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Outline

 Disconnected diagrams
 Adaptive multigrid
 Application to Wilson clover lattice Dirac operator
 The future
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Nucleon form factors

 Disconnected:
interaction with sea quarks in glue

 Only way strange quarks 
contribute

 u,d also contribute
 Needed for isoscalar quantities
 Difficult to measure directly in 

lattice QCD

 Connected:
direct interaction with one of 
the valence quarks of the 
nucleon

 u,d quarks contribute
 Only contribution to 

isovector quantities

Two different types of contribution to form factors
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Disconnected diagrams on the lattice

Want to calculate nucleon matrix elements of the form

t = tf X t = t' t = 0

〈 P q , t f ∣ J q , t '  ∣P  0,0 〉

〈P ( q⃗ , t f )∣ J (q⃗ , t ' ) ∣P (0⃗,0)〉

J (q⃗ , t ' ) = ∑ x⃗
ei q⃗⋅⃗x s̄( x⃗ , t ' ) Γ s( x⃗ , t ' )
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Challenges

 The current gives

                                     
with trace over color, spin, and space

 Exact trace requires inverting the Dirac operator 12 Ns
3 times

– Use approximate methods

 Signal can be very small requiring high statistics:
correlation between the nucleon 2-point function and the quark loop

    

hnucleon £ tracei ¡ hnucleonihtracei

X

~x

¹s(~x; t0) ¡ s(~x; t0) = Tr(¡D¡1)
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Lattice methods for
disconnected diagrams

 stochastic sources

 options:
– random source type (Gaussian, Z(N), U(1))
– dilution (spin, color, space, time)
– subtraction

Tr  D−1 ≈ 1
N ∑

i=1

N

 i
H  D−1 i , 〈 i

H x  iy 〉 =  xy
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Dilution

 partition vector indices, use separate sources for each group:
 color, spin, spatial (Wilcox; Foley, et al.)

 spatial dilution:
– none (dilution factor 1)
– even/odd (dilution factor 2)
– cubic diagonal [(0,0,0)(1,1,1)],[(0,0,1)(1,1,0)],...

(dilution factor 4)
– inner 53 dilution with outer dilution among inner blocks (dilution factors 125, 250, 500)

 tests on 103x32 quenched lattices with Wilson Dirac matrix
– trace on single time slice (12,000 components)
– with/without color/spin dilution
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Dilution

 compare dilution
(spin,color,spatial)
to exact trace

 all points at fixed
amount of work

 exact trace: dilution factor 
= 12,000

 spatial dilution generally 
helps

 need spin/color dilution for 
>1000 sources
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Dilution
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Variance reduction

 unbiased subtraction

– hopping parameter expansion

– eigenvalue projection

– multigrid subtraction

Tr  D−1 ≈ 〈H D−1−O tr 〉 , O tr=O−−1 1
N
Tr O

O = 21 M 2M 2

O = P ev D−1 Pev−D−1

O = P fc Dc
−1 P cf

Tr P fc Dc
−1 Pcf = Tr Pcf  P fc Dc

−1
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Gauge noise

 gauge noise is significant
– prefer many lattices: O(1000)
– make best use of existing lattices

(multiple timeslices per lattice)
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Disconnected diagrams on the lattice

 Disconnected diagrams are hard

 Many methods for improving errors have been developed 
and used
– Finding best method for a given problem is also a 

challenging problem

 High precision calculations will require large number of 
Dirac equation solves
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MULTIGRID
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QCD-MG collaboration

 Argonne
– James Osborn

 Boston University
– Ron Babich
– Rich Brower
– Claudio Rebbi

 Colorado U., Boulder
– Marian Brezina
– Christian Ketelsen
– Tom Manteuffel
– Steve McCormick
– John Ruge

 Harvard
– Mike Clark

 KAUST
– David Keyes

 LLNL
– Rob Falgout

 Penn State
– James Brannick
– Ludmil Zikatanov

 Tufts
– Scott MacLachlan

 Washington, University of
– Saul Cohen
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The problem

 Lattice QCD requires repeated solution of Dirac equation

 Much of the work goes into solution
– Usually over 90% for analysis
– Typically from 50-90% for gluon configuration generation

 Exhibits critical slowing down
– Condition number diverges as mass decreases (κ ∝ 1/m)
– Standard Krylov solvers (CG, BiCGStab, …) become inefficient as condition number grows 
– Difficult to simulate at physical light (up, down) quark masses

 Multigrid methods have been very successful in beating this in other fields

[D(U) +m]Ã = ´
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Multigrid

 Standard solvers (stationary, Krylov) good at reducing high frequency error 
components, not good with low frequency errors

 MG projects error onto coarse grid, solves, then interpolates correction back to 
fine grid

 V-cycle determined by
– Relaxation
– Restriction (R)
– Interpolation (P) (Prolongation)
– Coarse operator

relax

restrict
solve

interpolate

relax

MG V-cycle
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Multigrid

 MG V-cycle typically used as preconditioner for outer solver
– Here using GCR (Generalized Conjugate Residuals)

 Used recursively: MG cycle used to solve on coarse grid, …
 Choice of cycle:

– V-cycle, W-cycle, …
– Here using GCR solver for coarse system with MG preconditioner

   relax

restrict
   relax

restrict

solve

interpolate

relax

relax

interpolate

relax   relax

restrict
   relax

restrict

solve

relax
interpolate  relax

interpolate

solve
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Choosing P & R

 Coarse grid solve:

 Algebraic MG: P & R formed from
elements of A (or approximation to)

 Adaptive MG: P & R formed from
slow-to-converge modes of A

– Want P to preserve (right) low modes of A
– Form P from representative low 

modes chopped into blocks (aggregates)
– R from left low modes of A

PA¡1c Rr

Ac = RAP

P =

0
BBBBBBBBBBBBBBB@

v1 v2
v1 v2
...

...

v1 v2
v1 v2
v1 v2
...

...

v1 v2
. . .

1
CCCCCCCCCCCCCCCA

r̂ = Rr

c = P ĉ
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Setup methods

 Repeated relaxation (inverse iteration) on random vectors
– Simple (don't need to construct coarse operator)
– Can vary number of iterations/cycles
– Vectors may be locally redundant

 Adaptive smooth aggregation (αSA) (Brezina, et al., 2004)
– Construct new MG cycle with current vectors, use to find new vector
– Requires construction of coarse operator
– New vectors should give new important components



James C. Osborn  --  Calculating disconnected diagrams with multigrid   --  INT, July 2011

20

Fine and coarse operators

 MG normally done on Hermitian positive definite systems (D�D)
– Coarse operator constructed from Galerkin prescription R = P�, Ac = P�AP

– Increases complexity of coarse operator (has 2-hop corner terms)

 Instead using just D
– Want R to be rich in low left-modes

– For  γ5-Hermitian operator can set R = P�γ5 

 Also keeping chirality independent of blocking

– Treat (1 ±γ5)P as separate vectors for prolongation/restriction

– Helps alleviate problems due to indefinite operator (|P�γ5DP| ≈ 0)
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Fine and coarse operators

 Solving Wilson-clover operator
– Using even-odd preconditioning on fine system
– D x = b   →   (D Dd-1) (Dd x) = b   →   Dp xp = b
– Dr xp,e  =  be - Deo Doo-1 bo  →   Dr xr  =  br

– Construct coarse operator from Dp
then construct reduced operator

– Dp no longer γ5-Hermitian, but use

same R (= P�γ5 ) anyway

D =

µ
Dee Deo
Doe Doo

¶

Dp =

µ
1 DeoD

¡1
oo

DoeD
¡1
ee 1

¶

Dr = 1 ¡DeoD¡1oo DoeD¡1ee

Dd =

µ
Dee 0

0 Doo

¶
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Implementation Details

 (0,~4) V-cycle
– No pre-relaxation, ~4 steps GCR post-relaxation

 Mixed precision
– Outer GCR solver on fine level in double precision
– MG preconditioner and all levels below in single precision
– Comparison to mixed precision Krylov methods (iterative refinement)

 Implemented in DOE SciDAC Lattice QCD libraries
– QDP/C QCD Data Parallel library
– Multi-lattice support and improved arbitrary size dense matrix support
– Optimized for BG/P, x86
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Numerical results

 Using gauge configurations from Hadron Spectrum Collaboration
– Anisotropic: as ≈ 0.12 fm, at ≈ 0.035 fm

– 243x128 and 323x256

– Dynamical mπ ≈ 220 MeV (m = -0.086)

 Results obtained on BG/P
– 256 cores for 243x128

• 1st coarse lattice:  83x16 with 24 vectors
• 2nd coarse lattice:  43x4 with 32 vectors

– 1024 cores for 323x256
• 1st coarse lattice:  16x8x8x32 with 24 vectors
• 2nd coarse lattice:  4x4x4x16 with 32 vectors
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Results
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“Exceptional lattice”
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Results
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Total cost

25 solves

4.7 solves

2.3 solves
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Setup cost vs speedup (physical quark mass)
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2 level vs 3 level
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Speedup vs residual (physical mass)
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Error vs residual

 Error:
e = x* - x

 Residual:
r = b – A x
   = A e

 Residual not as
sensitive to low
modes



James C. Osborn  --  Calculating disconnected diagrams with multigrid   --  INT, July 2011

32

Obligatory exascale reference

 Multigrid reduces time to solution by reducing problem size
– Coarsest lattice has 1 site/core

 Analysis jobs are trivially parallel over gauge configurations
– Run on as small a partition as possible
– Can still consume a large (Leadership Class) number of 

fops per project, though individual jobs are not large 
(Leadership Class) themselves

 Configuration generation needs to scale to large machines to 
evolve gauge field quickly – major challenge for exascale
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Obligatory exascale reference

 Remaining challenges:
– Scale to large number of cores

(while retaining similar quality of solver)
– Integrate with HMC
– Update low modes directly (Lüscher's DD-HMC)
– Implement other Dirac operators 

(Domain Wall: Saul, Improved Staggered)
– Port to other architectures (GPUs)
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Summary

 Disconnected diagrams are hard (require many solves)

 Multigrid can reduce cost of solves by 20-25x
– Error very stable and relatively small to Krylov methods
– Speedup (and relative error) improves for larger lattices
– Less sensitive to “exceptional” configurations
– Makes projects requiring many solves at light masses 

feasible

 Requires more work to efficiently scale, but still useful even if 
not running at the optimal configuration


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

