

Nuclear Physics and Computing: Exascale Partnerships

Juan Meza Senior Scientist Lawrence Berkeley National Laboratory

Nuclear Science and Exascale

- **Workshop held in DC to identify scientific challenges in nuclear physics**
- **Identify areas that could benefit from extreme scale computing**
- **Hosted by DOE Advanced Scientific Computing Research and Nuclear Physics** i

Five Major Areas

Some of the report's findings

- **19 Priority Research Directions identified**
- **Extreme scale computing will provide the computational resources required to perform calculations that will unify nuclear physics research**
- **Foster collaborations between nuclear physicists, computational scientists, applied mathematicians, and physicists outside of nuclear physics**

Cold QCD and Nuclear Forces

- **Spectrum of QCD**
- **How QCD makes a proton**
- **From QCD to nuclei**
- **Fundamental symmetries**

- **Deflation techniques and other preconditioners for the Dirac operator**
- **High-precision algorithms**

Nuclear Structure and Nuclear Reactions

- **Predictive capability for the entire periodic table**
- **ab initio calculations of light nuclei and their reactions**
- **Green's Function Monte Carlo**
- **ab initio no-core shell model, extended by the resonating group method (NCSM/RGM)**
- **Coupled cluster method**

PANEL REPORT:

NUCLEAR STRUCTURE AND NUCLEAR REACTIONS

Scientific Outcomes and Impacts

Nuclear Astrophysics and a street extending new proposition of the Muclear Astrophysics and a several outstanding in the Muclean Astrophysics serves in the Muclean of the Muclean Astrophysics serves in the Muclean of the nuclear astrophysics connected to stellar evolution. The stellar evolution \mathcal{L} following: 1) conducting solar hydrodynamics, 2) performing supernova progenitor modeling, and

- **Nonlinear algebraic equations**
- **Adaptive mesh refinement**
- **Sparse, structured linear systems of equations, with physics-based preconditioners**
- **Nonlinear, stiff, coupled, and large systems of ODEs**
- **Need multi-core versions of all of these**

and observation will be elevated to that of a precision laboratory for studying the systematics of nuclear matter under extreme conditions, including heavy element nucleosynthesis. The observed solar neutrino \mathcal{L}_max

obtained with high-performance computing as the extreme computing era is approached.

Hot and Dense QCD

- **Inversion of the fermion matrix, where non-zero entries fluctuate significantly during the calculation of new field configurations**
- **Need for deflation techniques, domain decomposition, and MG**
- **Notorious "sign problem"**

Accelerator Physics

- **Maximize the production and efficiency and beam purity for rare isotope beams**
- **Optimal design for an electron-ion collider**
- **Design optimization of complex electromagnetic structures**
- **Advanced methods for accelerator simulation**

Sampling of Math/CS needs

- **Solution of systems of linear equations**
- **Deflation techniques, domain decomposition, MG, effective preconditioners**
- **Monte Carlo for high-dimensional integrals**
- **Nonlinear algebraic equations**
- **Adaptive mesh refinement**
- **Nonlinear, stiff, coupled, and large systems of ODEs**
- **Global optimization, multi-objective optimization**
- **Multicore algorithms**
- **High precision algorithms**
- **Data management and Visualization**

Computer Architecture Trends

37th List: The TOP10

Projected Performance Development

Top 500 slides courtesy of Erich Strohmaier, LBNL

Power Consumption

Power Efficiency

Cores per Socket

Top 500 slides courtesy of Erich Strohmaier, LBNL

Computing Performance Improvements will be Harder than Ever

- Used to rely on processor speeds increases plus parallelism
- Single processors are not getting faster
- Key challenge is energy!

Future: All in added concurrency, include new on-chip **concurrency**

New Processors Means New Software

- **Exascale systems will be built from chips with thousands of tiny processor cores**
	- **The architecture (how they will be organized) is still an R&D problem, but likely a mixture of core types**
	- **They will require a different kind of programming and new software** 18

Memory and Network Also Important

- **Memory as important as processors in energy**
	- **Requires basic R&D to lower energy use by memory stacking and other innovations**
- **True for all computational problems, but especially data intensive ones**

Math and Computing Science Trends

Strong-Scaling Drives Change in Algorithm Requirements

- **Parallel computing has thrived on weak-scaling for past 15 years**
- **Flat CPU performance increases emphasis on strong -scaling**
- **Focus on Strong Scaling will change requirements:**
	- **Concurrency: Will double every 18 months**
	- **Implicit Methods: Improve time-to-solution (pay for allreduce)**
	- **Multiscale/AMR methods: Only apply computation where it is required – (need better approaches for load balancing)**

Exascale Machines Require New Algorithms

- **Even with innovations:**
	- **arithmetic (flop) is "free"**
	- **data movement is expensive (time and energy)**
- **New model for algorithms and applied mathematics on these machines**
	- **Algorithms avoid data movement**
	- **Significant change from tradition of counting arithmetic operations**
- **Exascale will enable new science problems, which will also require new algorithms**

Programming Models

- **Programming Languages are a reflection of the underlying hardware**
	- **Model is rapidly diverging from our current machine model**
	- **If the programming model doesn't reflect the costs on underlying machine, then cannot fix this problem**
- **Important Language Features for Future**
	- **Hierarchical data layout statements**
	- **Loops that execute based on data locality (not thread #)**
	- **Support for non-SPMD programming model**
	- **Annotations to make functional guarantees**
	- **Abstractions for disjoint memory spaces**

Predictive Computational Science

- **Accuracy + Uncertainty Quantification = Predictive**
	- **High-fidelity algorithms, high-resolution models**
	- **Quantification of uncertainty due to mathematical models, input parameters, algorithms, codes**
	- **First necessary step in validating simulations**
- **Need to develop capability in UQ and Verification & Validation and tools to facilitate workflows**

Data Enabled Science

- **Many scientific problems are now rate-limited by access to and analysis of data**
	- **Climate models must integrate petascale data sets**
	- **Genome sequencing is outpacing computing and algorithms**
	- **Observational data from instruments will also outpace current methods**
- **Data mining and analysis methods will not scale with growth of current data sets**
- **Need to develop capabilities to rapidly access, search, and mine datasets**

Summary of Challenges to Exascale

- **System power is the primary constraint**
- **Concurrency (1000x today)**
- **Memory bandwidth and capacity are not keeping pace**
- **Processor architecture is an open question**
- **Software needs to change to match architecture**
- **Algorithms need to minimize data movement, not flops**
- **I/O and Data analytics also need to keep pace**
- **Reliability and resiliency will be critical at this scale**

Unlike the last 20 years most of these (1-7) are equally important across scales, e.g., 100 10-PF machines

Final thoughts

"Nuclear physicists are benefitting greatly from interactions and collaborations with computer scientists, and such collaborations must be further embraced and strengthened as researchers move toward the era of extreme computing"

Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of Computing at the Extreme Scale, 2009

Questions to jump-start discussion

- **How far can we go by just fine-tuning our existing algorithms for new architectures?**
- **Will we have to change the way we program large simulations?**
- **Can we reproduce results of simulations that use 1,10, 100M cores?**
- **And if we can reproduce them, how do we quantify the uncertainty in the results?**

Backup Slides

