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GOALS

Understand nuclei at the level of elementary interactions between individual nucleons, including

• Binding energies, excitation spectra, relative stability, widths

• Densities, electroweak transitions,cluster-cluster overlaps & spectroscopic factors

• Low-energyNA & AA′ scattering, astrophysical reactions,asymptotic normalizations

REQUIREMENTS

• Two-nucleon potentials that accurately describe elasticNN scattering data

• Consistent three-nucleon potentials and electroweak current operators

• Precise methods for solving the many-nucleon Schrödinger equation

RESULTS

• Quantum Monte Carlo methods can evaluate realistic Hamiltonians accurate to∼1–2%

• About 100 states calculated forA ≤ 12 nuclei in good agreement with experiment

• 5He =nα scattering and low-energy electroweak astrophysical reactions

• Applications to elastic & ineleastice, π scattering,(e, e′p), (d, p) reactions, etc.



NUCLEAR HAMILTONIAN

H =
X

i

Ki +
X

i<j

vij +
X

i<j<k

Vijk

Ki: Non-relativistic kinetic energy,mn-mp effects included

Argonne v18: vij = vγ
ij + vπ

ij + vI
ij + vS

ij =
P

vp(rij)O
p
ij

• 18 spin, tensor, spin-orbit, isospin, etc., operators
• full EM and strong CD and CSB terms included
• predominantly local operator structure
• fits Nijmegen PWA93 data withχ2/d.o.f.=1.1
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Urbana & Illinois:Vijk = V 2π
ijk + V 3π

ijk + V R
ijk

• Urbana has standard2π P -wave +
short-range repulsion for matter saturation

• Illinois adds2π S-wave +3π rings
to provide extraT=3/2 interaction

• Illinois-7 has four parameters fit to 23 levels inA ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC64, 014001 (2001)
Pieper, AIP CP1011, 143 (2008)



QUANTUM MONTE CARLO

Variational Monte Carlo (VMC): constructΨV that

• Are fully antisymmetric andtranslationally invariant
• Havecluster structureand correct asymptotic form
• Contain non-commuting 2- & 3-bodyoperator correlationsfrom vij & Vijk

• Are orthogonal for multipleJπ states
• Minimize EV = 〈ΨV |H|ΨV 〉 ≥ E

These are∼ 2A
`

A
Z

´

component spin-isospin vectors in3A dimensions

Green’s function Monte Carlo (GFMC): project out the exact eigenfunction

• Ψ(τ) = exp[−(H − E0)τ ]ΨV =
P

n exp[−(En − E0)τ ]anΨn ⇒ Ψ0 at largeτ
• Propagation done stochastically in small time slices∆τ

• Exact〈H〉 for local potentials; mixed estimates〈ΨV |O|Ψ(τ)〉 for other operators
• Constrained-path propagationcontrols fermion sign problem forA ≥ 5

• Multiple excited states for sameJπ stay orthogonal

Many tests demonstrate 1–2% accuracy for realistic〈H〉

Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC56, 1720 (1997)
Wiringa, Pieper, Carlson, & Pandharipande, PRC62, 014001 (2000)
Pieper, Varga, & Wiringa, PRC66, 044310 (2002)
Pieper, Wiringa, & Carlson, PRC70, 054325 (2004)



-100

-90

-80

-70

-60

-50

-40

-30

-20

E
ne

rg
y 

(M
eV

)

AV18
AV18
+IL7 Expt.

0+

4He
0+
2+

6He 1+
3+
2+
1+

6Li
3/2−
1/2−
7/2−
5/2−
5/2−
7/2−

7Li

0+
2+

8He
2+
2+

2+
1+
3+
1+

4+

8Li
0+
2+

4+
2+
1+
3+
4+
0+

8Be

3/2−
1/2−
5/2−

9Li

3/2−
1/2+
5/2−
1/2−
5/2+
3/2+

7/2−

3/2−

7/2−
5/2+
7/2+

9Be

1+

0+
2+
2+
0+
3,2+

10Be 3+
1+

2+

4+

1+

3+
2+

3+

10B

3+

1+

2+

4+

1+

3+
2+

0+

12C

Argonne v18
with Illinois-7

GFMC Calculations

•  IL7: 4 parameters fit to 23 states
•  600 keV rms error, 51 states
•  ~60 isobaric analogs also computed



-5

0

5

10

15

20

25
E

xc
ita

tio
n 

en
er

gy
 (

M
eV

)

AV18

AV18
+IL7 Expt.

0+

2+

6He

1+

3+

2+

1+

6Li

3/2−
1/2−

7/2−

5/2−
5/2−

7/2−

7Li

2+
2+

2+
1+
3+
1+

4+

8Li

0+

2+

4+

2+
1+
3+
4+
0+

8Be

3/2−
1/2+
5/2−
1/2−
5/2+
3/2+

7/2−

3/2−

7/2−

5/2+
7/2+

9Be

1+

0+

2+

2+
0+

3,2+

10Be

3+
1+

2+

4+

1+

3+
2+

3+

10B

3+

1+

2+

4+

1+

3+
2+

Argonne v18
with Illinois-7

GFMC Calculations

Including IL7 gives
•  correct s.-o. splitting & 10B g.s.
 



APPLICATIONS TOL IGHT-ION REACTIONS

The availability of radioactive-ion beams has renewed

interest in reactions like(d,p) in inverse kinematics

We have helped analyze a number of RIB experiments

such asd(8Li,p)9Li (ATLAS) & d(9Li,t)8Li (TRIUMF)

• PTOLEMY DWBA calculations for transfer

• (d,p) vertex from AV18

• (d,t), (8Li,9Li) , etc. vertices computed

asA-body overlaps using VMC

〈ΨV (A-1)|a|ΨV (A)〉
• Norm is spectroscopic factor

• Absolute prediction fordσ/dΩ

• Good predictions ofn-knockoutfrom
10Be and10C (NSCL)

Macfarlane & Pieper,PTOLEMY, ANL-76-11, Rev. 1 (1978)
Wuosmaaet al., PRL94, 082502 (2005) + ...
Kanungoet al., PLB 660, 26 (2008)
Grinyeret al., PRL106, 162502 (2011)
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ONE-NUCLEON OVERLAPS INVMC/GFMC

For antisymmetric and translationally invariant parentΨA(α) and daughterΨA−1(γ) wave

functions, withα ≡ [Jπ
A, TA, TzA

], γ ≡ [Jπ
A−1, TA−1, TzA−1

], and single-nucleon quantum

numbersν ≡ [l, s, j, t, tz], the translationally invariant overlap function is:

R(α, γ, ν; r) =
√

A

fi

ˆ

ΨA−1(γ) ⊗ Y(ν)(r̂′)
˜

JA,TA

˛

˛

˛

˛

δ(r − r′)

r2

˛

˛

˛

˛

ΨA(α)

fl

whereY(ν)(r̂′) = [Yl(r̂
′) ⊗ χs]j χt and|ΨA−1(γ)|2 = 1, |ΨA(α)|2 = 1.

The corresponding spectroscopic factor is the norm of the overlap:

S(α, γ, ν) =

Z

|R(α, γ, ν; r)|2r2dr

Overlap functionsR satisfy a one-body Schrödinger equation with appropriate source terms.

Asymptotically, atr → ∞, these source terms contain core-valence Coulomb interaction at

most, and hence for parent states below core-valence separation thresholds:

R(α, γ, ν; r)
r→∞−−−→ C(α, γ, ν)

W−η,l+1/2(2kr)

r
,

whereW−η,l+1/2(2kr) is a Whitakker function withk =
√

2µB/~, B is the separation energy,

andC(α, γ, ν) is the asymptotic normalization coefficient orANC.



GFMC evaluation ofR is by extrapolation requiring two mixed estimates minus theVMC result:

R(α, γ, ν; r; τ) ≈ 〈R(α, γ, ν; r; τ)〉MA
+ 〈R(α, γ, ν; r; τ)〉MA−1

− 〈R(α, γ, ν; r)〉V ,

whereMA denotes a mixed estimate where parentΨA(α; τ) has been propagated in GFMC and

MA−1 is a mixed estimate where daughterΨA−1(γ; τ) has been propagated.
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Imaginary time evolution of overlaps in thep3/2 channel of the overlap〈6He + p|7Li〉



A convenient parametrization for input toPTOLEMY or other direct reaction code is provided by

fitting a single-particle potential to reproduce the overlap R:

V (r) = VWS

»

1

1 + exp((r − RWS)/aWS)
− β exp(−(r/ρ)2)

–

+

“

4~l · ~s
” Vso

r

d

dr

»

1

1 + exp((r − Rso)/aso)

–

+ VCoul

The potential parameters are adjusted to minimizeχ2 under the constraint that the overlap tail

falls off with the correct core-valence separation energyB. This helps in extraction of theANCs.

Brida, Pieper, & Wiringa, in preparation
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ALTERNATE ROUTE TOANCS

The VMC wave functions account fairly well for short-range correlations but may have poor

asymptotic behavior, particularly in p-shell.

Fitting C = rR(r)/W (2kr) is generally difficult because long-range shapes can be wrong, and

Monte Carlo sampling of the tails is difficult.

In the s-shell, however, it works ok:



INTEGRAL REALTION FOR THEANC

There is a better way than explicit overlaps, ideally suitedto QMC methods

Consider theA-body wave functionΨA and its overlap withΨA−1 plus a final proton with

separation energyB.

Write the Schr̈odinger equation as

(H − E) ΨA = 0

and expandH andE into parts internal toΨA−1 and parts involving the last particle

(Hint + Trel + Urel + VC − VC − Eint + B)ΨA = 0

Then

ΨA = − [Trel + VC + B]−1 (Urel − VC) ΨA

− [Trel + VC + B]−1 (Hint − Eint) ΨA

The second line is zero since(Hint − Eint)ΨA−1 = 0



Rewriting the Green’s function[Trel + VC + B]−1 in terms of special functions turns

ΨA = − [Trel + VC + B]−1 (Urel − VC) ΨA

into

Ψ†
A−1χ

†Y †
lmΨA =

2µ

k~2w
A

Z M−η,l+ 1

2

(2kr<)W−η,l+ 1

2

(2kr>)

r< r>

×Ψ†
A−1

χ†Y †
lm(r̂cc) (Urel − VC)ΨAdR

so at large radius

Clj =
2µ

k~2w
A

Z M−η,l+ 1

2

(2krcc)

rcc
Ψ†

A−1χ
†Y †

lm(r̂cc) (Urel − VC) ΨAdR

M−η,l+ 1

2

(2kr) is the “other” Whittaker function, irregular atr → ∞. HereUrel is

Urel =
X

i<A

viA +
X

i<j<A

VijA

and at large separation of the last nucleon,Urel → VC , so(Urel − VC) → 0.

This makes the integrand terminate at∼ 7 fm for AV18+UIX.

This is great for QMC methods, which are good at integration over the wave function interior,

but bad in the tails.



ANC: 3He → dp

s-wave ANC integrand & integral d-wave ANC integrand & integral

Points are Monte-Carlo sampled integrand; solid curves arecumulative integrals

For 3He → dp, we getCdp
s = 2.131(8) fm−1/2, Cdp

d = −0.0927(10) fm−1/2

Corresponding HH values are2.16& −0.0865

Corresponding GFMC values are2.10& −0.0794

Cdp
d converges just where sampling gets sparse in the explicit overlap



ANC: 8Li →7 Li + n

Here is a case where fitting to VMC samples is impossible, but the integral method using the

laboratory separation energy works beautifully:

ANC (fm−1) VMC: AV18+UIX binding VMC: Lab binding Experiment

C2
p 1/2 0.029(2) 0.048(3) 0.048(6)

C2
p 3/2 0.237(9) 0.382(14) 0.384(38)



RESULTS FOR ONE-NUCLEON REMOVAL 3 ≤ A ≤ 9

to

2.13

(full range to 2.0)

• Small error bars are VMC statistics

• Large ones are “experimental”

• Sensitivity to wave function con-

struction seems weak but hard to

quantify

• A ≤ 4 clearly dominated by sys-

tematics, also old

• With a few exceptions, these are the

first ab initio ANCs inA > 4

Nollett and Wiringa, PRC83, 041001(R) (2011)



QMC FOR CONTINUUM STATES

We generally treat nuclei as particle-stable systems – probably good for energies of narrow

resonances, but no prediction for widths. For wide states weneed full scattering solution.

METHOD

• Pick a logarithmic derivative,χ, at some large boundary radius (RB ≈ 9 fm)
• GFMC propagation, using method of images to preserveχ atR, findsE(RB, χ)

• Phase shift,δ(E), is function ofRB , χ, E

• Repeat for a number ofχ until δ(E) is mapped out
• needE accurate to∼ 1/3%

Example for5He(1
2

−
)

• “Bound-state” boundary
condition does not
give stable energy;
Decaying to n+4He
threshold

• Scattering boundary
condition produces
stable energy.
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Log-deriv = -0.168 fm-1



5He AS n+4He SCATTERING

Black curves: Hale phase shifts fromR-matrix analysis up toJ = 9

2
of data

AV18 with noVijk underbinds5He(3/2−) & overbinds5He(1/2−)
AV18+UIX improves5He(1/2−) but still too small spin-orbit splitting
AV18+IL2 reproduces locations and widths of bothP -wave resonances
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Nollett, Pieper, Wiringa, Carlson, & Hale, PRL99, 022502 (2007)



WIDTHS AS ANCS

MappingE(γ) → δ(E) is laborious, requires many solutions, and sensitive to calculational precision

Reliable widths of narrow states will be difficult by this method

But widths are closely related to ANCs, so maybe there’s a cheap way to estimate them

An unbound wave function at large radius looks like

ψ(r → ∞) ∝ Fl(kr) cos δ +Gl(kr) sin δ

so that at resonance (δ = 90◦; as our pseudobound states should have)

ψ(r → ∞) = Cljφ1φ2Gl(kr)

The flux per unit time through the surface is|Clj |
2v = ~k

µ
|Clj |

2

FromΓ ≃ ~/τ , we getΓ ≃ ~
2k
µ

|Clj |
2

One could also consider Gamow’s decaying complex-energy states and getthe same answer



WIDTHS AS ANCS

The relation

ψ(r → ∞) = Cljφ1φ2Gl(η, kr)

for resonant states is mathematically almost the same as

ψ(r → ∞) = Cljφ1φ2W−η,l+ 1

2

(2kr)

for bound states

You can get from one to the other by considering the boundk andη as±i times their scattering-state

counterparts

The integral method also applies to resonant states, exceptthat nowFl appears in the integral instead of

M
−η,l+ 1

2

This is used as a mathematical tool to get the asymptotics right inα andp decays (e.g. Esbensen & Davids

(2000) deformed proton emitters)



TESTING THE INTEGRAL RELATION FORΓ

The integral estimate should apply to states that are in somesense narrow

Here are low-lying states inA ≤ 9 with width mainly/all in nucleon emission

Nollett & Wiringa, in preparation

A=7

A=8

A=9

Arrows: uncomputed

channels orT mixing



Lots of widths come out close to experiment

Widths not close to experiment generally have some unaccounted-for width (e.g.α or 3-body channel) or

isospin mixing, or are broad

Pseudobound5He states yield wildly unreasonable widths, probably because they’re very broad

Width integral appears to be better than just using the Wigner limit andSlj



FUTURE WORK

GFMC one-nucleon overlaps forA ≥ 8 nuclei

Two-nucleon overlaps like〈αnn|6He〉 and〈αd|6Li〉 under development – first VMC calculations made

Generalize integral method for ANCs and widths toα and other cluster breakups

Utilize integral method with GFMC wave functions and IL7 potential

Integral method may provide way of extracting surface amplitudes from GFMC for coupled-channel

scattering problems

Still need to do full scattering calculations for wide states like8Be(2+, 4+) but integral method will

probably give best estimate of width of8Be(0+)
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