
ALGORITHMS FOR LATTICE
QCD

Kostas Orginos
William and Mary / JLab

INT EXASCALE WORKSHOP, June 27-July 1

! !

! "#$%!&!'(!)! !!!"#"$%&'()*+,$-./01&2

!

!"#"$3.04*('5*6+7$364*(8$

"#

"#

"#

!!"#"$%&'()*+,$-./01&2!$%&%'"'''!

!314*5*6+$-./01&2!!()*#!"+!,-./0)1!234!2''"!

!76(./1+8$!.5869*'+2!567/89!:7;89!

9:;$$$!"#"$3.04*('5*6+7$

</1!.7)!=61=/>)>!/?!.7@>!=/A@-B4!$%&%!=60A@-;.@/8>!;1)!>)=;1;.)C!@8./!?/61!91/6=>#!

D60A@-;.@/8>!;1)!;>>@98)C!./!;!91/6=!0;>)C!/8!.7)!.B=)!/?!=60A@-;.@/84!E7).7)1!/1!8/.!.7)!

=60A@-;.@/8!E@AA!0)!)F.)18;AAB!*@)E;0A)!G@#)#4!*@)E;0A)!0B!8/8HIJ;0!=)1>/88)AK4!;8C!.7)!

A)*)A!/?!1)*@)E!.7;.!.7)!=60A@-;.@/8!1)-)@*)>#!L7)!=60A@-;.@/8!91/6=>4!E7@-7!;1)!C).;@A)C!

?61.7)1!@8!.7)!?/AA/E@89!=;1;91;=7>4!;1)!;>!?/AA/E>#!

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

:&6.;$<$=.0>*('8*6+5!M!NF.)18;AAB!*@)E;0A)4!1)*@)E)C!=)1!%CO@8#!P;86;A!

&)-.@/8!Q'2!

:&6.;$?$=.0>*('8*6+5!M!NF.)18;AAB!*@)E;0A)!G06.!=1)-)C)C!0B!;!=/=6=!

C@>-A;@O)1K4!1)*@)E)C!0B!$%&%!R@1)-./1!!

:&6.;$@$=.0>*('8*6+5!M!S8.)18;AAB!*@)E;0A)!/8AB4!1)*@)E)C!0B!$%&%!

R@1)-./14!;*;@A;0A)!@8!/19@8;A!?/1O;.!?/1!=/.)8.@;A!6>)!;>!=;1.!/?!/.7)1!E/1T>!

:&6.;A=.0>*('8*6+5!M!S8.)18;AAB!*@)E;0A)!/8AB4!8/!1)*@)E!

9:9$ <&6.=$9$3.04*('5*6+7$

U1/6=!"!=60A@-;.@/8>!O6>.!0)!1)*@)E)C!=)1!%CO@8@>.1;.@*)!P;86;A!Q'2#!L7)>)!

=60A@-;.@/8>!E@AA!0)!O;@8.;@8)C!0B!;!A;0/1;./1B!/19;8@V;.@/8!;>!8/.)C!0)A/E#!U1/6=!"!

=60A@-;.@/8>!E@AA!8/.!-7;89)!/*)1!.@O)#!S?!;!=60A@-;.@/8!@>!/*)1.;T)8!0B!)*)8.>4!.7)!A@>.@89!

>7/6AC!-7;89)!?1/O!;!W(J!./!;!.)F.!1)?)11;A!.7;.!=1/*@C)>!;==1/=1@;.)!@8?/1O;.@/8#!L7)!

$%&%!X)0O;>.)1!E@AA!O;@8.;@8!;!-/O=1)7)8>@*)!A@>.@89!/?!U1/6=!"!D60A@-;.@/8>!/8!.7)!

$%&%!E)0!>@.)4!@8-A6C@89!.7)!?/AA/E@89#!

J@8T>!./!=60A@-;.@/8>!O;@8.;@8)C!0B!IJ;0!J@01;1BY!

D))1!1)*@)E)C!Z/618;A!;1.@-A)>!GA@8T>!./!Z/618;A>K!

$/8?)1)8-)!=1/-))C@89>!GA@8T>!/1!#=C?!?@A)>4!;>!-/=B1@97.!;AA/E>K!

J@8T>!;8C!=60A@-;.@/8>!O;@8.;@8)C!0B!.7)!$%&%!X)0O;>.)1Y!

L)-78@-;A!1)>6A.>!G)#9#4!A@8T>!./!;1[@*#/194!;#T#;#!FFF#A;8A#9/*4!0)?/1)!?/1O;A!

=60A@-;.@/8K!

$N\%<!;8C!<NJ!>=)-!>7)).>!

D1)>)8.;.@/8!*@)E91;=7>!G)#9#4!W&D%&!;8C!.;AT>!?1/O!@8*@.)C!>=);T)1>K!

J@8T>!./!.7@89>!O;@8.;@8)C!/??>@.)!./!E7@-7!$%&%!O)O0)1>!-/8.1@06.)C!

G)#9#4!];AA!R!$R(4!N(J!=1/=/>;A4!).-#K!

Tuesday, June 28, 2011

OUTLINE
• Lattice formulation of QCD

• Computation

• Configuration generation

• Hybrid Monte Carlo

• Reweighting

• Correlation functions

• Linear Solvers

• Outlook

Tuesday, June 28, 2011

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

In continuous Euclidian space:

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Lattice regulator:

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Gauge sector:

Fermion sector:

Things get nasty!

LATTICE QCD

Tuesday, June 28, 2011

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

In continuous Euclidian space:

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Lattice regulator:

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Fermion doubling

Gauge sector:

Fermion sector:

Things get nasty!

LATTICE QCD

Tuesday, June 28, 2011

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

In continuous Euclidian space:

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Lattice regulator:

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Fermion doubling

Gauge sector:

Fermion sector:

Chiral symmetry breaking

Things get nasty!

LATTICE QCD

Tuesday, June 28, 2011

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Gauge sector:

Fermion sector:

Sf (q̄, q, U) = q̄D(U)q

Sg(U) = β
∑

p

(

1 −

1

3
ReTrUp

)

−→

1

4
F 2

µν

• D(U) sparse matrix

• Wilson fermions

• Kogut-Susskind fermions

• Domain Wall

• Overlap: Not a sparse matrix

Z =
�
D[U] D[ψ̄]D[ψ] e−ψ̄D(U)ψ−Sg(U)Z =

�
D[U] D[ψ̄]D[ψ] e−ψ̄D(U)ψ−Sg(U)

Tuesday, June 28, 2011

Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling

8

Gauge sector:

Fermion sector:

Sf (q̄, q, U) = q̄D(U)q

Sg(U) = β
∑

p

(

1 −

1

3
ReTrUp

)

−→

1

4
F 2

µν

• D(U) sparse matrix

• Wilson fermions

• Kogut-Susskind fermions

• Domain Wall

• Overlap: Not a sparse matrix

Z =
�
D[U] det(D(U)) e−Sg(U)Z =

�
D[U] det(D(U)) e−Sg(U)

Tuesday, June 28, 2011

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)

Tuesday, June 28, 2011

Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)

Tuesday, June 28, 2011

Matrix Inversion: Iterative Solvers

D(U)χ = ψ

Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)

Tuesday, June 28, 2011

Matrix Inversion: Iterative Solvers

D(U)χ = ψ

Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation

• Solution of linear system: significant CPU time

• HMC needs matrix inversions

• Continuously changing U

• Fixed right hand side ψ

• Correlation functions:

• Fixed U

• Large number of orthogonal right hand sides ψ

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)

Tuesday, June 28, 2011

WHAT DOES IT TAKE?

• Hadronic scale

• characteristic length ~

• The lattice spacing

• The lattice size

• Reasonable choices

• Degrees of freedom

What does it take to do these computations?

• Hadronic scale: Λqcd ∼ 220MeV

characteristic length scale ∼ 1fm = 1× 10
−13

cm

• The lattice spacing: a� 1fm

• The lattice size: La� 1fm

pions are light! =⇒ large Compton wavelength...

• Conservative estimates: a = .1fm, ... La = 3fm

• Degrees of freedom:

2

flavor

x 3

color

2

flavor

x 4

spin

x 3

color

2

flavor

x 32 = 2.5 x 10
4 7

space time

x 4

spin

x 3

color

2

flavor
15

What does it take to do these computations?

• Hadronic scale: Λqcd ∼ 220MeV

characteristic length scale ∼ 1fm = 1× 10
−13

cm

• The lattice spacing: a� 1fm

• The lattice size: La� 1fm

pions are light! =⇒ large Compton wavelength...

• Conservative estimates: a = .1fm, ... La = 3fm

• Degrees of freedom:

2

flavor

x 3

color

2

flavor

x 4

spin

x 3

color

2

flavor

x 32 = 2.5 x 10
4 7

space time

x 4

spin

x 3

color

2

flavor
15

What does it take to do these computations?

• Hadronic scale: Λqcd ∼ 220MeV

characteristic length scale ∼ 1fm = 1× 10
−13

cm

• The lattice spacing: a� 1fm

• The lattice size: La� 1fm

pions are light! =⇒ large Compton wavelength...

• Conservative estimates: a = .1fm, ... La = 3fm

• Degrees of freedom:

2

flavor

x 3

color

2

flavor

x 4

spin

x 3

color

2

flavor

x 32 = 2.5 x 10
4 7

space time

x 4

spin

x 3

color

2

flavor
15

What does it take to do these computations?

• Hadronic scale: Λqcd ∼ 220MeV

characteristic length scale ∼ 1fm = 1× 10
−13

cm

• The lattice spacing: a� 1fm

• The lattice size: La� 1fm

pions are light! =⇒ large Compton wavelength...

• Conservative estimates: a = .1fm, ... La = 3fm

• Degrees of freedom:

2

flavor

x 3

color

2

flavor

x 4

spin

x 3

color

2

flavor

x 32 = 2.5 x 10
4 7

space time

x 4

spin

x 3

color

2

flavor
15

What does it take to do these computations?

• Hadronic scale: Λqcd ∼ 220MeV

characteristic length scale ∼ 1fm = 1× 10
−13

cm

• The lattice spacing: a� 1fm

• The lattice size: La� 1fm

pions are light! =⇒ large Compton wavelength...

• Conservative estimates: a = .1fm, ... La = 3fm

• Degrees of freedom:

2

flavor

x 3

color

2

flavor

x 4

spin

x 3

color

2

flavor

x 32 = 2.5 x 10
4 7

space time

x 4

spin

x 3

color

2

flavor
15

space time

x 32 = 2.5 x 1074

spin

x 4x 3

color

2

flavor

Algorithm scaling: ∼
1

a7

∼
1

m2.5
π

∼
1

m2.5
q

1

Tuesday, June 28, 2011

P (U) = det(D(U))nf e
−Sg(U)

Generate gauge fields with probability:

〈O〉 =
1

N

N∑

i=1

O(Ui,
1

D(Ui)
)

Then expectation values become averages:

Need an update of U that:

Duane, Kennedy, Pendleton, Roweth, Phys. Lett. B195, 216 (1987)

HYBRID MONTE CARLO

• Detailed Balance

• Ergodicity

• Avoids the computation of the determinant

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)

Tuesday, June 28, 2011

The two flavor case:

D(U)† = γ5D(U)γ5 det(D(U))2 = det(D(U)†D(U))

det(D(U)†D(U)) =

∫
dφ†dφe

−φ† 1
D†(U)D(U)

φ

Using bosonic fields:

Add conjugate momenta to the gauge fields with gaussian action:

Pµ(x) ↔ Uµ(x) Sp =
1

2

∑

µ,x

Pµ(x)2

{P, U} ↔ {P ′, U ′}Hamiltonian evolution:

H =
1

2

∑

µ,x

Pµ(x)2 + Sg(U) + φ† 1

D(U)†D(U)
φ

Tuesday, June 28, 2011

• Detailed balance

• Ergodicity
The algorithm satisfies:

In continuous fictitious evolution time:

U̇ =
∂H

∂P
Ṗ = −

∂H

∂U

Need numerical reversible integration algorithm

Leapfrog Integrator

Omelyan Integrator

Metropolis accept reject to correct energy violations

[deForcrand and Takaishi Phys.Rev. E73 (2006) 036706]

{P,U} {P’,U’}

Tuesday, June 28, 2011

Large time step Efficiency

Large Force Small time step

Use multiple time steps. Isolate sources of large force
and evolve them at smaller time steps.

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

{P,U} {P’,U’}

Tuesday, June 28, 2011

Large time step Efficiency

Large Force Small time step

Use multiple time steps. Isolate sources of large force
and evolve them at smaller time steps.

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

Example: Gauge action generates larger force
than the fermion action

{P,U} {P’,U’}

Tuesday, June 28, 2011

MULTIPLE TIME STEPS

Split up the Hamiltonian

Two evolutions

Full trajectory τ:

Time steps fulfill: N2=τ/ε2 N1= ε1/ε2

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

H =
1

2

∑

x,µ

Pµ(x)2 + S1 + S2

TU (ε) : U −→ e
iεP

U

T
1

P (ε) : P −→ P + εF1 T
2

P (ε) : P −→ P + εF2

T2 = T 1

P (ε2/2)TN1

1
(ε1)T

1

P (ε2/2)

T1 = T 1

P (ε1/2)TU (ε1)T
1

P (ε1/2)

[T2]
N2

Tuesday, June 28, 2011

MULTIPLE TIME STEPS

Split up the Hamiltonian

Two evolutions

Full trajectory τ:

Time steps fulfill: N2=τ/ε2 N1= ε1/ε2

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

H =
1

2

∑

x,µ

Pµ(x)2 + S1 + S2

TU (ε) : U −→ e
iεP

U

T
1

P (ε) : P −→ P + εF1 T
2

P (ε) : P −→ P + εF2

T2 = T 1

P (ε2/2)TN1

1
(ε1)T

1

P (ε2/2)

T1 = T 1

P (ε1/2)TU (ε1)T
1

P (ε1/2)

[T2]
N2

Tuesday, June 28, 2011

MULTIPLE TIME STEPS

Split up the Hamiltonian

Two evolutions

Full trajectory τ:

Time steps fulfill: N2=τ/ε2 N1= ε1/ε2

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

H =
1

2

∑

x,µ

Pµ(x)2 + S1 + S2

TU (ε) : U −→ e
iεP

U

T
1

P (ε) : P −→ P + εF1 T
2

P (ε) : P −→ P + εF2

T2 = T 1

P (ε2/2)TN1

1
(ε1)T

1

P (ε2/2)

T1 = T 1

P (ε1/2)TU (ε1)T
1

P (ε1/2)

[T2]
N2

Tuesday, June 28, 2011

P P’

U U’

This allows fast evolution

Small energy violation

Large acceptance

Tuesday, June 28, 2011

P P’

U U’

Small Force: Expensive

This allows fast evolution

Small energy violation

Large acceptance

Tuesday, June 28, 2011

P P’

U U’

Small Force: Expensive Large Force: Cheap

This allows fast evolution

Small energy violation

Large acceptance

Tuesday, June 28, 2011

P P’

U U’

Small Force: Expensive Large Force: Cheap

Gauge field evolution: Cheap

This allows fast evolution

Small energy violation

Large acceptance

Tuesday, June 28, 2011

THE FERMION FORCE

Harder as the quark mass gets smaller

Fermion force dominates at small quark masses

Chronological inversion [Brower, Ivanenko, Levi, KO Nucl.Phys. B484 (1997)]

Most challenging

χ =
1

D†(U)D(U)
φNeed to solve:

{P,U} {P’,U’}

Tuesday, June 28, 2011

PRECONDITIONED HMC

Use two boson fields (pseudo-fermions)

M(U) Preconditioner that generates cheap but large
force

The correction term the gives small force

Preconditioner need not be good solver preconditioner

Idea: Split up the fermion force

det
(

D(U)†D(U)
)

= det(M(U)†M(U))det

(

1

M(U)†
D(U)†D(U)

1

M(U)

)

Tuesday, June 28, 2011

PRECONDITIONED HMC

UV spectrum of D(U): Large force

 IR spectrum of D(U): Small force

Tuesday, June 28, 2011

HEAVY MASS PRECONDITIONING

χ = M†(U)[mh]
1

D†(U)[ml]D(U)[ml]
M(U)[mh]φ

χ′ =
1

M†(U)[mh]M(U)[mh]
φ′

Cheap Large force: small time step

Expensive small force: Large time step

P P’
U U’

det
(

D(U)†D(U)
)

= det(M(U)†M(U))det

(

1

M(U)†
D(U)†D(U)

1

M(U)

)

[M. Hasenbusch Phys.Lett. B519 (2001) 177-182]

Tuesday, June 28, 2011

POLYNOMIAL FILTERING
M. Peardon J. Sexton LATTICE 2002 hep-lat/0209037
W. Kamleh M. Peardon POS(LAT2005)106

M(U)−1 = P (λ, D†D)

Use Chebyshev polynomial approximation to the UV spectrum

Approximation good in [λ, 1] λ~.3

Polynomium degree is small (n ~ 16)
Most of the Fermion force comes from this limited part of the spectrum

Most eigenvalues are in this range!
Force calculation is cheap (No matrix inversion needed)

P P’
U U’

Golub Ruiz Touhmi 2005: Use this preconditioner for multiple right hand sides

Tuesday, June 28, 2011

Schwarz-Preconditioner

M(U): No links to neighboring Blocks

M(U): UV physics

Correction term needs noise on the surface only

Correction term: IR physics

Factor of ~10 speed up at small quark masses

P P’
U U’

[M. Luscher Comput.Phys.Commun. 165 (2005) 199-220]

F
ig.

1.
T

w
o-d

im
en

sion
al

cross-section
of

a
24

×
12

3
lattice

covered
b
y

n
on

-overlap
-

p
in

g
6
4

b
lo

ck
s

Λ
.

T
h
e

d
om

ain
s

Ω
an

d
Ω

∗
are

th
e

u
n
ion

s
of

th
e

b
lack

an
d

w
h
ite

b
lo

ck
s

resp
ectively,

an
d

th
eir

ex
terior

b
ou

n
d
aries

∂
Ω

an
d

∂
Ω

∗
con

sist
of

all
p
oin

ts
in

th
e

com
p
lem

en
tary

d
om

ain
rep

resen
ted

b
y

op
en

circles.

It
is

often
conven

ient
to

let
th

ese
op

erators
act

on
qu

ark
fi
eld

s
th

at
are

d
efi

n
ed

on
th

e
w

h
ole

lattice
rath

er
th

an
on

Ω
or

Ω
∗

on
ly.

T
h
e

exten
sion

is
d
on

e
in

th
e

obviou
s

w
ay

by
p
ad

d
in

g
w

ith
zeros

so
th

at
eq.

(3.1),
for

exam
p
le,

m
ay

b
e

w
ritten

as

D
=

D
Ω

+
D

Ω
∗

+
D

∂
Ω

+
D

∂
Ω

∗.
(3.2)

S
im

ilarly
th

e
fu

rth
er

d
ecom

p
osition

s
into

b
lock

op
erators

read

D
Ω

+
D

Ω
∗

=
∑

a
ll

Λ

D
Λ
,

(3.3)

D
∂
Ω

=
∑

b
la

ck
Λ

D
∂
Λ
,

D
∂
Ω

∗
=

∑

w
h
ite

Λ

D
∂
Λ
,

(3.4)

w
h
ere

D
Λ

d
en

otes
th

e
W

ilson
–D

irac
op

erator
on

th
e

b
lock

Λ
w

ith
D

irich
let

b
ou

n
d
ary

con
d
ition

s
an

d
D

∂
Λ

th
e

su
m

of
th

e
h
op

p
in

g
term

s
th

at
m

ove
th

e
fi
eld

com
p
on

ents
on

th
e

exterior
b
ou

n
d
ary

∂
Λ

of
th

e
b
lock

Λ
to

its
interior

b
ou

n
d
ary

p
oints.

3
.2

Q
u
a
rk

d
eterm

in
a
n
t

T
h
e

factorization

d
et

D
=

d
et

D
Ω

d
et

D
Ω

∗
d
et

{

1
−

D
−

1
Ω

D
∂
Ω
D

−
1

Ω
∗
D

∂
Ω

∗

}

(3.5)

is
n
ow

d
ed

u
ced

from
th

e
b
lock

stru
ctu

re
(3.1)

as
in

th
e

case
of

th
e

even
–od

d
p
recon

-
d
ition

in
g

con
sid

ered
in

su
b
sect.

2.1.
H

ow
ever,

contrary
to

w
h
at

m
ight

b
e

su
sp

ected
,

th
e

op
erator

in
th

e
cu

rly
b
racket

is
n
ot

qu
ite

th
e

sam
e

as
th

e
S
chw

arz-p
recon

d
ition

ed

7

DDHMC

Tuesday, June 28, 2011

0 10 20 30 40 50 60 70 80 90

quark mass [MeV]

0.01

0.1

1

10

100

N o
ps

 [T
flo

ps
 x

 y
ea

r]

HMC ’01
DD-HMC ’04
deflated DD-HMC ’07

physical point

DEFLATED-DD-HMC

 [Luscher 0710.5417v1]

Uses an GCR with an AMG
preconditioner

[Luscher 0706.2298v4]

Chronology reduces the refresh of
the preconditioner

Nearly removes critical slowing
down

Lattice 323 x 64 a = 0.08fm

plot by M. Luscher 1002.4232v2

Tuesday, June 28, 2011

RATIONAL HMC

Very accurate

Generated using Remez algorithm

Multi shift solver (Real roots bk>0)

Can be used to work with odd number of flavors (strange quark)

R(x) =
Pn(x)

Qm(x)
=

m∑

k=1

ak

x + bk
→

1

x1/2

[Clark and Kennedy]

det(D(U)†D(U)) = det(R(D(U)†D(U))−2)

Tuesday, June 28, 2011

RHMC AND NTH ROOT TRICK

Use different pseudo fermions for each factor

Force 1/n the original

Evolution can go faster

det(D(U)†D(U)) = det([D(U)†D(U)]1/n)n

Tuesday, June 28, 2011

RHMC MULTI TIME SCALEThe RHMC algorithm

DWF Forces (Nf = 1,β = 2.13, m = 0.01, V = 24
3.64.16)

-21- ILFTN, Jlab

[Clark, deForcrand, Kennedy PoS LAT2005 (2005) 115]

Use different time scale small and large roots.

Force 1/n the original

Tuesday, June 28, 2011

WORLD HMC PERFORMANCE

0 200 400 600 800
m
π

(Mev)

0.001

0.01

0.1

1

10

100

TF
lo

p-
ye

ar
s

DWF(0.11)
DWF(0.08)
AuxDet(0.14)
Asqtad(0.09)
Asqtad(0.06)
HISQ(0.09)
Ani. Clover(0.04/0.125)
Clover(0.06)
Clover(0.09)
tmWilson(0.08)
CI(0.15)

TFlop-years vs. m
π

10000 MD units

figure by C. Jung arXiv:001.0941v1

2 flavor Clover Defl. - DDHMC arXiv:1002.4232v2

Tuesday, June 28, 2011

ISOSPIN BREAKING

• Gauge field configurations are generated with the degenerate up
and down quark masses

• In nature mup~ 2 MeV and mdown~ 5 MeV

• Precision calculations will need to non-degenerate light quark
masses

• Nuclear physics: Fine tuned

• We need an efficient way to do calculations to slightly vary
parameters in the action

Tuesday, June 28, 2011

REWEIGHTING

• Reweighting is a method used to perform calculations using an
ensemble that does not have the action parameters we want

• Gauge configurations are generated with mup =mdown

• Observables with mup ≠ mdown can be calculated

Tuesday, June 28, 2011

�O� =
1
Z

�
D[U] det(D†(U)D(U))Nf /2

O(D(U)−1, U) e−Sg(U)

Z =
�
D[U] det(D(U)D†(U))Nf /2 e−Sg(U)

Z � =
�
D[U] det(D�(U)D�†(U))Nf /2 e−Sg(U)

�O�� =
1
Z �

�
D[U] det(D�†(U)D�(U))Nf /2

O(D�(U)−1, U) e−Sg(U)

Starting ensemble

Target ensemble

Modify the fermion action

Tuesday, June 28, 2011

Z � =
1
Z

�
D[U] e

Nf
2 [Tr log(D�†(U)D�(U))−Tr log(D†(U)D(U))] e−S(U)

�O�� =
1
Z �

�
D[U] e

Nf
2 [Tr log(D�†(U)D�(U))−Tr log(D†(U)D(U))] O(D�(U)−1, U) e−S(U)

Computational task: Evaluate the trace log of a
sparse positive definite matrix

• Use pseudofermions just like HMC

• Compute inverses of the Dirac Matrix

• Use Gaussian quadrature [Golub & Meurant ’93; Bai, Fahey & Golub ’96]

• Lanczos iteration

• Converges faster than solving a linear system (with ex. CG)

Hassenfratz et. al. arXiv:0805.2369 ;
RBC arXiv:1011.0892 ;

PACS-CS arXiv:0911.2561

Tuesday, June 28, 2011

http://arxiv.org/abs/0805.2369
http://arxiv.org/abs/0805.2369
http://arxiv.org/abs/1011.0892
http://arxiv.org/abs/1011.0892
http://arxiv.org/abs/0911.2561
http://arxiv.org/abs/0911.2561

GAUSSIAN QUADRATURE

η are vectors whose components are random Z4 noise

Tr log(A) ≈ 1
N

N�

k=1

η†k log(A)ηk

Gaussian quadrature evaluates η†k log(A)ηk

[Golub & Meurant ’93; Bai, Fahey & Golub ’96]

η†f(A)η = η†Q†f(Λ)Qη = u†f(Λ)u =
�

i

u∗i f(λi)ui

With Q the eigenvector matrix and λi the eigenvalues of A

Tuesday, June 28, 2011

µ(λ) =

0, if λ < a = λ1�i
j u∗juj , if λi ≤ λ < λi+1�n
j u∗juj , if b = λn ≤ λ

To calculate the integral use Gaussian Quadrature integration
with the orthogonal polynomial defined by the Lanczos
recursion relation

θi are the eigenvaluesand ωi the squares of the first elements
of the normalized eigenvectors of the Lanczos matrix Tk

We apply this method to reweighting: [A. Rehim W. Detmold KO]
Tuesday, June 28, 2011

 w s t 01 02 03 12 13 23
0.5604

0.5606

0.5608

0.5610

0.5612

Thin plaquette type

Av
er

ag
e

average thin plaquette, msea=−0.170 −−−> −0.175

msea=−0.175
msea=−0.170
reweighted msea=−0.170

plot by A. Rehim
Tuesday, June 28, 2011

 w s t 01 02 03 12 13 23
0.5604

0.5606

0.5608

0.5610

0.5612

0.5614

0.5616

5618

Thin plaquette type

Av
er

ag
e

average thin plaquette, msea=−0.170 −−−> −0.180

msea=−0.180
msea=−0.170
reweighted msea=−0.170

plot by A. Rehim
Tuesday, June 28, 2011

REWEIGHTING

• Is already very useful and may become even more so in the
near future

• Linear algebra methods for determining the reweighting factor
work well

• Reweighted observables agree with exact results provided
that the shifts in the action parameters are small

• Can we find further improvements? Do multi-grid like
approaches exist?

Tuesday, June 28, 2011

CORRELATION FUNCTIONS
�

dxHT (x, ξ, t) = gT (t) (9)

�P, S|O|P, S� (10)

�P, S|O|P
�
, S

�
� (11)

H
n=1(ξ, t) = A10(t) (12)

H
n=2(ξ, t) = A20(t) − (2ξ)2

C20(t)

�x�u−d = a

1 −
3g2

A + 1

8π2

m

2
π

f 2
π

 ln

m

2
π

f 2
π

 + c
m

2
π

f 2
π

�x�∆u−∆d = a
�

1 −
2g2

A + 1

8π2

m

2
π

f 2
π

 ln

m

2
π

f 2
π

 + c
�
m

2
π

f 2
π

C2pt(�p, t) = �J�p(t)J(0)�

�
dxHT (x, ξ, t) = gT (t) (9)

�P, S|O|P, S� (10)

�P, S|O|P
�
, S

�
� (11)

H
n=1(ξ, t) = A10(t) (12)

H
n=2(ξ, t) = A20(t) − (2ξ)2

C20(t)

�x�u−d = a

1 −
3g2

A + 1

8π2

m

2
π

f 2
π

 ln

m

2
π

f 2
π

 + c
m

2
π

f 2
π

�x�∆u−∆d = a
�

1 −
2g2

A + 1

8π2

m

2
π

f 2
π

 ln

m

2
π

f 2
π

 + c
�
m

2
π

f 2
π

C2pt(�p, t) = �J�p(t)J(0)�

C3pt(�p, �q; t, τ) = �J�p(t)O(�q, τ)J(0)�

Spectrum Structure

Interactions and multi-particle Spectrum

pxpxpxpxpxpx

Cmp = �J1(t)J2(t)J̄1(0)J̄2(0)�

Tuesday, June 28, 2011

DEFLATION
• Iterative solvers slow down when the matrix has very low

eigenvalues
• Basic Idea: Project out the low modes
• Computing eigenvectors is expensive

• 1 eigenvector roughly costs as much as solving one linear system
• Deflation can work well if the cost of constructing a sufficient basis

spanning the low eigenvector space is small
• Two approaches:

• Krylov methods: Computing the basis while solving a linear
system
• EigCG: symmetric problem [Stathopoulos and KO arXiv:0707.0131]

• GMRES-DR: non-symmetric problem [Morgan, Wilcox et al
arXiv:math-ph/0405053 arXiv:0707.0502 arXiv:0707.0505]

• Algebraic Multi-grid/Domain decomposition [M. Clark et.al. Brannick et al
arXiv:0707.4018] [Luscher arXiv:0706.2298] [Babich arXiv:1005.3043]

Tuesday, June 28, 2011

http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/math-ph/0405053
http://arxiv.org/abs/math-ph/0405053
http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/0707.0502

The eigCG algorithm

• Let CG do its job in solving the system

• Slowly accumulated few low eigenvectors of our matrix A
by interrupting CG without restarting it

• Use are “recurrence” relation that improves eigenvector
convergence

• Use limited memory i.e. do not store all residual vectors
that CG produces

Basic goals:

Developed with A. Stathopoulos (W&M)

Tuesday, June 28, 2011

The eigCG algorithm (Nev, m)

k = 0; j = 0;x0 = 0; r0 = b

while rk �= 0
k = k + 1
if (k = 1)

p1 = r0

else

βk =
r†k−1rk−1

r†k−2rk−2

pk = rk−1 + βkpk−1

end

αk =
r†k−1rk−1

p†kApk

xk = xk−1 + αkpk

rk = rk−1 − αkApk

end
x = xk

vj =
rk��rk

��
update the Tj matrix
if (j = m)

diagonalize Tm → Ym keep lowest Nev

diagonalize Tm−1 → Ym−1 keep lowest Nev

QR factorize Ym, Ym−1 → Q

construct H = Q
†
TmQ

H is 2Nev × 2Nev

diagonalize H → Z

vi =
m�

n=1

(QZ)nivn {i = 1..2Nev}

j = 2Nev

rebuild Tj

end

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and
fill in the tridiagonal matrix

• When max number of vectors
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the
tridiagonal matrix and saving
the new residual vectors

Nev = 2 m=9

Tuesday, June 28, 2011

The Incremental eigCG

• Most of the cost is in Rayleigh-Ritz

• Needs nev MatVec operations and several dot products

• Ultimate size of U is determined by how much cost you
can amortize for a given number of right hand sides

• Lots of the flops can be done efficiently using level 3 BLAS

For the first s1 right hand sides do:

U = [],H = [] % accumulated Ritz vectors
for i = 1 : s1 % for s1 initial rhs

x0 = UH
−1

U
H

bi % the init-CG part
[xi, V, M] = eigCG(nev, m,A, x0, bi) % eigCG with initial guess x0

V̄ = orthonormalize V against U % (Not strictly necessary)

W = AV̄ , H =
�

H U
H

W

W
H

U V̄
H

W

�
% Add nev rows to H

Set U = [U, V̄] % Augment U

end

Tuesday, June 28, 2011

EigCG for QCD

• Valence Quark mass equals to sea quark mass

0 200 400 600 800 1000 1200 1400 1600

10−6

10−4

10−2

100

 Convergence of 48 successive linear systems
 Incremental eigCG on the first 24, then Init−CG with restarting at 2.5e−5

Number of iterations (matrix−vector operations)

Li
ne

ar
 s

ys
te

m
 re

si
du

al
 n

or
m

Case: 163×64. Mass = −0.4125

0 500 1000 1500 2000 2500 3000
10−6

10−4

10−2

100

 Convergence of 48 successive linear systems
 Incremental eigCG on the first 24, then Init−CG with restarting at 5e−5

Number of iterations (matrix−vector operations)

Li
ne

ar
 s

ys
te

m
 re

si
du

al
 n

or
m

Case: 243×64. Mass = −0.4125

Nev=10, m=100

Tuesday, June 28, 2011

Critical slowing down (or lack off)

• Small volume factor of 8 speed up at msea = mval

• Large volume factor of 6 speed up at msea = mval

−0.425 −0.42 −0.415 −0.41 −0.405 −0.4
0

500

1000

1500

2000

2500

3000

sea quark mass

mcritical

Case: 16 × 16 × 16 × 64 × 12

Quark mass

M
at

ve
cs

Original CG
init−CG with 240 evecs

−0.42 −0.415 −0.41 −0.405 −0.4
0

1000

2000

3000

4000

5000

sea quark mass

mcritical

Case: 24 × 24 × 24 × 64 × 12

Quark mass

M
at

ve
cs

Original CG
init−CG with 240 evecs

For sufficiently large number of right hand sides:

EigCG [Stathopoulos and KO arXiv:0707.0131]

Numerical tests ran at NERSC (franklin) and the cyclades cluster at W&M
Tuesday, June 28, 2011

http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/0707.0502

EIGENVECTOR ACCURACY

• For light masses we get O(50) eigenvectors to single precision accuracy

0 50 100 150 200 250
10−6

10−5

10−4

10−3

10−2

10−1

100

Case: 243×64. Accuracy of final Ritz vectors

Index of lowest 240 Ritz vectors

R
es

id
ua

l n
or

m
 o

f R
itz

 v
ec

to
rs

Mass: −0.4000
Mass: −0.4125 (sea quark)
Mass: −0.4180 (≈ critical)

0 50 100 150 200 250

10−5

10−4

10−3

10−2

10−1

100

Case: 163×64. Accuracy of final Ritz vectors

Index of lowest 240 Ritz vectors

R
es

id
ua

l n
or

m
 o

f R
itz

 v
ec

to
rs

Mass: −0.4000
Mass: −0.4125 (sea quark)
Mass: −0.4200 (< critical)

R =
��Ae− λe

��

Tuesday, June 28, 2011

Large Lattice Tests

32^2 x 96 mq=−0.4125 256 vecs

0 500 1000 1500 2000 2500
10−8

10−6

10−4

10−2

100

102

iter

re
si

du
al

32^2 x 96 mq=−0.4125 256 vecs

0 500 1000 1500 2000 2500
10−8

10−6

10−4

10−2

100

102

iter

re
si

du
al

Tuesday, June 28, 2011

Large Lattice Tests

32^3 x 96 mq=−0.4125 512 vecs

0 500 1000 1500 2000 2500
10−8

10−6

10−4

10−2

100

102

iter

re
si

du
al

32^3 x 96 mq=−0.4125 512 vecs

0 500 1000 1500 2000 2500
10−8

10−6

10−4

10−2

100

102

iter

re
si

du
al

Tuesday, June 28, 2011

Large Lattice Tests

32^3 x 96 mq=−0.4125 1024 vecs

0 500 1000 1500 2000 2500
10−8

10−6

10−4

10−2

100

102

iter

re
si

du
al

32^3 x 96 mq=−0.4125 1024 vecs

0 500 1000 1500 2000 2500
10−8

10−6

10−4

10−2

100

102

iter

re
si

du
al

Tuesday, June 28, 2011

Large Lattice Tests

Tuesday, June 28, 2011

Large Lattice Tests

Tuesday, June 28, 2011

• Same idea as EigCG applied to BiCG

• Exploits the bi-Lanczos algorithm to built a deflation subspace
while solving linear systems

• Use BiCGstab for steady state inverter

• BiCGstab has good performance for certain LQCD problems

EigBiCG
Developed with A. Rehim A. Stathopoulos (W&M)

Tuesday, June 28, 2011

0 100 200 300 400 500
10−8

10−6

10−4

10−2

100

102

104

Iteration Number

R
es

id
ua

l N
or

m

BiCGstab
After 5 rhs
After 10 rhs
After 15 rhs
After 20 rhs

EigBiCG on a 124 lattice (N=2.5x105)

plot by A. Rehim
Tuesday, June 28, 2011

OTHER DEFLATION
ALGORITHMS

• GMRES-DR [Morgan, Wilcox et al arXiv:math-ph/0405053 arXiv:0707.0502 arXiv:0707.0505]

• Luscher’s Schwarz pre-conditioner (Domain-Decomposition)

• Multigrid
see talk by Balint Joo

see talks by Brower, Falgout, and Cohen

Tuesday, June 28, 2011

http://arxiv.org/abs/math-ph/0405053
http://arxiv.org/abs/math-ph/0405053
http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/0707.0502

CONCLUSIONS

• Numerical linear algebra algorithms play an important role in
Lattice QCD calculations

• Improvements by orders of magnitude have been made by
careful tuning and innovative ideas

• Still a lot needs to be done

• In some cases reformulation of the problem might become
more important than the implementation details of existing
methodologies

Tuesday, June 28, 2011

