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Plan of Talk
– What are they and why are they interesting?
– Methods

• variational method, distillation
• Symmetries on the lattice
• Interpolating operators - in the continuum, and on the lattice

– Results
• Isovector Meson Spectrum
• Low-lying baryon spectrum
• Isoscalar spectrum

– Challenges
• Strong decays - phase-shifts and resonance parameters
• I=2 ππ Momentum-Dependent Phase Shift

– Computational Challenges for Spectroscopy
– Summary
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Goals - I

• Why is it important?
– What are the key degrees of freedom describing the 

bound states?
• How do they change as we vary the quark mass?

– What is the origin of confinement, describing 99% of 
observed matter?

– If QCD is correct and we understand it, expt. data 
must confront ab initio calculations

– What is the role of the gluon in the spectrum – 
search for exotics
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P = (−1)l+1

C = (−1)l+s

Goals - II
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• Exotic Mesons are those whose values of JPC are in 
accessible to quark model: 0+-, 1-+, 2+-

– Multi-quark states:
– Hybrids with excitations of the flux-tube
• Study of hybrids: revealing gluonic degrees of freedom of QCD.
• Glueballs: purely, or predominantly, gluonic states

L
S1

S2

Simple quark model (for 
neutral mesons) admits only 
certain values of JPC
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Hybrids - lattice + expt 

π1(1600) in pion production at 
BNL

No clear evidence in 
photoproduction at CLAS

Beyond “bump hunting”!
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Goals - III
• No baryon “exotics”, ie quantum numbers not accessible with 

simple quark model; but may be hybrids!
• Nucleon Spectroscopy: Quark model masses and amplitudes – 

states classified by isospin, parity and spin. 

Capstick and Roberts, PRD58 
(1998) 074011

• Missing, because 
our pictures do not 
capture correct 
degrees of 
freedom?
• Do they just not 
couple to probes?

|q3>

|q2q>

CLAS at 
JLab
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• Construct matrix of correlators

Cαβ(t, t0) = �0 | Oα(t)O
†
β(t0) | 0�

−→
�

n

Zn
αZ

n†
β e−Mn(t−t0)

where {Oα} are basis of operators of definite
symmetry: P , C and J?

C(t)u(t, t0) = λ(t, t0)C(t0)u(t, t0)

Variational Method

Delineate contributions using variational method: solve

Eigenvectors, with metric C(t0), are orthonormal and project onto the 
respective states
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C(t) = �0 | O(t)O(0)† | 0� −→ e−Et

σ2(t) �
�
�0 | |O(t)O(0)†|2 | 0� − C(t)2

�
−→ e−2mπt

Challenges
➡ Resolve energy dependence - anisotropic lattice
➡ Judicious construction of interpolating operators - cubic 
symmetry

Anisotropic lattices
To appreciate difficulty of extracting excited states, need to understand 
signal-to-noise ratio in two-point functions.  Consider correlation function:

Then the fluctuations behave as 

Signal-to-noise ratio degrades with increasing E - Solution: anisotropic lattice 
with at < as

DeGrand, Hecht, PRD46 (1992)

9



Challenges - II
• States at rest are characterized by their behavior 

under rotations - SO(3)
Lattice does not possess full symmetry of the continuum - 
allowed energies characterised by cubic symmetry, or the 
octahedral point group Oh

• 24 elements
• 5 conjugacy classes/5 irreducible representations
• Oh x Is: rotations + inversions (parity)

a2

ME
MT2

M2
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S[U ] = βξ

�
5

3U4
s

Pss� +
4

3ξ2u2
su

2
t

Pst −
1

12u6
s

Rss� −
1

12ξ2u4
su

2
t

Rst

�

Glueball Spectroscopy - I
Improved anisotropic pure-gauge action

s

s
s s

s s
t

t
Operators: closed Wilson loops

Morningstar, Peardon 97,99

ξ is bare anisotropy as/at

Obtain renormalized anisotropy by 
comparing different Wilson Loops

Ratio at large J gives ξ
Morningstar, 96
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β = 2.5 : ξ = 5

Glueball Spectroscopy - II

Observe 
emergence of 
degeneracies
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Glueball Spectrum - III
Note that this is the pure Yang-Mills spectrum - not the 
erroneously named “quenched” glueball spectrum!

2+1 flavor staggered - can mix with 
two-pi states!

UKQCD, C.Richards et al, arXiv:1005.2473
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Sξ
G[U ] =

β

Ncγg





�

x,s>s�

�
5

3u4
s

Pss� −
1

12u6
s

Rss�

�
+

�

x,s

�
4

3u2
su

2
t

Pst −
1

12u4
su

2
t

Rst

�



Sξ
F [U,ψ,ψ] =

�
xψ(x)

1

ũt

�
ũtm̂0 + Ŵt +

1

γf

�

s

Ŵs−

1

2

�
1

2

�
γg
γf

+
1

ξ

�
1

ũtũ2
s

�

s

σtsF̂ts +
1

γf

1

ũ3
s

�

s<s�

σss� F̂ss�

��
ψ(x).

γg = ξ0

γf = ξ0/ν
ξ = 3.5

Meson spectroscopy with Quarks
• Anisotropic lattices - to precisely resolve energies
• Variational method - with sufficient operator basis to delineate states
• Many values of lattice spacing - identification of spin.

Anisotropic fermion action Edwards, Joo, Lin, PRD78 (2008) 

Two anisotropy parameters to tune, in gauge and fermion sectors

Dispersion Relation

14



Anisotropic Clover Generation - I

H-W Lin et al (Hadron Spectrum Collaboration), 
PRD79, 034502 (2009 )

Challenge: setting scale and strange-quark mass

Express physics in (dimensionless) 
(l,s) coordinates

Omega

Lattice coupling fixed

Tuning performed for three-flavor theory

Proportional to ms to LO ChPT

Proportional to ml to LO ChPT
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Anisotropic Clover – II 

Low-lying spectrum: agrees with 
experiment to 10%
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Correlation functions: Distillation
• Use the new “distillation” method.
• Observe

• Truncate sum at sufficient i to capture relevant physics modes – we use 
64: set “weights” f to be unity

• Meson correlation function

• Decompose using “distillation” operator as

Eigenvectors of 
Laplacian

Includes displacements

Perambulators

M. Peardon et al., PRD80,054506 
(2009)
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ψ̄(�x, t)ΓDiDj . . .ψ(�x, t)

←→
Dm=−1 = i√

2

�←→
D x − i

←→
D y

�

←→
Dm=0 = i

←→
D z

←→
Dm=+1 = − i√

2

�←→
D x + i

←→
D y

�
.

Identification of Spin - I

a

ME
MT2

M2

Problem: 
•YM glueball requires data at several 
lattice spacings
•density of states in each irrep large.

Solution: exploit known continuum 
behavior of overlaps
• Construct interpolating operators of definite (continuum) JM: OJM

�0 | OJM | J �
,M

�� = Z
J
δJ,J �δM,M �

18

Starting point

Introduce circular basis: 
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(Γ×D[1]
J=1)

J,M =
�

m1,m2

�
1,m1; 1,m2

��J,M
�
ψ̄Γm1

←→
Dm2ψ.

Identification of spin
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• Use projection formula to find subduction under irrep. of cubic 
group - operators are closed under rotation!

O
[J]
Λ,λ ≡ (Γ×D[nD]

... )JΛ,λ =
�

M

S
J,M
Λ,λ (Γ×D[nD]

... )J,M ≡

�

M

S
J,M
Λ,λ O

J,M

Straighforward to project to definite spin: J = 0, 1, 2

Action of RIrrep, Row Irrep of R in Λ
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Identification of Spin - II
Overlap of state onto subduced operators

Common across irreps.

Hadspec collab. (dudek et al),  0909.0200, PRL

Nf = 3
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Lattice ops. retain memory of their 
continuum ancestors
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Isovector Meson Spectrum - I
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PRL 
103:262001,2009

Exotic

Isovector spectrum 
with quantum 
numbers reliably 
identified
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1−+

Isovector Meson Spectrum - II

0.1 0.2 0.3 0.4 0.5 0.61.0

1.5

2.0

2.5

quenched

dynamical

previous
studies

States with Exotic Quantum Numbers

Dudek, Edwards, DGR, Thomas, arXiv:1004.4930
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Interpretation of Meson Spectrum

In each Lattice Irrep, state 
dominated by operators of 
particular J 
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look at the ‘overlaps’

hybrid?

x x x x

ground state 
is dominantly

x x x x

1st excited state 
is dominantly

with some

x x x x

2nd excited state 
is dominantly

with some

x x x x

3rd excited state 
is dominantly

hybrid?

with some

build a bound state model 
phenomenology
comparable to the quark model
using non-perturbative QCD 
calculations

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Anti-commutator of covariant 
derivative: vanishes for unit gauge!

Dudek, arXiv:1106.5515
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• Construct basis of 3-quark interpolating operators in the continuum:

• Subduce to lattice irreps:  

163 × 128 lattices mπ = 524, 444 and 396 MeV

Hu

Excited Baryon Spectrum - I

25

O
[J]
nΛ,r =

�

M

S
J,M
nΛ,rO

[J,M ] : Λ = G1g/u, Hg/u, G2g/u

�
NM ⊗

�
3
2

−�1
M
⊗D[2]

L=2,S

�J=
7
2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R.G.Edwards et al., arXiv:1104.5152

Observe remarkable realization of rotational 
symmetry at hadronic scale: reliably determine 
spins up to 7/2, for the first time in a lattice 
calculation

Continuum antecedents

“Flavor” x Spin x Orbital
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Excited Baryon Spectrum - II
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• Broad features of SU(6)xO(3) 
symmetry
• Counting of states consistent 
with NR quark model
• Inconsistent with quark-diquark 
picture or parity doubling

[70,1-]
[70,1-]

[56,0+]

[56,0+]

N 1/2+ sector: need for complete basis to 
faithfully extract states

[70, 0+], [56, 2+], [70, 2+], [20, 1+]
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C =

�
−C�� + 2D��

√
2D�s

√
2Ds� −Css +Dss

�
.

Connected components

Cq�q
AB(t

�, t) = δqq�Tr
�
ΦA(t�)τq�(t

�, t)ΦB(t)τq(t, t
�)
�
,

disconnected components that can mix flavor,

Dq�q
AB(t

�, t) = Tr
�
ΦA(t�)τq�(t

�, t�)
�
Tr

�
ΦB(t)τq(t, t)

�
.

Isoscalar Meson Spectrum - I

27

t

Isoscalar requires disconnected contributions
Require perambulators at 

each timeslice
Dominated by quark-propagator 
inversions - ENABLED BY GPU 

t�
τq(t1, t2) = V †

t1M
−1
q (t1, t2)Vt2
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From 128 time 
sources

163 × 128,mπ � 400 MeV

Isoscalar - II

28
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• Spin-identified single-particle spectrum: 
states of spin as high as four
• Hidden flavor mixing angles extracted - 
except 0-+, 1++ near ideal mixing
• First determination of exotic isoscalar 
states: comparable in mass to isovector

Isoscalar Meson Spectrum - III

29

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector
YM glueball

negative parity positive parity

J. Dudek et al., PRD73, 11502

Diagonalize in 2x2 flavor space
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Where are the multi-hadrons?
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Meson spectrum on two 
volumes: dashed lines 
denote expected (non-
interacting) multi-particle 
energies.

Calculation is incomplete.

Allowed two-particle 
contributions governed 
by cubic symmetry of 
volume
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Multi-hadron Operators

Need “all-to-all”

Usual methods give “point-to-all”
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Strong Decays
• In QCD, even ρ is unstable under strong interactions – 

resonance in π-π scattering (quenched QCD not a theory – won’t 
discuss).

• Spectral function continuous; finite volume yields discrete set of 
energy eigenvalues

Momenta quantised: known set of free-energy eigenvalues
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Strong Decays - II
• For interacting particles, energies are shifted from their free-

particle values, by an amount that depends on the energy.
• Luscher: relates shift in the free-particle energy levels to the 

phase shift at the corresponding E.

L

tan δ1 =
gρππ2

6π

p3

ECM(mρ
2 − E2

CM)

p =
�
E2

CM/4−m2
π

Feng, Jansen, Renner, 2010
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Luescher: energy levels at finite volume ↔ phase shift at 
corresponding k

O
Γ,γ
ππ (|�p|) =

�

m

S
�,m
Γ,γ

�

p̂

Y m
� (p̂)Oπ(�p)Oπ(−�p)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Momentum-dependent I = 2 ππ Phase Shift

34

Dudek et al., Phys Rev D83, 071504 (2011)

Operator basis

Total momentum zero - pion 
momentum ±p
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Luescher: energy levels at finite volume ↔ phase shift at 
corresponding k

Matrix in l

l = 0

l = 2

4π at mπ = 396 MeV

Momentum-dependent I = 2 ππ Phase Shift

35

Dudek et al., Phys Rev D83, 071504 (2011)

det
�
e2iδ(k) −UΓ

�
k L
2π

��
= 0

lattice irrep
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Gauge Generation: Cost Scaling
• Cost: reasonable statistics, box size and “physical” pion mass
• Extrapolate in lattice spacings: 10 ~ 100 PF-yr

PF-years

Today, 10TF-yr

2011 (100TF-yr)

36

Robert Edwards, 
2010 LQCD review

Isotropic?
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Capability vs Capacity: GPUs
• Gauge generation: (next dataset)

– INCITE: Crays BG/P-s, ~ 16K – 24K cores
– Double precision

• Analysis (existing dataset): two-classes
– Propagators (Dirac matrix inversions)

• Few GPU level
• Single + half precision
• No memory error-correction

– Contractions: 
• Clusters:  few cores
• Double precision + large memory footprint
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} Capability

} Capacity
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2010-2011 lattices: 243 × 128 2011-2012 lattices: 323 × 256

B. Joo et al, SciDAC 2010
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Capacity Computing

• Calculation of isoscalars and pi-pi scattering enabled by 
GPUs - for calculation of perambulators

• Contraction costs increasingly dominant

38

Neigen � Vol

Meson contractions � N3
eigen

Baryon contractions � N4
eigen

}
GPUs

CPUs

e.g. Stochastic sampling of distillation vectors

Morningstar et al., PRD83, 114505
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Summary
• Spectroscopy of excited states affords an excellent theatre in which to 

study QCD in low-energy regime.
• Major progress at reliable determinations of the single-particle spectrum, 

with quantum numbers identified
• Lattice calculations used to construct new “phenomenology” of QCD
• Next step for lattice QCD:  

– Complete the calculation: where are the multi-hadrons and decay 
channels?

– Determine the phase shifts - model independent
– extraction of resonance parameters - model dependent

• Lattice calculations: gauge generation ➡ physics measurement
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