĵ
2
i )

 /np



Performance Improvement Over Previous Implementation

nucleus Nmax alg np cyclic greedy ideal
6Li 10 PASI 120 12.9 13.0 12.0
6Li 12 PASI 120 131 132 129
12C 4 PASI 120 6.1 5.2 4.0
12C 6 PASI 120 1015 995 902
12C 6 PASI 496 608 295 275
6Li 10 QR 120 24.1 17.8 14.7
6Li 12 QR 120 233 193 176
12C 4 QR 120 18.7 17.0 15.5
12C 6 QR 496 1220 900 860



Parallel Scalability (Strong scaling)



Comparison of QR and PASI

nucleus (Nmax,J) QR PASI np

6Li (10, 0) 17.8 13.0 120

6Li (10, 1) 17.8 34.9 120

6Li (12, 0) 193 132 120

6Li (12, 1) 195 464 120

6Li (12, 12) 140 95 496

12C (6, 0) 900 295 496

12C (6, 1) 890 > 1800 496

12C (6, 12) 840 105 496









Challenges

I Numerical method for solving large-scale eigenvalue problem
is a well studies subject. But large-scale parallel
implementation for nuclear CI calculation is not trivial.

I Optimizing the performance of individual pieces of the code
(SpMV, orthogonalization etc.) is important. Optimizing the
global performance of the code is even more important and
difficult. A decision (data structure, data distribution, load
balance) made for one part of the code often affects the
performance of another part of the code.

I Things will become more complicated for many core machines
with hybrid OpenMP/MPI implementation. How do we
address this additional level of complexity?

I The current implementation is contrained by memory usage.
Alternatives:

I Out-of-core
I Recompute matrix elements on the fly (when a MATVEC is

performed)
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