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OUTLINE

* | attice formulation of QCD
» Computation
- Configuration generation
» Hybrid Monte Carlo
* Reweighting
» Correlation functions
* Linear Solvers

« Outlook
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LAT TICE QCD

In continuous Euclidian space:

i / DgDGDA,, e~ 513,44l

1 d
<O> = Z/DQD(?DAM O(J,Q,AM) e_S[Qa%A,u]

Lattice regulator: Gauge sector:

Uu(z) = e—iaAM(a:—I—g)

Fermion sector:

Things get nasty!
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In continuous Euclidian space:

i / DgDGDA,, e~ 513,44l

1 d
<O> = Z/DQD(?DAM O(J,Q,AM) e_S[Q7q7A,u]

Lattice regulator: Gauge sector:

Uu(z) = e—iaAu(a:—I—g)

Fermion sector:

Things get nasty!
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LAT TICE QCD

In continuous Euclidian space:

g / DgDGDA,, e~ 513,44l

1 d
<O> = Z/DQD(?DAM O(a,q’Au) e_S[Q7q7A,u]

Lattice regulator: Gauge sector:

Uu(z) = e—iaAu(a:—I—g)

Fermion sector:

Things get nasty!

Fermion doubling

f [~ ? ? Chiral symmetry breaking
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Gauge sector:
1 1
S U= ﬁ; (1 — 3ReTrUj_D> e ZFiU
q

Fermion sector: o s !

S¢(q,q,U) = qaD(U)q |

U,
D(U) sparse matrix
Wil f '
11SO1 1ermions T ‘f M T T

Kogut-Susskind fermions
Domain Wall
Overlap: Not a sparse matrix

L

z = [ DI DDl e PP 5@
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Gauge sector:
1 [
S U= ﬁz (1 - 3ReTrUj_D> . ZFW 5
- q
Fermion sector: o 5 I\
St(q,q,U) = qD(U)q |
© D y ©
U,
D(U) sparse matrix
Wil f '
11SO1n 1erimions T ‘f M T T

Kogut-Susskind fermions -
Domain Wall
Overlap: Not a sparse matrix

g / D[U] det(D(U)) e~ 5@
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Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation
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Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation
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Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation

e Solution of linear system: significant CPU time

e HMC needs matrix inversions
e (Continuously changing U
e Fixed right hand side

e (Correlation functions:
e FixedU
e Large number of orthogonal right hand sides v
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WHAT DOES IT TAKE?

® Hadronic scale

® characteristic length ~ Ay.q ~ 220MeV Ifm = 1 > TEEt e

® The lattice spacing a < 1fm

® The lattice size La > 1fm

® Reasonable choices I BRI e b = AN

® Degrees of freedom M osle e 324 s )

S

spin  Space time
flavor color P P

Algorithm scaling: Lot N

a? m2-9

RN
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HYBRID MONTE CARLO

Duane, Kennedy, Pendleton, Roweth, Phys. Lett. B195, 216 (1987)

& %/HdUu(x) O[U, DU)™Y] det (DW) DW))™/? e=5a®)

Generate gauge fields with probability:
P(U) = det(D(U))" e~V

Then expectation values become averages:

[ 1
=~ 20 gy

Need an update of U that:

e Detailed Balance
e Ergodicity

e Avoids the computation of the determinant

Tuesday, June 28, 2011



The two flavor case:

D(U)! =75 D(U)7s —  det(D(U))? = det(D(U)' D(U))

Using bosonic fields:

det(D(U)'D(U)) = / dé'dpe ® DT@D@?

Add conjugate momenta to the gauge fields with gaussian action:
1 2
Pu(z) < U, (@) Sp =5 2 Pula)
W,
Hamiltonian evolution: {P,U} < {P,U"}

1
(U)TD(U)

1
H=32 Pule) +S,(U) + '3 :
W,x
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In continuous fictitious evolution time:

Uzé’_H s OH

D) oU

The algorithm satisfies: e Detailed balance
e Ergodicity

Need numerical reversible integration algorithm

Leapfrog Integrator

Omelyan Integrator [deForcrand and Takaishi Phys.Rev. E73 (2006) 036706]

P0 QI U

Metropolis accept reject to correct energy violations

Tuesday, June 28, 2011



PO QI )

Large time step = Efficiency

Large Force = Small time step

Use multiple time steps. Isolate sources of large force
and evolve them at smaller time steps.

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]
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20 QEANAIADD )

Large time step = Efficiency

Large Force = Small time step

Use multiple time steps. Isolate sources of large force
and evolve them at smaller time steps.

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

Example: Gauge action generates larger force
than the fermion action

Tuesday, June 28, 2011



MULTIPLE TIME STEPS

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

® Split up the Hamiltonian H = % Y Pu(x)? + 81+ Ss
T,
T le) 2 p =L B
Welehe o Bl B gm Bale s 8 — B e
® [wo evolutions i = T})(El/Z)TU(El)T})(El/Q)

Ty = Tp(ea/2)T " (€1)Tp(e2/2)

® rull trajectory T ey N2

® [ime steps fulfill: No=t/e2  Ni= &i/€2
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MULTIPLE TIME STEPS

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

® Split up the Hamiltonian H = % Y Pu(z)?+ S+ S
T, b
T le) 2 p =L B
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MULTIPLE TIME STEPS

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

® Split up the Hamiltonian o % Y Pu(@)?+ 51+ 5
T,
T le) 2 p =L B /
Welehe o Bl B gm Bale s 8 — B e
2 TWO eVO|Ut|OﬂS Tl e T})(Gl/Z)TU(Gl)T})(El/Q)

Ty = Tp(ea/2)T " (€1)Tp(e2/2)

® rull trajectory T ey N2

® [ime steps fulfill: No=t/e2  Ni= &i/€2
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e [his allows fast evolution
* Small energy violation

* Large acceptance

Tuesday, June 28, 2011



Small Force: Expensive

i

e [his allows fast evolution
* Small energy violation

* Large acceptance
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Small Force: Expensive

a

e [his allows fast evolution
* Small energy violation

* Large acceptance

Large Force: Cheap

>
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Small Force: Expensive

i
[

Gauge field evolution: Cheap

e [his allows fast evolution
* Small energy violation

* Large acceptance

Large Force: Cheap

P’
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THE FERMION FORCE

Most challenging

Need to solve: X = DT(U)D(U)gb

P> Harder as the quark mass gets smaller
P> Fermion force dominates at small quark masses

? Ch I”OﬂO|Ogica| iﬂvel”SiOﬂ [Brower, Ivanenko, Levi, KO Nucl.Phys. B484 (1997)]

TN
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det (D(U)'D(U)) = det(M(U)"M(U))det (

PRECONDITIONED HMC

|dea: Split up the fermion force

 Use two boson fields (pseudo-fermions)

 M(U) Preconditioner that generates cheap but large

force

p The correction term the gives small force

p Preconditioner need not be good solver preconditioner
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PRECONDITIONED HMC

m UV spectrum of D(U): Large force

a [R spectrum of D(U): Small force
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HEAVY MASS PRECONDITIONING

[M. Hasenbusch Phys.Lett. B519 (2001) 177-182]

i (D(U)TD(U)) = det(M(U)T M (U))det (M(lU)TD(U)TD(U)ﬁU))
= 1 ¢
MT(U)[mp) M (U)[rmp]

Cheap Large force: small time step

1

x = MY (U)[my] D1 (U)[my)D(U)[my]

M(U)[mp]¢

Expensive small force: Large time step

U U
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POLYNOMIAL FILTERING

M. Peardon J. Sexton LATTICE 2002 hep-lat/0209037
W. Kamleh M. Peardon POS(LAT2005)106

Use Chebyshev polynomial approximation to the UV spectrum
M(U)_l = P()\, DTD) Approximation good in [A, |] A~.3

Polynomium degree is small (n ~ 16)
Most of the Fermion force comes from this limited part of the spectrum
Most eigenvalues are in this range!
Force calculation is cheap (No matrix inversion needed)

P P
U el

Golub Ruiz Touhmi 2005: Use this preconditioner for multiple right hand sides
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Schwarz-Preconditioner

B

[M. Luscher Comput.Phys.Commun. 165 (2005) 199-220]

Dl=MEC

e M(U):No links to neighboring Blocks

e M(U): UV physics

e (Correction term needs noise on the surface only

e (Correction term: IR physics

e Factor of ~|0 speed up at small quark masses

F
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DEFLATED-DD-HMC

[Luscher 0710.541 /vl ]

/ physical point ¢ by M. Luscher 1002.4232v2

N L I L B R I IR I N .
- 1B Uses an GCR with an AMG
- 1 preconditioner
- HMC *01 .
_ _ tweanmrmcoor| 1 B [Luscher 0706.2298v4]
< B -
E‘ - 1B Chronology reduces the refresh of
2 1 + the preconditioner
S 5
t; I 1> Nearly removes critical slowing
Z% 1L - down
: 1P Lattice 323 x 64 a = 0.08fm
0.01F .
:I | 1111 | 1 1 1 1 | I | | I | | I | | 1 1 1 1 | I | | I | | I | | I:

0 10 20 30 40 50 60 70 80 90
quark mass [MeV]
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RATIONAL HMC

[Clark and Kennedy]

det(D(U)'D(U)) = det(R(D(U) D(U))~?)

e el — 1
s Onl@) 2 x ‘|‘kbk 12

=

%

ma Very accurate
s Generated using Remez algorithm
m Multi shift solver (Real roots bx>0)

a Can be used to work with odd number of flavors (strange quark)
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RHMC AND N'™ ROOT TRICK

det(D(U) D(U)) = det([D(U) D(U)]/™)"

* Use different pseudo fermions for each factor
* Force 1/n the original

* Evolution can go faster
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RHMC MULTITIME SCALE

[Clark, deForcrand, Kennedy PoS LAT2005 (2005) 115]

1200 = | | | | | |
i 5% of total force, 950 cg iterations B Force ]
1000 = i"""""""""‘. # (G iterations N
L E. | .
200 __ i i 95% of total force, 200 cg iterations __
4 o e |
[=] : 1 _

ks ' ™ : |
5 600 i b —
o | L -
o ! : ! .
400 ! . —
| * 4
200{- ! e I .
obm  m N I I
10 1 2 3 4 5 6 7 B

D e L LT : Partial fraction

* Use different time scale small and large roots.

* Force 1/n the original
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WORLD HMC PERFORMANCE

fisure by C. Jung arXiv:001.094 | v|

TFlop-years vs. m_  [G-© DWF(.11)
G—© DWEF(0.08
10000 MD units AuxD( et(0 i 4)
100 — | | | | | | | | | )
s | | =51 Asqtad(0.09)
E [3—+1 Asqtad(0.06)
B HISQ(0.09)
10 LA\ Ani. Clover(0.04/0.125)
= Clover(0.06)
E +—+ Clover(0.09)
n tmWilson(0.08)
L x—x CI(0.15)
5 ?
>~ — ]
oy - i
15 i i
o
= 01k -
- o ]
001 =
0.00] ——1 ! |
0 200 400 600 800
m_ (Mev)

® 2 flavor Clover Defl. - DDHMC arXiv:
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ISOSPIN BREAKING

» Gauge field configurations are generated with the degenerate up
and down quark masses

* In nature my,~ 2 MeV and mdown~ 5 MeV

» Precision calculations will need to non-degenerate light quark
Masses

» Nuclear physics: Fine tuned

* We need an efficient way to do calculations to slightly vary
parameters In the action
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REWEIGHTING

» Reweighting Is a method used to perform calculations using an
ensemble that does not have the action parameters we want

- Gauge configurations are generated with mup =Mdown

» Observables with myp # Mdown can be calculated

Tuesday, June 28, 2011



Starting ensemble

(O) = % / DU] det(DT(U)D(U))N+/2 O(DU)*,U) e 5

Z = [ D] det(D(U)DI(U)M1/2 &5

larget ensemble

(O = %/D[U] det(D'T(UYD(U)N+/2 O(D'(U)~",U) e 5
. / DIU] det(D' (U)D'H(T1))Ne/2 ¢=SsU)

Modify the fermion action
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/D 2t [Triog(D' (U)D! (U))=Tr log(D' (U) D(U))] O(D'(U)~1,U) e=50)
Z’ 7

i —/D N [Triog(D'1(U) D' (U)~Tr log(DT (U)D(W))] ,~S(U)

Fvaluate the trace log of a

@ tational task: " | |
IR LaoK sparse positive definite matrix

e Use pseudofermions jUSt like HMC Hassenfratz et. al. arXiv:0805.2369
RBC arXiv:1011.0892 :

PACS-CS arXiv:0911.2561

« Compute inverses of the Dirac Matrix
» Use Gaussian quadrature  [Golub & Meurant '93; Bai, Fahey & Golub '96]
 |L.anczos iteration

» Converges faster than solving a linear system (with ex. CG)
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GAUSSIAN QUADRATURE

[Golub & Meurant '93; Bai, Fahey & Golub '96]

1
Trlog(A) ~ i Z 77;2 log(A

N are vectors whose components are random Z4 noise

Gaussian quadrature evaluates 77,1 log(A)ni

N f(A)n=n"QTf(M)Qn = v f(A)u = Zu F(A

With Q the eigenvector matrix and A; the eigenvalues of A
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b n b
) =0 F(An = S uifOius = [ dNY- uiuish = X)FO) = | du()F )

=l

0, | [ a—
,u()\) — Z; ujuj, 11 A N
Z? g T

To calculate the integral use Gaussian Quadrature integration
with the orthogonal polynomial defined by the Lanczos
recursion relation

k
[[f]%zwizf(@i)

0: are the eigenvaluesand w; the squares of the first elements
of the normalized eigenvectors of the Lanczos matrix Tk

We apply this method to reweighting; [A. Rehim W. Detmold KO]
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average thin plaquette, msea=—0.1 70 ———>-0.180

5618 | | | |
j 5 m_=-0.180
[ sea
_ =-0.17
0.5616] Meq="0-170 _
i -~ reweightedm___=-0.170|
0.5614} :

05612F =T m™ @ % & T i § &
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0.5604_ I I I I I I I I I
W S t 01 02 03 12 13 23

Thin plaquette type

plot by A. Rehim
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REWEIGHTING

* |s already very useful and may become even more so In the
near future

* Linear algebra methods for determining the rewelighting factor
work well

* Rewelghted observables agree with exact results provided
that the shifts In the action parameters are small

» Can we find further improvements! Do multi-grid like
approaches exist!
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CORRELATION FUNCT\ONS

I OQ

Copt(p, 1) = (Jp(t)J(0)) el i )

Spectrum Structure

PXPXPXPXPXD:

Crp = (J1(t)J2(t)J1(0) J2(0))

Interacﬂons and multi-particle Spectrum




DEFLATION

terative solvers slow down when the matrix has very low
eigenvalues

Basic Idea: Project out the low modes

Computing eigenvectors Is expensive
* | eigenvector roughly costs as much as solving one linear system

Deflation can work well if the cost of constructing a sufficient basis
spanning the low eigenvector space Is small

Iwo approaches:

* Krylov methods: Computing the basis while solving a linear
system

. EIgCG Symmetric problem [Stathopoulos and KO arXiv:0707.0131]

* GMRES-DR: non-symmetric problem  [Morgan Wilcox et al
arXiv:math-ph/0405053 arXiv:0707.0502 arXiv:0707.0505]

» Algebraic Multi-grid/Domain decomposition [M. Clark etal. Brannick et al
arXiv:0/07.4018] [Luscher arXiv:0706.2298] [ Babich arXiv:1005.3043]
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The eigCG algorithm

Developed with A. Stathopoulos (W&M)

Basic goals:

» Let CG do I1ts job In solving the system

* Slowly accumulated few low eigenvectors of our matrix A
by interrupting CG without restarting it

» Use are “recurrence’ relation that improves eigenvector
convergence

» Use IImited memory I.e. do not store all residual vectors
that CG produces
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The eigCG algorithm (Ney, m)

= =019 = b

while ryp #0
k=k+1
IeT—"1)

P1 =To
else

T = T%_lrk_l

U ol =

Pr = Tk—1 + BePr—1
end
o Ti];—lrk—l

; P} Apy,

Tk = Tk—1 T OLPk

Ty = Tk—1 — apApr /

end

X = T

. update the 7; matrix
if (j = m)

QR factorize Y;,, Y1 — Q
construct H = Q'7,,Q

| H is 2Nz X 2Ngy

| diagonalize H — Z

v — (@7 G R
n=1

j e 2Nev

rebuild 7’

Tuesday, June 28, 2011
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The eigCG algorithm

= * lleraleine @G ale it

« Save the residual vectors and
fill In the tridiagonal matrix

 When max number of vectors
reached: Diagonalize

* Keep only few low eigenpairs

 Continue the CG filling In the
tridiagonal matrix and saving
= the new residual vectors
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The eigCG algorithm

* Iterate the CG algorithm

* Save the residual vectors and

fill In the tridiagonal matrix

 When max number of vectors

reached: Diagonalize

* Keep only few low eigenpairs

 Continue the CG filling In the

tridiagonal matrix and saving
the new residual vectors
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The eigCG algorithm
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The eigCG algorithm

= * lleraleine @G ale it

« Save the residual vectors and
fill In the tridiagonal matrix

 When max number of vectors
reached: Diagonalize

* Keep only few low eigenpairs

@  Continue the CG filling In the
Q@ tridiagonal matrix and saving
e e the new residual vectors
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The eigCG algorithm

* Iterate the CG algorithm

* Save the residual vectors and
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 When max number of vectors
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The eigCG algorithm

= * lleraleine @G ale it

« Save the residual vectors and
fill In the tridiagonal matrix

 When max number of vectors
reached: Diagonalize

* Keep only few low eigenpairs

@  Continue the CG filling In the
Q@ tridiagonal matrix and saving
e e the new residual vectors
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The Incremental eigCG

For the first s right hand sides do:

=" — | ] % accumulated Ritz vectors
o o = % for sy initial rhs

Ty — s % the init-CG part

lz;, V, M | = eigCG(nev, m, A, zg, b;) % eigCG with initial guess xg

V = orthonormalize V against U % (Not strictly necessary)

W =AV, H = . (—]HW % Add nev rows to H

’ ESUE T -

Set U = [U, V] % Augment U

end

» Most of the cost is In Rayleigh-Ritz

* Needs ney MatVec operations and several dot products

Ultimate size of U Is determined by how much cost you
can amortize for a given number of right hand sides

Lots of the flops can be done efficiently using level 3 BLAS
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FioCG for QCD

Convergence of 48 successive linear systems Convergence of 48 successive linear systems
Incremental eigCG on the first 24, then Init-CG with restarting at 2.5e-5 Incremental eigCG on the first 24, then Init—CG with restarting at 5e-5
Case: 16°x64. Mass = —-0.4125 Case: 24°x64. Mass = -0.4125

Linear system residual norm
Linear system residual norm

0 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500 300
Number of iterations (matrix—vector operations) Number of iterations (matrix—vector operations)

* Valence Quark mass equals to sea quark mass
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Crrtical slowing down (or lack off)

E|gCG [Stathopoulos and KO arXiv:0707.0131]

Matvecs

Case: 16 x 16 x 16 x 64 x 12 Case: 24 x24 x24 x64 x 12
OO M ieal O Original CG O O Original CG
3000r ~ O . | % init-CG with 240 evecs|| 5000} % init-CG with 240 evecs|
|
: mcritical O
2 5 | sea quark mass ] |
198 | UL : sea quark mass ]
2000} LG | e : R
I ' S 3000F @ —
| Cl) -l2 | CD
1500 B I | _ (§U |
| | X |
| | O | | O
! ! 2000+ I I O ]
i | | O 1 | | O
1000 . | o | . O
| | O | | O @)
¥ [ [ [ [ O O O
| | 1000f | | ©
500+ * * | | % |
* | | | |
Kk x x * ok ¥ T R ok ok ok kR R KKK ¥
—8.425 -0.42 -0.415 -0.41 -0.405 -0.4 90.42 -0.415 -0.41 —0.405 -04
Quark mass Quark mass

For sufficiently large number of right hand sides:
» Small volume factor of 8 speed up at Msea = Myal

* Large volume factor of 6 speed up at Msea = Muyal
Numerical tests ran at NERSC (franklin) and the cyclades cluster at W&M

Tuesday, June 28, 2011


http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/0707.0502

EIGENVECTOR ACCURACY

= HA@ — )\GH

Case: 16°x64. Accuracy of final Ritz vectors Case: 24°x64. Accuracy of final Ritz vectors
T T T PP r-pr— < ] [ T T T T 3

10° 3 ] 10 3 :

w1 » qq1] |
(&) C (@) -
o i o i
> | > o i

Jn 2| BN IO E
© : © [

S € 1073 |

o 10 i 3 1 o [ g ]
= : = :
E : B

O . 4 S 10 + E
g 10 ; R

B A Mass: —0.4000 IS op SR I E R Mass: —0.4000 5

10 = AL d —— Mass: -0.4125 (sea quark)|i i — Mass: -0.4125 (sea quark);

F - - = Mass: —0.4200 (< critical) |] o - - - Mass: -0.4180 (= critical)
| | I I 10 | | I I
0 50 100 150 200 250 0 50 100 150 200 2
Index of lowest 240 Ritz vectors Index of lowest 240 Ritz vectors

* For light masses we get O(50) eigenvectors to single precision accuracy
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3272 x 96 mg=-0.4125 256 vecs
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323 x 96 mg=-0.4125 1024 vecs
10° AT r s (PR SR RS AR B R 1 |

10°

T

residual
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FioBICG

Developed with A. Rehim A. Stathopoulos (W&M)

» Same Idea as EigCG applied to BICG

» Explorts the bi-Lanczos algorithm to built a deflation subspace
while solving linear systems

» Use BICGstab for steady state inverter

» BICGstab has good performance for certain LOQCD problems
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FigBICG on a 12% lattice (N=2.5x10°)

- - -BiCGstab
—— After 5 rhs

After 10 rhs |
—— After 15 rhs
— After 20 rhs

Residual Norm

0 100 200 300 400 500
lteration Number

plot by A. Rehim
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OTHER DEFLATION
ALGORITHMS

& G M RES— D R [Morgan,Wilcox et al arXivimath-ph/0405053 arXiv:0707.0502 arXiv:0707.0505]

» Luscher's Schwarz pre-conditioner (Domain-Decomposition)

see talk by Balint Joo

» Multigrid

see talks by Brower, Falgout,and Cohen
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CONCLUSIONS

* Numerical linear algebra algorithms play an important role in
Lattice QCD calculations

* Improvements by orders of magnitude have been made by
careful tuning and innovative ideas

 Still a lot needs to be done

* In some cases reformulation of the problem might become
more important than the implementation detalls of existing
methodologies
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