

Calculating disconnected diagrams with Multigrid

James C. Osborn Argonne Leadership Computing Facility

Lattice QCD at Zero Temperature

Extreme Computing and its Implications for the Nuclear Physics/Applied Mathematics/Computer Science Interface INT, July 5-8, 2011

Outline

- Disconnected diagrams
- Adaptive multigrid
- Application to Wilson clover lattice Dirac operator
- The future

Nucleon form factors

Two different types of contribution to form factors

- Connected: direct interaction with one of the valence quarks of the nucleon
- u,d quarks contribute
- Only contribution to isovector quantities

- Disconnected: interaction with sea quarks in glue
- Only way strange quarks contribute
- u,d also contribute
- Needed for isoscalar quantities
- Difficult to measure directly in
 lattice QCD

Disconnected diagrams on the lattice

Want to calculate nucleon matrix elements of the form $\langle P(\vec{q}, t_f) | J(\vec{q}, t') | P(\vec{0}, 0) \rangle$

$$J(\vec{q},t') = \sum_{\vec{x}} e^{i\vec{q}\cdot\vec{x}} \overline{s}(\vec{x},t') \Gamma s(\vec{x},t')$$

Challenges

The current gives

$$\sum_{\vec{x}} \bar{s}(\vec{x}, t') \Gamma s(\vec{x}, t') = \operatorname{Tr}(\Gamma D^{-1})$$

with trace over color, spin, and space

- Exact trace requires inverting the Dirac operator 12 N_s^3 times
 - Use approximate methods
- Signal can be very small requiring high statistics: correlation between the nucleon 2-point function and the quark loop

```
\langle nucleon \times trace \rangle - \langle nucleon \rangle \langle trace \rangle
```


Lattice methods for disconnected diagrams

stochastic sources

$$\operatorname{Tr}(\Gamma D^{-1}) \approx \frac{1}{N} \sum_{i=1}^{N} \eta_{i}^{H} \Gamma D^{-1} \eta_{i} , \langle (\eta_{i}^{H})_{x}(\eta_{i})_{y} \rangle = \delta_{xy}$$

- options:
 - random source type (Gaussian, Z(N), U(1))
 - dilution (spin, color, space, time)
 - subtraction

Dilution

- partition vector indices, use separate sources for each group: color, spin, spatial (Wilcox; Foley, et al.)
- spatial dilution:
 - none (dilution factor 1)
 - even/odd (dilution factor 2)
 - cubic diagonal [(0,0,0)(1,1,1)],[(0,0,1)(1,1,0)],...
 (dilution factor 4)
 - inner 5³ dilution with outer dilution among inner blocks (dilution factors 125, 250, 500)
- tests on 10³x32 quenched lattices with Wilson Dirac matrix
 - trace on single time slice (12,000 components)
 - with/without color/spin dilution

Dilution

- compare dilution
 (spin,color,spatial)
 to exact trace
- all points at fixed amount of work
- exact trace: dilution factor= 12,000
- spatial dilution generally helps
- need spin/color dilution for >1000 sources

8

Dilution

Variance reduction

unbiased subtraction

$$\operatorname{Tr}(\Gamma D^{-1}) \approx \langle \eta^{H} \Gamma (D^{-1} - O_{tr}) \eta \rangle_{\eta} , \quad O_{tr} = O - \Gamma^{-1} \frac{1}{N} \operatorname{Tr} \Gamma O$$

hopping parameter expansion

$$O = 2\kappa (1+\kappa M+\kappa^2 M^2+\ldots)$$

- eigenvalue projection

$$O = P_{ev} D^{-1} P_{ev} - D^{-1}$$

1

- multigrid subtraction

lames C.

$$O = P_{fc} D_c^{-1} P_{cf}$$
$$Tr \Gamma P_{fc} D_c^{-1} P_{cf} = Tr P_{cf} \Gamma P_{fc} D_c^{-1}$$

Gauge noise

- gauge noise is significant
 - prefer many lattices: O(1000)
 - make best use of existing lattices (multiple timeslices per lattice)

Disconnected diagrams on the lattice

- Disconnected diagrams are hard
- Many methods for improving errors have been developed and used
 - Finding best method for a given problem is also a challenging problem
- High precision calculations will require large number of Dirac equation solves

MULTIGRID

QCD-MG collaboration

- Argonne
 - James Osborn
- Boston University
 - Ron Babich
 - Rich Brower
 - Claudio Rebbi
- Colorado U., Boulder
 - Marian Brezina
 - Christian Ketelsen
 - Tom Manteuffel
 - Steve McCormick
 - John Ruge

- Harvard
 - Mike Clark
- KAUST
 - David Keyes
- LLNL
 - Rob Falgout
- Penn State
 - James Brannick
 - Ludmil Zikatanov
- Tufts
 - Scott MacLachlan
- Washington, University of
 - Saul Cohen

The problem

Lattice QCD requires repeated solution of Dirac equation

 $[D(U) + m]\psi = \eta$

- Much of the work goes into solution
 - Usually over 90% for analysis
 - Typically from 50-90% for gluon configuration generation
- Exhibits critical slowing down
 - Condition number diverges as mass decreases ($\kappa \propto 1/m$)
 - Standard Krylov solvers (CG, BiCGStab, ...) become inefficient as condition number grows
 - Difficult to simulate at physical light (up, down) quark masses
- Multigrid methods have been very successful in beating this in other fields

James C. Osborn -- Calculating disconnected diagrams with multigrid -- INT, July 2011

Multigrid

- Standard solvers (stationary, Krylov) good at reducing high frequency error components, not good with low frequency errors
- MG projects error onto coarse grid, solves, then interpolates correction back to fine grid

Multigrid

- MG V-cycle typically used as preconditioner for outer solver
 - Here using GCR (Generalized Conjugate Residuals)
- Used recursively: MG cycle used to solve on coarse grid, ...
- Choice of cycle:
 - V-cycle, W-cycle, ...
 - Here using GCR solver for coarse system with MG preconditioner

Choosing P & R

• Coarse grid solve:

 $PA_c^{-1}Rr$ $A_c = RAP$

- Algebraic MG: P & R formed from elements of A (or approximation to)
- Adaptive MG: P & R formed from slow-to-converge modes of A
 - Want P to preserve (right) low modes of A
 - Form P from representative low modes chopped into blocks (aggregates)
 - R from left low modes of A

Setup methods

- Repeated relaxation (inverse iteration) on random vectors
 - Simple (don't need to construct coarse operator)
 - Can vary number of iterations/cycles
 - Vectors may be locally redundant
- Adaptive smooth aggregation (αSA) (Brezina, et al., 2004)
 - Construct new MG cycle with current vectors, use to find new vector
 - Requires construction of coarse operator
 - New vectors should give new important components

Fine and coarse operators

- MG normally done on Hermitian positive definite systems (D[†]D)
 - Coarse operator constructed from Galerkin prescription R = P^{\dagger} , $A_c = P^{\dagger}AP$
 - Increases complexity of coarse operator (has 2-hop corner terms)
- Instead using just D
 - Want R to be rich in low left-modes
 - For γ_5 -Hermitian operator can set R = $P^{\dagger}\gamma_5$
- Also keeping chirality independent of blocking
 - Treat $(1 \pm \gamma_5)$ P as separate vectors for prolongation/restriction
 - Helps alleviate problems due to indefinite operator ($|P^{\dagger}\gamma_5 DP| \approx 0$)

Fine and coarse operators

- Solving Wilson-clover operator
 - Using even-odd preconditioning on fine system
 - $D x = b \rightarrow (D D_d^{-1}) (D_d x) = b \rightarrow D_p x_p = b$
 - $D_r x_{p,e} = b_e D_{eo} D_{oo}^{-1} b_o \rightarrow D_r x_r = b_r$
 - Construct coarse operator from D_p then construct reduced operator
 - D_p no longer γ_5 -Hermitian, but use same R (= P[†]γ₅) anyway

$$D = \begin{pmatrix} D_{ee} & D_{eo} \\ D_{oe} & D_{oo} \end{pmatrix}$$

$$D_{d} = \begin{pmatrix} D_{ee} & 0 \\ 0 & D_{oo} \end{pmatrix}$$

$$D_{p} = \begin{pmatrix} 1 & D_{eo}D_{oo}^{-1} \\ D_{oe}D_{ee}^{-1} & 1 \end{pmatrix}$$

$$D_{r} = 1 - D_{eo}D_{oo}^{-1}D_{oe}D_{ee}^{-1}$$

Implementation Details

- (0,~4) V-cycle
 - No pre-relaxation, ~4 steps GCR post-relaxation
- Mixed precision
 - Outer GCR solver on fine level in double precision
 - MG preconditioner and all levels below in single precision
 - Comparison to mixed precision Krylov methods (iterative refinement)
- Implemented in DOE SciDAC Lattice QCD libraries
 - QDP/C QCD Data Parallel library
 - Multi-lattice support and improved arbitrary size dense matrix support
 - Optimized for BG/P, x86

Numerical results

- Using gauge configurations from Hadron Spectrum Collaboration
 - Anisotropic: $a_s \approx 0.12$ fm, $a_t \approx 0.035$ fm
 - 24³x128 and 32³x256
 - Dynamical $m_{\pi} \approx 220 \text{ MeV} (m = -0.086)$
- Results obtained on BG/P
 - 256 cores for 24³x128
 - 1st coarse lattice: 8³x16 with 24 vectors
 - 2nd coarse lattice: 4³x4 with 32 vectors
 - 1024 cores for 32³x256
 - 1st coarse lattice: 16x8x8x32 with 24 vectors
 - 2nd coarse lattice: 4x4x4x16 with 32 vectors

"Exceptional lattice" 24³x128 aniso clover on 256 BG/P cores

minutes

Setup cost vs speedup (physical quark mass)

2 level vs 3 level

seconds per solve

Speedup vs residual (physical mass)

Error vs residual

Obligatory exascale reference

- Multigrid reduces time to solution by reducing problem size
 - Coarsest lattice has 1 site/core
- Analysis jobs are trivially parallel over gauge configurations
 - Run on as small a partition as possible
 - Can still consume a large (Leadership Class) number of flops per project, though individual jobs are not large (Leadership Class) themselves
- Configuration generation needs to scale to large machines to evolve gauge field quickly – major challenge for exascale

Obligatory exascale reference

- Remaining challenges:
 - Scale to large number of cores (while retaining similar quality of solver)
 - Integrate with HMC
 - Update low modes directly (Lüscher's DD-HMC)
 - Implement other Dirac operators
 (Domain Wall: Saul, Improved Staggered)
 - Port to other architectures (GPUs)

Summary

- Disconnected diagrams are hard (require many solves)
- Multigrid can reduce cost of solves by 20-25x
 - Error very stable and relatively small to Krylov methods
 - Speedup (and relative error) improves for larger lattices
 - Less sensitive to "exceptional" configurations
 - Makes projects requiring many solves at light masses feasible
- Requires more work to efficiently scale, but still useful even if not running at the optimal configuration