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OUTLINE
• Lattice formulation of QCD

• Computation

• Configuration generation 

•  Hybrid Monte Carlo

• Reweighting

• Correlation functions  

• Linear Solvers

• Outlook
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Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]

�O� =
1

Z

�
DqDq̄DAµ O(q̄, q, Aµ) e−S[q̄,q,Aµ]

The Lattice regulator:

U

q

µ

µ

!

µ!P

Uµ(x) = e−iaAµ(x+
µ̂
2)

Fermion doubling
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Gauge sector:

Fermion sector:

Things get nasty!

LATTICE QCD
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Gauge sector:

Fermion sector:

Chiral symmetry breaking

Things get nasty!

LATTICE QCD
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Lattice QCD

In continuous Euclidean space:

Z =
�
DqDq̄DAµ e−S[q̄,q,Aµ]
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Gauge sector:

Fermion sector:

Sf (q̄, q, U) = q̄D(U)q

Sg(U) = β
∑

p

(

1 −

1

3
ReTrUp

)

−→

1

4
F 2

µν

• D(U) sparse matrix

• Wilson fermions

• Kogut-Susskind fermions

• Domain Wall

• Overlap: Not a sparse matrix

Z =
�
D[U ] D[ψ̄]D[ψ] e−ψ̄D(U)ψ−Sg(U)Z =

�
D[U ] D[ψ̄]D[ψ] e−ψ̄D(U)ψ−Sg(U)
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4
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• D(U) sparse matrix

• Wilson fermions

• Kogut-Susskind fermions

• Domain Wall

• Overlap: Not a sparse matrix

Z =
�
D[U ] det(D(U)) e−Sg(U)Z =

�
D[U ] det(D(U)) e−Sg(U)
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〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)
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Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation

〈O〉 =
1

Z
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µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2
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Matrix Inversion: Iterative Solvers

D(U)χ = ψ

Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation
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)nf /2
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Matrix Inversion: Iterative Solvers

D(U)χ = ψ

Monte Carlo integration
Hybrid Monte Carlo: No determinant evaluation

• Solution of linear system:  significant CPU time

• HMC needs matrix inversions

• Continuously  changing U

• Fixed right hand side ψ

• Correlation functions:

• Fixed U

• Large number of orthogonal right hand sides ψ

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)
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WHAT DOES IT TAKE?

• Hadronic scale  

• characteristic length ~ 

• The lattice spacing 

• The lattice size

• Reasonable choices  

• Degrees of freedom

What does it take to do these computations?

• Hadronic scale: Λqcd ∼ 220MeV

characteristic length scale ∼ 1fm = 1× 10
−13

cm

• The lattice spacing: a� 1fm

• The lattice size: La� 1fm

pions are light! =⇒ large Compton wavelength...

• Conservative estimates: a = .1fm, ... La = 3fm

• Degrees of freedom:
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Algorithm scaling: ∼
1

a7

∼
1

m2.5
π

∼
1

m2.5
q

1
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P (U) = det(D(U))nf e
−Sg(U)

Generate gauge fields with probability:

〈O〉 =
1

N

N∑

i=1

O(Ui,
1

D(Ui)
)

Then expectation values become averages:

Need an update of U that:

Duane, Kennedy, Pendleton,  Roweth, Phys. Lett. B195, 216 (1987)

HYBRID MONTE CARLO

• Detailed Balance

• Ergodicity 

• Avoids the computation of the determinant 

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)
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The two flavor case:

D(U)† = γ5D(U)γ5 det(D(U))2 = det(D(U)†D(U))

det(D(U)†D(U)) =

∫
dφ†dφe

−φ† 1
D†(U)D(U)

φ

Using bosonic fields:

Add conjugate momenta to the gauge fields with gaussian action:

Pµ(x) ↔ Uµ(x) Sp =
1

2

∑

µ,x

Pµ(x)2

{P, U} ↔ {P ′, U ′}Hamiltonian evolution:

H =
1

2

∑

µ,x

Pµ(x)2 + Sg(U) + φ† 1

D(U)†D(U)
φ
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• Detailed balance

• Ergodicity
The algorithm satisfies: 

In continuous fictitious evolution time:  

U̇ =
∂H

∂P
Ṗ = −

∂H

∂U

Need numerical reversible integration   algorithm 

Leapfrog Integrator

Omelyan Integrator

Metropolis accept reject to correct energy violations 

[deForcrand and Takaishi Phys.Rev. E73 (2006) 036706]

{P,U} {P’,U’}
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Large time step Efficiency 

Large Force Small time step

Use multiple time steps. Isolate sources of large force 
and evolve them at smaller time steps. 

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

{P,U} {P’,U’}
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Large time step Efficiency 

Large Force Small time step

Use multiple time steps. Isolate sources of large force 
and evolve them at smaller time steps. 

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

Example: Gauge action generates larger force 
than the fermion action

{P,U} {P’,U’}
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MULTIPLE TIME STEPS

Split up the Hamiltonian

Two evolutions

Full trajectory τ:

Time steps fulfill: N2=τ/ε2    N1= ε1/ε2

[J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665 (1992).]

H =
1

2

∑

x,µ

Pµ(x)2 + S1 + S2

TU (ε) : U −→ e
iεP

U

T
1

P (ε) : P −→ P + εF1 T
2

P (ε) : P −→ P + εF2

T2 = T 1

P (ε2/2)TN1

1
(ε1)T

1

P (ε2/2)

T1 = T 1

P (ε1/2)TU (ε1)T
1

P (ε1/2)

[T2]
N2
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P P’

U U’

This allows fast evolution

Small energy violation

Large acceptance
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P P’

U U’

Small Force: Expensive

This allows fast evolution

Small energy violation

Large acceptance
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P P’

U U’

Small Force: Expensive Large Force: Cheap

This allows fast evolution

Small energy violation

Large acceptance
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P P’

U U’

Small Force: Expensive Large Force: Cheap

Gauge field evolution: Cheap

This allows fast evolution

Small energy violation

Large acceptance

Tuesday, June 28, 2011



THE FERMION FORCE

Harder as the quark mass gets smaller

Fermion force dominates at small quark masses

Chronological inversion [Brower, Ivanenko, Levi, KO Nucl.Phys. B484 (1997)]

Most challenging

χ =
1

D†(U)D(U)
φNeed to solve:

{P,U} {P’,U’}

Tuesday, June 28, 2011



PRECONDITIONED HMC

Use two boson fields (pseudo-fermions)

M(U) Preconditioner that generates cheap   but large 
force

The correction term the gives small force

Preconditioner need not be good solver preconditioner

Idea:  Split up the fermion force

det
(

D(U)†D(U)
)

= det(M(U)†M(U))det

(

1

M(U)†
D(U)†D(U)

1

M(U)

)
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PRECONDITIONED HMC

UV spectrum of  D(U):  Large force 

 IR spectrum of  D(U):  Small force
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HEAVY MASS PRECONDITIONING

χ = M†(U)[mh]
1

D†(U)[ml]D(U)[ml]
M(U)[mh]φ

χ′ =
1

M†(U)[mh]M(U)[mh]
φ′

Cheap Large force:  small time step

Expensive small force:  Large time step

P P’
U U’

det
(

D(U)†D(U)
)

= det(M(U)†M(U))det

(

1

M(U)†
D(U)†D(U)

1

M(U)

)

[M. Hasenbusch Phys.Lett. B519 (2001) 177-182]
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POLYNOMIAL FILTERING
M. Peardon J. Sexton LATTICE 2002 hep-lat/0209037
W. Kamleh M. Peardon POS(LAT2005)106

M(U)−1 = P (λ, D†D)

Use Chebyshev polynomial approximation to the UV spectrum

Approximation good in [λ, 1]  λ~.3 

Polynomium degree is small (n ~ 16)
Most of the Fermion force comes from this limited part of the spectrum

Most eigenvalues are in this range!
Force calculation is cheap (No matrix inversion needed)

P P’
U U’

Golub Ruiz Touhmi 2005: Use this preconditioner for multiple right hand sides
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Schwarz-Preconditioner  

M(U): No links to neighboring Blocks

M(U): UV physics 

Correction term needs noise on the surface only

Correction term: IR physics

Factor of  ~10 speed up at small quark masses

P P’
U U’

[M. Luscher Comput.Phys.Commun. 165 (2005) 199-220]
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DEFLATED-DD-HMC

                                                 [Luscher 0710.5417v1]

Uses an GCR with an AMG 
preconditioner  

[Luscher 0706.2298v4]

Chronology reduces the refresh of 
the preconditioner

Nearly removes critical slowing 
down

Lattice 323 x 64 a = 0.08fm

plot by M. Luscher 1002.4232v2
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RATIONAL HMC

Very accurate

Generated using Remez algorithm

Multi shift solver (Real roots bk>0)

Can be used to work with odd number of flavors (strange quark)

R(x) =
Pn(x)

Qm(x)
=

m∑

k=1

ak

x + bk
→

1

x1/2

[Clark and Kennedy] 

det(D(U)†D(U)) = det(R(D(U)†D(U))−2)
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RHMC  AND  NTH  ROOT  TRICK

Use different pseudo fermions for each factor

Force 1/n the original

Evolution can go faster

det(D(U)†D(U)) = det([D(U)†D(U)]1/n)n
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RHMC MULTI TIME SCALEThe RHMC algorithm

DWF Forces (Nf = 1,β = 2.13, m = 0.01, V = 24
3.64.16)

-21- ILFTN, Jlab

[Clark, deForcrand, Kennedy PoS LAT2005 (2005) 115]

Use different time scale small and large roots.

Force 1/n the original
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WORLD HMC PERFORMANCE
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ISOSPIN BREAKING

• Gauge field configurations are generated with the degenerate up 
and down quark masses

• In nature mup~ 2 MeV and mdown~ 5 MeV

• Precision calculations will need to non-degenerate light quark 
masses

• Nuclear physics: Fine tuned

• We need an efficient way to do calculations to slightly vary 
parameters in the action
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REWEIGHTING

• Reweighting is a method used to perform calculations using an 
ensemble that does not have the action parameters we want

• Gauge configurations are generated with mup =mdown

• Observables with mup ≠ mdown can be calculated
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�O� =
1
Z

�
D[U ] det(D†(U)D(U))Nf /2

O(D(U)−1, U) e−Sg(U)

Z =
�
D[U ] det(D(U)D†(U))Nf /2 e−Sg(U)

Z � =
�
D[U ] det(D�(U)D�†(U))Nf /2 e−Sg(U)

�O�� =
1
Z �

�
D[U ] det(D�†(U)D�(U))Nf /2

O(D�(U)−1, U) e−Sg(U)

Starting ensemble

Target ensemble

Modify the fermion action
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Z � =
1
Z

�
D[U ] e

Nf
2 [Tr log(D�†(U)D�(U))−Tr log(D†(U)D(U))] e−S(U)

�O�� =
1
Z �

�
D[U ] e

Nf
2 [Tr log(D�†(U)D�(U))−Tr log(D†(U)D(U))] O(D�(U)−1, U) e−S(U)

Computational task: Evaluate the trace log of a 
sparse positive definite matrix

• Use pseudofermions just like HMC

• Compute inverses of the Dirac Matrix

• Use Gaussian quadrature   [Golub & Meurant ’93; Bai, Fahey & Golub ’96]

• Lanczos iteration 

• Converges faster than solving a linear system (with ex. CG)

Hassenfratz et. al. arXiv:0805.2369 ; 
RBC arXiv:1011.0892 ; 

PACS-CS arXiv:0911.2561
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GAUSSIAN QUADRATURE

η are vectors whose components are random Z4 noise

Tr log(A) ≈ 1
N

N�

k=1

η†k log(A)ηk

Gaussian quadrature evaluates η†k log(A)ηk

[Golub & Meurant ’93; Bai, Fahey & Golub ’96]

η†f(A)η = η†Q†f(Λ)Qη = u†f(Λ)u =
�

i

u∗i f(λi)ui

With Q the eigenvector matrix and λi the eigenvalues of A

Tuesday, June 28, 2011



µ(λ) =






0, if λ < a = λ1�i
j u∗juj , if λi ≤ λ < λi+1�n
j u∗juj , if b = λn ≤ λ

To calculate the integral use Gaussian Quadrature integration 
with the orthogonal polynomial defined by the Lanczos 
recursion relation

θi are the eigenvaluesand ωi  the squares of the first elements 
of the normalized eigenvectors of the Lanczos matrix Tk

We apply this method to reweighting: [A. Rehim W. Detmold KO]
Tuesday, June 28, 2011
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REWEIGHTING

• Is already very useful and may become even more so in the 
near future

• Linear algebra methods for determining the reweighting factor 
work well

• Reweighted observables agree with exact results provided 
that the shifts in the action parameters are small

• Can we find further improvements? Do multi-grid like 
approaches exist?
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CORRELATION FUNCTIONS
�

dxHT (x, ξ, t) = gT (t) (9)

�P, S|O|P, S� (10)

�P, S|O|P
�
, S

�
� (11)

H
n=1(ξ, t) = A10(t) (12)

H
n=2(ξ, t) = A20(t) − (2ξ)2

C20(t)

�x�u−d = a



1 −
3g2

A + 1

8π2




m

2
π

f 2
π



 ln




m

2
π

f 2
π







 + c
m

2
π

f 2
π

�x�∆u−∆d = a
�



1 −
2g2

A + 1

8π2




m

2
π

f 2
π



 ln




m

2
π

f 2
π







 + c
�
m

2
π

f 2
π

C2pt(�p, t) = �J�p(t)J(0)�

�
dxHT (x, ξ, t) = gT (t) (9)

�P, S|O|P, S� (10)

�P, S|O|P
�
, S

�
� (11)

H
n=1(ξ, t) = A10(t) (12)

H
n=2(ξ, t) = A20(t) − (2ξ)2

C20(t)

�x�u−d = a



1 −
3g2

A + 1

8π2




m

2
π

f 2
π



 ln




m

2
π

f 2
π







 + c
m

2
π

f 2
π

�x�∆u−∆d = a
�



1 −
2g2

A + 1

8π2




m

2
π

f 2
π



 ln




m

2
π

f 2
π







 + c
�
m

2
π

f 2
π

C2pt(�p, t) = �J�p(t)J(0)�

C3pt(�p, �q; t, τ ) = �J�p(t)O(�q, τ )J(0)�

Spectrum Structure

Interactions and multi-particle Spectrum

pxpxpxpxpxpx

Cmp = �J1(t)J2(t)J̄1(0)J̄2(0)�
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DEFLATION
• Iterative solvers slow down when the matrix has very low 

eigenvalues
• Basic Idea: Project out the low modes
• Computing eigenvectors is expensive 

• 1 eigenvector roughly costs as much as solving one linear system
• Deflation can work well if the cost of constructing a sufficient basis 

spanning the low eigenvector space is small
• Two approaches: 

• Krylov methods: Computing the basis while solving a linear 
system
• EigCG: symmetric problem [Stathopoulos and KO arXiv:0707.0131]

• GMRES-DR: non-symmetric problem         [Morgan, Wilcox et al 
arXiv:math-ph/0405053 arXiv:0707.0502 arXiv:0707.0505]

• Algebraic Multi-grid/Domain decomposition [M. Clark et.al. Brannick et al 
arXiv:0707.4018] [Luscher  arXiv:0706.2298] [ Babich arXiv:1005.3043]
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The eigCG algorithm

• Let CG do its job in solving the system

• Slowly accumulated few low eigenvectors of our matrix A 
by interrupting  CG without restarting it

• Use are “recurrence” relation that improves eigenvector 
convergence

• Use limited memory i.e. do not store all residual vectors 
that CG produces

Basic goals:

Developed with A. Stathopoulos (W&M)
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The eigCG algorithm (Nev, m)

k = 0; j = 0;x0 = 0; r0 = b

while rk �= 0
k = k + 1
if (k = 1)

p1 = r0

else

βk =
r†k−1rk−1

r†k−2rk−2

pk = rk−1 + βkpk−1

end

αk =
r†k−1rk−1

p†kApk

xk = xk−1 + αkpk

rk = rk−1 − αkApk

end
x = xk

vj =
rk��rk

��
update the Tj matrix
if (j = m)

diagonalize Tm → Ym keep lowest Nev

diagonalize Tm−1 → Ym−1 keep lowest Nev

QR factorize Ym, Ym−1 → Q

construct H = Q
†
TmQ

H is 2Nev × 2Nev

diagonalize H → Z

vi =
m�

n=1

(QZ)nivn {i = 1..2Nev}

j = 2Nev

rebuild Tj

end
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The eigCG algorithm
• Iterate the CG algorithm

• Save the residual vectors and 
fill in the tridiagonal matrix

• When max number of vectors 
reached: Diagonalize

• Keep only few low eigenpairs

• Continue the CG filling in the 
tridiagonal matrix and saving 
the new residual vectors

Nev = 2     m=9
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The Incremental eigCG

• Most of the cost is in Rayleigh-Ritz

• Needs nev MatVec operations and several dot products 

• Ultimate size of U is determined by how much cost you 
can amortize for a given number of right hand sides

• Lots of the flops can be done efficiently using level 3 BLAS

For the first s1 right hand sides do:

U = [ ],H = [ ] % accumulated Ritz vectors
for i = 1 : s1 % for s1 initial rhs

x0 = UH
−1

U
H

bi % the init-CG part
[xi, V, M ] = eigCG(nev, m,A, x0, bi) % eigCG with initial guess x0

V̄ = orthonormalize V against U % (Not strictly necessary)

W = AV̄ , H =
�

H U
H

W

W
H

U V̄
H

W

�
% Add nev rows to H

Set U = [U, V̄ ] % Augment U

end
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EigCG for QCD 

• Valence Quark mass equals to sea quark mass
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Case: 163×64. Mass = −0.4125
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Case: 243×64. Mass = −0.4125

Nev=10, m=100
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Critical slowing down (or lack off)

• Small volume factor of 8 speed up at msea = mval 

• Large volume factor of 6 speed up at msea = mval
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For sufficiently large number of right hand sides:

EigCG [Stathopoulos and KO arXiv:0707.0131]

 

Numerical tests ran at NERSC (franklin) and the cyclades cluster at W&M
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EIGENVECTOR  ACCURACY

• For light masses we get O(50) eigenvectors to single precision accuracy
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Mass: −0.4000
Mass: −0.4125 (sea quark)
Mass: −0.4180 (≈ critical)
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Mass: −0.4000
Mass: −0.4125 (sea quark)
Mass: −0.4200 (< critical)

R =
��Ae− λe

��
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Large Lattice Tests

32^2 x 96 mq=−0.4125 256 vecs
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Large Lattice Tests

32^3 x 96 mq=−0.4125 512 vecs
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Large Lattice Tests

32^3 x 96 mq=−0.4125 1024 vecs
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Large Lattice Tests
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Large Lattice Tests
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• Same idea as EigCG applied to BiCG

• Exploits the bi-Lanczos algorithm to built a deflation subspace 
while solving linear systems

• Use BiCGstab for steady state inverter

• BiCGstab has good performance for certain LQCD problems

EigBiCG
Developed with A. Rehim  A. Stathopoulos (W&M)
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BiCGstab
After 5 rhs
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EigBiCG on a 124 lattice (N=2.5x105)

plot by A. Rehim 
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OTHER DEFLATION 
ALGORITHMS

• GMRES-DR [Morgan, Wilcox et al arXiv:math-ph/0405053 arXiv:0707.0502 arXiv:0707.0505]

• Luscher’s Schwarz pre-conditioner  (Domain-Decomposition)

• Multigrid 
see talk by Balint Joo

see talks by Brower,  Falgout, and  Cohen

Tuesday, June 28, 2011

http://arxiv.org/abs/math-ph/0405053
http://arxiv.org/abs/math-ph/0405053
http://arxiv.org/abs/0707.0502
http://arxiv.org/abs/0707.0502


CONCLUSIONS

• Numerical linear algebra algorithms play an important role in 
Lattice QCD calculations

• Improvements by orders of magnitude have been made by 
careful tuning and innovative ideas

• Still a lot needs to be done

• In some cases reformulation of the problem might become 
more important than the implementation details of existing 
methodologies
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