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Outline

● Types of N-Body simulations
– Small N (SS, GC)
– Large N

● Need for Exascale
● GPU details
● Single node performance
● Scaling
● Multistepping issues



   Image courtesy NASA/WMAP

Cosmology at 130,000 years



   

Fundamental Problem:
Dark Matter and Energy: What is it?

● Not baryons
● Simulations show: 

not known 
neutrinos

● Candidates:
– Sterile Neutrinos
– Axions
– Lightest SUSY 

Particle (LSP)



   

Cosmology at 13.6 Gigayears



   

Light vs. Matter

Moore et al 99



   

Computational Cosmology

● CMB has fluctuations of 1e-5
● Galaxies are overdense by 1e7
● It happens (mostly) through 

Gravitational Collapse
● Making testable predictions from a 

cosmological hypothesis requires
– Non-linear, dynamic calculation
– e.g. Computer simulation



   



   

Smooth Particle Hydrodynamics
● Making testable predictions needs 

Gastrophysics
– High Mach number
– Large density contrasts

● Gridless, Lagrangian method
● Galilean invariant
● Monte-Carlo Method for solving Navier-

Stokes equation.
● Natural extension of particle method 

for gravity.



   

Simulating Galaxy Formation:
Current Methodology

● Full cosmological context with high 
resolution

● Dynamic range of 1e5 in time and space
● Treecode/SPH or similar adaptive method 

is required.

● Physically motivated subgrid effects of 
star formation and feedback

● Complete simulations to present epoch.
● Analyze with multiple simulated 

observations



Dwarf galaxy simulated to the 
present

Reproduces:
* Light profile
* Mass profile
* Star formation
* Angular momentum

i band image



   

Galactic structure in the local Universe:
What’s needed

● 1 Million particles/galaxy for proper 
morphology/heavy element production

● 25 Mpc volume
● 800 M core-hours
● Necessary for:

– Comparing with Hubble Space Telescope surveys 
of the local Universe

– Interpreting HST images of high redshift galaxies



   

Large Scale Structure:
What’s needed

● 700 Megaparsec volume for “fair 
sample” of the Universe

● 18 trillion core-hours (~ exaflop year)
● Necessary for:

– Interpreting future surveys (LSST)
– Relating Cosmic Microwave Background to 

galaxy surveys



Programmer: [Over] 
decomposition into virtual 
processors

Runtime: Assigns VPs to 
processors

Enables adaptive runtime 
strategies

User View

System implementation

• Software engineering
– Number of virtual processors 

can be independently 
controlled

– Separate VPs for different 
modules

• Message driven 
execution
– Adaptive overlap of 

communication

• Dynamic mapping
– Heterogeneous clusters

• Vacate, adjust to speed, 
share

– Automatic checkpointing
– Change set of processors 

used
– Automatic dynamic load 

balancing
– Communication optimization

Benefits

Charm++: Migratable Objects



   

Charm++ at scale

● Composability, object oriented
● Load balancing framework

– Topology aware

● Available development tools:
– Profiling at scale
– Debugging at scale
– Visualization at scale 

(http://hpcc.astro.washington.edu/tools/salsa)
– Machine simulation



   

ChaNGa (CHArm N-body GrAvity) 
Features

● Tree-based gravity solver
● High order multipole expansion
● Periodic boundaries (if needed)
● Individual multiple timesteps
● Dynamic load balancing with choice of 

strategies
● Checkpointing (via migration to disk)
● Visualization
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Basic Gravity algorithm ...

● Newtonian gravity interaction
– Each particle is influenced by all others: O(n²) algorithm

● Barnes-Hut approximation: O(nlogn)
– Influence from distant particles combined into center of 

mass



   

Overall Algorithm



   

Strong Scaling on BG/P



   

6.8e12 particles @ 1 Exaflop

200Mpc^3 volume at 1e4 Msun



   

Cosmology at Exascale

● The Universe is big
– Build a computer and a cosmologist will 

fill it.
– With compelling problems to solve

● Scaling to Exaflops is conceivable
– Despite use of irregular algorithms/data 

structures
– But with significant investment in newer 

languages/libraries



   

General Purpose GPUs

● Graphics chips adapted for general 
purpose programming

● Impressive floating point performance
– 4.6 Tflops single precision (AMD Radeon 

HD 5970)
– Cmp. 100 Gflop for 3 GHz quad-core quad-

issue CPU

● Good for large scale data parallelism
● Consumer driven technology



   

GPU Stream Management

● Common stream usage
– CPU -> GPU data transfer
– kernel_call
– GPU -> CPU data transfer
– Poll for completion

● Third operation blocks DMA engine until 
kernel is finished

● Avoid by delaying GPU -> CPU transfer 
until kernel is finished

– Requires additional polling call



   

GPU Manager

● User submits “work requests” with GPU 
kernel, associated buffers and callback

● System transfers memory between CPU 
and GPU, executes kernel, and returns via 
a callback

● GPU operations performed 
asynchronously

● Pipelined execution
● Consistent with Charm++ model
● Charm++ tools (profiler) available



   

Execution of Work Requests



   

Overlapping CPU and GPU Work



   

CUDA memory model



   

Force Kernel Optimization

More particles->fewer loads
More particles->larger shared memory use

Fewer executing blocks



   

Kernel Optimization Results

Optimum at 128 threads, 16 particles, 8 nodes/block



   

Ewald on the GPU

● Real space loop and Fourier space loop
● Separate kernels for each loop

More concurrent blocks/SM

● Constant memory for cos/sin tables
● Factor of 20 speedup over CPU



   

Tree Traversal and Computation

● GPU is hungry for work
– CPU should hold back GPU
– Decrease tree walk time to generate more 

computing

● Increase average bucket size
– Tree is shallower: CPU less busy
– More computation: GPU more busy
– Balance for optimum
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Work-throughput tradeoff

CPU GPU







Timestepping Challenges

● 1/m particles need m times more force 
evaluations

● Naively, simulation cost scales as N^(4/3)ln(N)

– This is a problem when N ~ 1e9 or greater

● If each particle an individual timestep scaling 
reduces to N (ln(N))^2

● A difficult dynamic load balancing problem





GPU Summary/prognosis

● Successfully kept the monster fed

● More floats yet better throughput

● More work to do:

– Load balancing needs more sophistication

– Higher order multipoles/single precision

– Multistepping optimization

– Tree traversal on the GPU?

– Ease of Programming

hpcc.astro.washington.edu/tools/changa.html
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