INT Extreme Computing workshop, June 2011

No Core CI Calculationsfor light nuclear systems

Pieter Maris pmaris@iastate.eduIowa State University

IOWA STATE UNIVERSITY

SciDAC project – UNEDF

 spokespersons: Rusty Lusk (ANL), Witek Nazarewicz (ORNL/UT)http://www.unedf.org

PetaApps award

PIs: Jerry Draayer (LSU), Umit Catalyurek (OSU)Masha Sosonkina, James Vary (ISU)

INCITE award – Computational Nuclear StructurePI: James Vary (ISU)

NERSC CPU time

Universal Nuclear Energy Density Functional

SciDAC/UNEDF – Uniform description of nuclear structure

Universal Nuclear Energy Density Functional that spans the entire mass tablebased on <mark>ab initio</mark> calculations

- Greens Function MonteCarlo (Pieper *et al*, ANL)
- No-Core ConfigurationInteraction calculations
- **Coupled Cluster** (Papenbrock *et al*, ORNL)

http://www.unedf.org

spokespersons:R. Lusk (ANL)W. Nazarewicz (ORNL/UT)

 $\overline{\mathbf{u}}$

"Digital FRIB" and beyond

Configuration Interaction Methods

-
- Expand wave function in basis states $|\Psi\rangle=\sum a_i|\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \hat{\mathbf{H}} | \psi_i \rangle$ $=H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- Complete basis −→ exact result
	- caveat: complete basis is infinite dimensional
- In practice
	- **o** truncate basis
	- study behavior of observables as function of truncation
- **Computational challenge**
	- construct large ($10^{10}\times 10^{10})$ sparse symmetric real matrix H_{ij}
	- use Lanczos algorithmto obtain lowest eigenvalues & eigenvectors

Many-Body Basis Space

- Expand wave function in basis states $|\Psi\rangle=\sum a_i|\psi_i\rangle$
- Many-Body basis states $|\psi_i\rangle$
	- Slater Determinants of single-particle states $|\phi\rangle$

 $|\psi\rangle = |\phi_1\rangle \otimes \ldots \otimes |\phi_A\rangle$

- **s** single-particle basis states eigenstates of SU(2) operators $\hat{{\bf L}}^{\mathbf{2}}$ $^2,\hat{\mathrm{S}}^2$ $^{\textbf{2}},\,\hat{\textbf{J}}^{\textbf{2}}=(\hat{\textbf{L}}+\hat{\textbf{S}})^{\textbf{2}},$ and $\hat{\textbf{J}}_{\textbf{z}}$ w. quantum numbers $|\phi\rangle= |n,l,s,j,m\rangle$
- radial wavefunctions: Harmonic Oscillator

sample harmonic oscillator basis function

 M -scheme: many-body basis states eigenstates of $\mathbf{J}_{\mathbf{z}}$

$$
\mathbf{\hat{J}_z} |\psi\rangle \hspace{2mm} = \hspace{2mm} M |\psi\rangle \hspace{2mm} = \sum_{i=1}^A m_i |\psi\rangle
$$

Alternatives: LS -scheme, Total- J -scheme, Symplectic basis, \dots

Truncation Schemes

$N_{\sf max}$ truncation

- truncation on the total numberof H.O. oscillator quanta above minimal configurationfor that nucleus
- allows for exact seperation of Center-of-Mass motionand intrinsic motion
- Alternative truncation schemes
	- FCI Full Configuration Interaction – truncation onsingle-particle basis only

Importance Sampling, Monte Carlo Sampling, Symplectic, . . .

Intermezzo: Center-of-Mass excitations

- Use single-particle coordinates, not relative (Jacobi) coordinates
	- **straightforward to extend to many particles**
	- have to seperate Center-of-Mass motion from intrinsic motion
- Add Lagrange multiplier to Hamiltonian

$$
\hat{\mathbf{H}}_{\text{rel}} \longrightarrow \hat{\mathbf{H}}_{\text{rel}} + \Lambda_{CM} \left(\hat{\mathbf{H}}_{CM}^{H.O.} - \frac{3}{2} \hbar \omega \right)
$$

with \hat{H} $r_{\sf rel} = T_{\sf rel} + V_{\sf rel}$ the relative Hamiltonian

- seperates CM excitations from CM ground state $|\Phi_{CM}\rangle$
- Center-of-Mass wave function factorizes for H.O. basis functions in combination with $N_{\sf max}$ truncation

$$
\begin{array}{rcl}\n|\Psi_{\text{total}}\rangle & = & |\phi_1\rangle \otimes \ldots \otimes |\phi_A\rangle \\
& = & |\Phi_{\text{Center-of-Mass}}\rangle \otimes |\Psi_{\text{intrinsic}}\rangle\n\end{array}
$$

where

$$
\mathbf{\hat{H}}_{\text{rel}}|\Psi_{\text{j, intrinsic}}\rangle = E_{\text{j}}|\Psi_{\text{j, intrinsic}}\rangle
$$

Configuration Interaction Methods

- Expand wave function in basis states $|\Psi\rangle=\sum a_i|\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \hat{\mathbf{H}} | \psi_i \rangle$ $=H_{ij}$

$$
\hat{\mathbf{H}} = \hat{\mathbf{T}}_{\text{rel}} + \Lambda_{CM} \left(\hat{\mathbf{H}}_{CM}^{H.O.} - \frac{3}{2} \hbar \omega \right) \n+ \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots
$$

- Pick your favorite potential
	- **Argonne potentials: AV8, AV18** (plus Illinois NNN interactions)
	- Bonn potentials
	- Chiral NN interactions (plus chiral NNN interactions)
	- . . .
	- JISP16 (phenomenological NN potential)
	- . . .

Configuration Interaction Methods

- Expand wave function in basis states $|\Psi\rangle=\sum a_i|\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \hat{\mathbf{H}} | \psi_i \rangle$ $=H_{ij}$
	- large sparse symmetric matrix

Sparsity Structure for ⁶Li

- Obtain lowest eigenvaluesusing Lanczos algorithm
	- **Eigenvalues:** bound state spectrum
	- **C** Eigenvectors: nuclear wavefunctions

- Use wavefunctions to calculate observables
- Challenge: eliminate dependence on basis space truncation

CI calculation – convergence

- Expand wave function in basis states $|\Psi\rangle=\sum a_i|\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \hat{\mathbf{H}} | \psi_i \rangle$ $=H_{ij}$
- Diagonalize sparse real symmetric matrix H_{ij}
- Variational: for any finite truncation of the basis space, eigenvalue is an upper bound for the ground state energy
- **Smooth approach to asymptotic value** with increasing basis space
	- extrapolation ⇒
∗c infinite ba to infinite basis
- Convergence: independence of basis space parameters
	- **different methods** (NCFC, CC, GFMC, DME, . . .)using the same interactionshould give same resultswithin numerical errors

Challenge: achieve numerical convergence for no-core Full Configuationcalculations using finite model space calculations

- Perform a series of calculations with increasing $N_{\sf max}$ truncation (while keeping everything else fixed)
- Extrapolate to infinite model space → exact results
● hinding anorgu: expanantial in N
	- binding energy: exponential in $N_{\sf max}$

$$
E^N_{\text{binding}} = E^{\infty}_{\text{binding}} + a_1 \exp(-a_2 N_{\text{max}})
$$

- use 3 or 4 consecutive $N_{\sf max}$ values to determine $E_{\sf binding}^{\infty}$
- use $\hbar\omega$ and $N_{\sf max}$ dependence to estimate numerical error bars

Maris, Shirokov, Vary, Phys. Rev. C79, 014308 (2009)

need at least $N_{\sf max} = 8$ for meaningfull extrapolations

Challenge: achieve numerical convergence for no-core Full Configuationcalculations using finite model space calculations

Perform a series of calculations with increasing $N_{\sf max}$ truncation (while keeping everything else fixed)

Extrapolate to infinite model space \longrightarrow exact results

CI calculations – main challenges

- Single most important computational issue: exponential increase of dimensionality with increasing H.O. levels
- Additional computational issue: sparseness of matrix / number of nonzero matrix elements

High-performance computing

- **C** Hardware
	- individual desk- and lap-tops
	- **C** local linux clusters
	- **D** NERSC (DOE)
		- **10,000,000 CPU hours for ISU collaboration**
	- Leadership Computing Facilities (DOE)INCITE award – Computational Nuclear Structure (PI: J. Vary, ISU) ■ 28,000,000 CPU hours on Cray XT5 at ORNL
		- 15,000,000 CPU hours on IBM BlueGene/P at ANL
	- grand challenge award at Livermore (Jurgenson, Navratil, Ormand)
	- applied for CPU time at NCSA (NSF) Blue Waters (IBM)
- **Software**
	- Lanczos algorithm iterative methodto find lowest eigenvalues and eigenvectors of sparse matrix
	- **•** implemented in Many Fermion Dynamics
		- parallel F90/MPI/OpenMP CI code for nuclear physics

MFDn – 2-dimensional distribution of matrix

- Real symmetric matrix: store only lower (or upper) triangle
- Store Lanczos vectors distributed over all processors
- In principle, we can deal with arbitrary large vectors even if we cannot store an entire vector on ^a single processor
	- largest dimension: 8 billion, 32 GB / vector in single precision

MFDn – load-balancing

- Lexico-graphical enumeration of basis states on d procs
- Round-robin distribution of basis states over d procs

- Almost perfect load balancing
- However, no (apparent) structure in sparse matrix
	- multi-level blocking scheme to locate nonzero's (Sternberg 2008)

Under development: distribute groupds of basis states over d procs in order to retain part of the natural structure of the matrix

Strong force between nucleons

- Strong interaction in principle calculable from QCD
- Use chiral perturbation theory to obtain effective A-body Entem and Machleidt, Phys. Rev. ^C**68**, ⁰⁴¹⁰⁰¹ (2003) interaction from QCD
	- **controlled power series expansion** in Q/Λ_χ with $\Lambda_\chi \sim 1$ GeV
	- natural hierarchyfor many-body forces

 $V_{NNN}\gg V_{NNN}\gg V_{NNNN}$

- **c** in principle no free parameters
	- in practice ^a fewundetermined parameters
- **•** renormalization necessary
	- Lee–Suzuki–Okamoto
	- Similarity Renormalization Group

Similarity Renormalization Group – NN interaction

- drives interaction towards band-diagonal structure
- SRG shifts strength between 2-body and many-body forces
- **•** Initial chiral EFT Hamiltonian power-counting hierarchy $A\operatorname{\sf-body}$ forces

 $V_{NNN}\gg V_{NNN}\gg V_{NNNN}$

EXECUTE: key issue: preserve hierarchy of many-body forces

Improve convergence rate by applying SRG to N3LO

Bogner, Furnstahl, Maris, Perry, Schwenk, Vary, NPA801, ²¹ (2008), arXiv:0708.3754

Effect of three-body forces

(Jurgenson, Navratil, Furnstahl, PRC83, 034301 (2011), arXiv:1011.4085)

- Induced 3NF significantly reduce dependence on SRG parameter
- N2LO 3NF
	- binding energy in agreement with experiment
	- may need induced 4NF?
- Calculations for $A=7$ to 12 in progress (LLNL)

Do we really need 3-body interactions?

Vary, Maris, Negoita, Navratil, Gueorguiev, Ormand, Nogga, Shirokov, and Stoica, in "Exotic Nuclei and Nuclear/Particle Astrophysic (II)", AIP Conf. Proc. 972, 49 (2008); N3LO+3NF from Navratil, Gueorguiev, Vary, Ormand, and Nogga, PRL 99, 042501 (2007); for JISP16 see Shirokov, Vary, Mazur, Weber, PLB **⁶⁴⁴**, ³³ (2007)

Phenomeological NN **interaction: JISP16**

A.M. Shirokov, J.P. Vary, A.I. Mazur, T.A. Weber, PLB **⁶⁴⁴**, ³³ (2007)

J-matrix Inverse Scattering Potential tuned up to 16 O

- finite rank seperable potential in H.O. representation
- fitted to available NN scattering data
- use unitary transformations to tune off-shell interaction to
	- **•** binding energy of 3 He
	- low-lying spectrum of 6 Li (JISP6, precursor to JISP16)
	- \bullet binding energy of 16 O
- **O** good fit to a range of light nuclear properties
- very soft potential compared to other NN potentials
- nonlocal potential (by construction)
- details available at

```
http://nuclear.physics.iastate.edu/
```
Ground state energy Be-isotopes with JISP16

7Be – Ground state properties

- Binding energy converges monotonically, with optimal H.O. freuqency around $\hbar\omega = 20$ MeV to 25 MeV
- Ground state about 0.7 MeV underbound with JISP16
- Proton point radius does not converge monotonically

- Excitation energy of narrow states
	- converge rapidly
	- agree with experiments
- Broad resonances depend $\hbar\omega$
- Magnetic momentswell converged
	- 2-body currents needed for agreement with data(meson-exchange currents)

7Be – Proton density

Intrinsic density – center-of-mass motion taken out

w. Cockrell, PhD student ISU

Slow build up of asymptotic tail of wavefunction

Proton density appears to converge more rapidly at $\hbar\omega = 12.5$ MeV than at ²⁰ MeV because long-range part of wavefunction is better represented with smaller H.O. parameter

Calculation one-body observables $\langle i|{\cal O}|j\rangle\ \sim\ \int {\cal O}(r)\ r^2\ \rho_{ij}(r)\ dr$

- RMS radius: $\mathcal{O}(r) = r^2$
- Slow convergence of RMS radius due toslow build up of asymptotic tail
- Ground state RMS radius in agreement with data

7Be – Quadrupole moment

- Ground state quadrupole moment in agreement with data
- Optimal basis space around $\hbar\omega = 10$ MeV to 12 MeV
- Similar slow convergence for E2 transitions

7Be – Rotational band

E2 observables suggest rotational structure for $\frac{3}{2},~\frac{1}{2},~\frac{7}{2},~\frac{5}{2}$ states

$$
Q(J) = \frac{\frac{3}{4} - J(J+1)}{(J+1)(2J+3)} Q_0^{\frac{1}{2}}
$$

$$
B(E2; i \to f) = \frac{5}{16\pi} \left(Q_0^{\frac{1}{2}}\right)^2 \left(J_i, \frac{1}{2}; 2, 0 | J_f, \frac{1}{2}\right)^2
$$

8Be – Spectrum positive parity

- Ground state above 2α threshold: radius not converged
- Quadrupole moments 2^+ and 4^+ not converged, nor B(E2)'s, but in qualitative agreement with rotational structure

Results with JISP16 for ¹² **C**

Calculations for $N_\mathsf{max} = 10$ underway (D = 8 billion) using 100,000 cores on JaguarPF (ORNL) under INCITE award

Spectrum of ¹²**^C with JISP16 – work in progress**

spectrum 12C with JISP16 at Nmax $= 8$ (solid) and 10 (crosses)

- Pos. parity states in agreement with data, except for Hoyle state
- Electromagnetic transitions in progress
	- rotational 2^+ and 4^+ states, significantly enhanced B(E2)
	- optimal basis $\hbar\omega$ for ${\cal Q}$ and B(E2) around $\hbar\omega = 12.5$ MeV
- Neutrino and pion scattering calculations in progress

Density of ¹²**^C with JISP16**

- GFMC: AV18 ⁺ IL7, on BlueGene/P using 131,072 cores (INCITE)"More scalability, Less pain", Lusk, Pieper, and Butler, SciDAC review 17, 30 (2010)
- JISP16 density at $N_{\textsf{max}} = 8, \, \hbar\omega = 12.5 \textsf{ MeV}$

Scientific Discovery – unstable nucleus ¹⁴ **F**

Maris, Shirokov, Vary, arXiv:0911.2281 [nucl-th], Phys. Rev. C81, 021301(R) (2010)

Predicted ground state energy: 72 ± 4 MeV (unstable)

Mirror nucleus 14 B: 86 ± 4 MeV agrees with experiment 85.423 MeV

Predictions for ¹⁴**^F confirmed by experiments at Texas A&M**

Theory published PRC: Feb. 4, 2010 **Experience** B 692 (2010) 307-311 Experiment published: Aug. 3, 2010 Contents lists available at ScienceDirect insics urtruis i **Physics Letters B** www.elsevier.com/locate/physletb **SEVIFR**

First observation of 14 F

V.Z. Goldberg^{a,*}, B.T. Roeder^a, G.V. Rogachev^b, G.G. Chubarian^a, E.D. Johnson^b, C. Fu^c, A.A. Alharbi^{a, 1}, M.L. Avila ^b, A. Banu^a, M. McCleskey^a, J.P. Mitchell ^b, E. Simmons^a, G. Tabacaru^a, L. Trache^a, R.E. Tribble^a

^a Cyclotron Institute, Texas A&M University, College Station, TX 77843-3366, USA ^b Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA ^c Indiana University, Bloomington, IN 47408, USA

TAMU Cyclotron Institute

NCFC predictions (JISP16) in

Fig. 1. (Color online.) The setup for the ¹⁴F experiment. The "gray box" is the scattering chamber. See explanation in the text.

Fig. 6. ¹⁴F level scheme from this work compared with shell-model calculations, abinitio calculations $[3]$ and the ¹⁴B level scheme [16]. The shell model calculations were performed with the WBP $[21]$ and MK $[22]$ residual interactions using the code COSMO [23].

Petascale Early Science – Ab initio structure of Carbon-14

- Chiral effective 2-body plus 3-body interactions at $N_{\sf max}=8$
- Basis space dimension 1.1 billion
- Number of nonzero m.e. 39 trillion
- Memory to store matrix (CRF) 320 TB
- Total memory on JaguarPF 300 TB

ran on JaguarPF (XT5) using up to 36k 8GB processors (216k cores)after additional code-development for partial "reconstruct-on-the-fly"

Ab initio structure of Carbon-14 and Nitrogen-14

Maris, Vary, Navratil, Ormand, Nam, Dean, arXiv:1101.5124 [nucl-th]

chiral 2-body plus 3-body forces (left) and 2-body forces only (right)

Origin of the anomalously long life-time of ¹⁴ **C**

near-complete cancellationsbetween dominant contributionswithin $p\text{-}\mathsf{shell}$

very sensitiveto details

Maris, Vary, Navratil, Ormand, Nam, Dean, arXiv:1101.5124 [nucl-th]

Neutrons in ^a trap: Why

- Validate ab-initio DFT approaches against microscopic ab-initio calculations
	- **COMPARE DENSITY Matrix Expansion** and ab-initio NCFC calculations
		- using the same interaction
		- calculating the <mark>same</mark> observables for the <mark>same</mark> systems
- **Construct Universal Nuclear Energy Density Fuctional** consistent with ab-initio calculations
- **•** Theoretical 'laboratory' to explore
	- **Peroperties of different nuclear interactions**
	- \bullet effect of density and gradient on nuclear properties for different interactions
- Model for neutron-rich systems in particular those with closed shell protons (Oxygen, Calcium)

Essential in order to make meaningful comparison with other methods: quantify dependence on basis space truncation parameters

Bogner, Furnstahl, Kortelainen, Maris, Stoistov, Vary, in preparation

- **Simple model for interaction**
	- **A** Minnesota potential
- Ab-initio NCFC calculations for neutrons in H.O. potential
	- including numerical error estimates on all 'observables'
- **O** DFT using same NN interaction as NCFC
	- **C** Hartree–Fock
	- Density Matrix Expansion, Hartree–Fock
	- Density Matrix Expansion, Brueckner–Hartree–Fock
- **DET fit to NCFC results**
- **Comparison for 8, 14, and 20 neutrons**
	- **total and internal energy per neutron**
	- rms radius
	- form factor $F(q)$

Minnesota potential – Total energy vs. radius

Bogner, Kortelainen, Furnstahl, Stoistov, Vary, PM, work in progress

- nor DME/PSA HFin agreement with NCFC
- DME BHF close to NCFCresults oftenwithin error estimates
- Fit with volume termand surface term canreproduce NCFC data

Internal energy vs. radius

Variational upper bound on combination $E_\mathsf{int}+\frac{1}{2}$ 2 $\frac{1}{2}$ N m Ω^2 $^2r^2$

- Neither HF nor DME/PSA HFwithin variational bound
- DME BHF close to NCFCresults often within error estimatesand within bounds
- Fit with volume termand surface term canreproduce NCFC data

Minnesota potential – density

Bogner, Kortelainen, Furnstahl, Stoistov, Vary, PM, work in progress

- Agreement between DME/DFT calculations and NCFC
- Density profile dominated by H.O. external fieldmodefied by NN interaction

Eint vs. radius – more realistic potentials

Results virtually identical for N3LO $(\lambda=1.5)$ and JISP16 despite different results for nuclei (e.g. 186 vs. 144 MeV for $^{16}\mathrm{O})$ presented at JUSTIPEN–EFES–Hokudai–UNEDF workshop, 2008, Hokkaido, Japan

Conclusions

- MFDn: Scalable and load-balanced CI code for nuclear structure
	- new version under development, has run on 200k+ coreson Jaguar (ORNL) enabling largest model-space calculations
- Significant benefits from collaboration between nuclear physicists, applied mathematicians, and computer scientists
- JISP16, nonlocal phenomenological 2-body interaction
	- good description of light nuclei (more than just energies!)
	- rapid convergence \bullet
	- **Prediction of new isotope,** ¹⁴F
- \bullet Understanding of the anomalously large lifetime of 14 C
- Validation of DFT/DME calculations (in progress)
- Main challenge: construction and diagonalizationof extremely large (D > ¹ billion) sparse matrices
- Future developments: Taming the scale explosion