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Extreme scale computing.

100F Flops 32419,
10 PFlops -
FPFlo 3-'
- Trends g
100 TFlops
* More FLOPS é 10 TFlops ::;oo
e Limited number of users at  § '™ 2 ol
the extreme scale 100 Gricee _ _%%31......
e — gamiTers
- Problems o
* Performance LS iees L T
g 3 3

® ReSi“ency Systems

. System Peak Flops/'s
o Debugglng System Memory

Node Performance

* Getting Science done BT

- Problems will get worse [

System Size (Nodes)

* Need a “revolutionary” way g
to store, access, debug to ‘
get the science done!

ILLUSTRATION: A. TOVEY
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File System, Problems for the Xscale

Everything Must Scale with Compute

. Computing Speed
- The 1/O on a HPC system is stressed because Memory s 200TFLOP/s

* Checkpoint-restart writing '
Disk 5g

* Analysis and visualization writing ree 06

. . . . . Parallel \gqq

* Analysis and visualization reading Vo 5,008

GigaBytes/

20,000

Metadata
Inserts/sec

- Our systems are growing by 2x FLOPS/year.

. . . . Netuéorkspeed 500
- Disk Bandwidth is growing ~20%/year. O heeage
GigaBytes/sec
- Need the number of increase faster than the Garth Gibson 2010

number of nodes
« As the systems grow, the MTF grows.

- As the complexity of physics increases, the analysis/viz. output
grows.

- Need new and innovative approaches in the field to cope with
this problem.

- The biggest problem is the $SS of 1/0, since it’s not FLOPS

—
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Trends in HPC Centers

 Shared work-space - _
- Advantages

MDS
* cheaper for total storage and 1 node
bandwidth capacity

e faster connection of resources
to data

- Disadvantages

* additional interference
sources

* potential single point of
failure

s OAK
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Problems that apps face.

- They need to think about the way to write data for
* Performance in writing.
* Performance in reading.
e Ease of archiving, moving to external resources.
- Choices are often made with incomplete knowledge of what’s
happening.
e Data Layout?
e Can users really understand the “most optimal” way to lay data on disk?

* How many APIs should users be forced to learn?

- How to get an understanding of 1 XB+ of data.
e Can you analyze this?
e Can you visualize this?

* Can you read the data?

Managed by UT-Battelle @ ‘ /
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Problems to face for the exascale

- 1/O will have to be dramatically reduced (output data/
Flops).

- Applications, debugging, Visualization, Analytics, must be
tied to I/O

- Challenge is to reduce the impact of I/O on “real”
calculations.

- Forces us to rethink 1/0O.

- File formats must meet new challenges for these
challenges.
* Need to be “unbiased”, “reduce network and 1/O cost”

- Allow scientist to “plug-in” analytics, into 1/O pipelines.
* Make “plug-ins” crash proof to the application.

Managed by UT-Battelle @ : é’ EF% . A D | @ S DD L B F
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Requirements for our framework

- Provide the software infrastructure to enable a diverse
set of fusion scientists the ability to compose, run, couple,
debug, monitor, analyze, and automate the tracking of
fusion codes through common standards and easy-to-use

interfaces.

- Individual computational tasks may range from codes
running on workstations to leadership-class computers.

- Scientists need access to a software infrastructure that
can span the full range of resources needed by the
science in one coherent framework.

—-\ v
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Design Philosophy

- The overarching design philosophy of the framework is based on the
Service-Oriented Architecture for software
* Has been successfully used by enterprise software systems to deal with
system/application complexity, rapidly changing requirements, rapidly
evolving target platforms, and diverse development teams.
- Software systems and applications are constructed by assembling

services based on a universal view of their functionality using a well-
defined API.

- Services and their implementations can be changed easily, and
workflows can be customized to fit application requirements.

- A fusion simulation code can be assembled using physics, math, and
computer science service realizations such as solver libraries, 1/0
services, partitioners, and communication services, which are
created independently.

- Integrated simulation systems can be assembled using these codes
as well as coupling and data-movement services

- End-to-end application workflows can be constructed by composing
the coupled systems with services for data visualization, archiving, £
analysis, code verification, etc.

—\ ¥y
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Complexity leads to a SOA approach

- Service Oriented Architecture (SOA): Software as a composition of
“services”

* Service: “... a well-defined, self-contained, and independently
developed software element that does not depend on the
context or state of other services.”

e Abstraction & Separation
Computations from compositions and coordination

Interface from implementations

 Existing and proven concept - widely accepted/used by the
enterprise computing community

OAK
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SOA Scales

- e.g., Yahoo Data Challenges — sound familiar?
Data Challenges at Yahoo! Ricardo Baeza-Yates & Raghu Ramakrishnan, Yahoo! Research

 Data diversity — text (tagged/non-tagged), streams, structured data (i.e.,
formatted), multimedia (us: checkpoints, analysis, coupling, analysis results/
dashboard displays-graphs, ...)

* Rich set of processing — not just database queries (SQL), but analytics
(transformation, aggregation, ...)

 Attain scale (350K requests/sec! and growing) via asynchrony, loose coupling,
weak consistency (us: decoupling via ADIOS, data staging, ...)

* Leverage file system’s high bandwidth (us: Lustre vs. them: DFS++)

* Use multiple ways to represent data (us: BP, tuple spaces, ...; them: row/
column stores, DHTs)

* Deal with reliability (us: robust data format, checkpointing; them: DFS-based
replication/recoverability)

* Make it easy to use: self-management, self-tuning (us: adaptive 1/0)

* Make it easy to change: adaptability, i.e., new analyses readily added (us: that’s
the whole point of the SOA)

- If Yahoo and Google can do it, so can we!

K. Schwan OAK
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The “early days”: 2001, Reduce I/O overhead for 1 TB
data.

- S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, R. Samtaney,
“Grid -Based Parallel Data Streaming implemented for the
Gyrokinetic Toroidal Code,” SC 2003 Conference.

* V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and M. Parashar, “High Performance Threaded Data
Streaming for Large Scale Simulations” “5% |[EEE/ACM International Workshop on Grid Computing (Grid 2004)

- Key IDEAS:

e Focus on |/O and WAN for an
a p p I |Cat|0 N d r|Ve N a p p roa Ch . Overhead of the Buffering Scheme compared to GPFS

. 25 | —O— Buffering scheme
* Buffer Data, and combine all B
20 1w : T llntht\ (4} ?'..
/O requests from all _ !—E'- b rohpie
variables into 1 write call. £15; BBy iy
v | rate of GTC in 5 Yrs
* Thread the I/0. S i
) I
* Write data out on : i
the receiving side.
* Visualize the data near-real-time 13 s 7 9 1 13 15
Data Generation Rates - Mbps/Node
* Focus on the 5% rule.. Figure: 8. Overhead with Buffering Scheme

compared to GPFS (1/O).
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Problems people come up to me and ask for a solution.

- Reduce the variability of I/O, and reduce the time spent writing.
- Reduce the I/O time for my post processing.

- Let me couple codes (memory/file).

- “Plug-in” my visualization code, with no changes.

- Latest challenge:
* Read an process 12M images (2 TB) on a LCF, and write 50X the data.

* Problem:
 Read image ( 0.2 MB), process image in 10 seconds, write out 10 MB
* Work on 100K cores
* For|/O to <5 %, need open, read + write, close, <0.5 s

¥ OAK
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http: //www mcs. anl gov/upIoads/ceIs/papers/P181 9 pdf

for the Department of Energy

http://trac.mcs.anl.gov/projects/parallel-netcdf

Parallel netCDF

New file format to allow for large array support

New optimizations for non-blocking calls.

New optimizations for sub-files.

L] (o) () (]

-

PO

P3

Idea is to allow netcdf to work in parallel and for Wiie performance on Frankin
large files and large arrays.

-
o o

Write bandwidth in GB/sec
i~ o
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(a) FLASH checkpoint IO
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(b) FLASH plotfile 'O
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Parallel File System

16000
14000 LUSTRE-write
12000 » -

o
10000 = S
S000 - B
6000 |~ .
4000 n
2000 n

1 | | 1 1

0
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[ TSN SRy D

Using Subfiling to Improve
Programming Flexibility and
Performance of Parallel Shared-file 1/0O,
Gao, Liao, Nisar, Choudhary, Ross,
Latham ICPP 2009.




HDF5

- http://www.hdfgroup.org/HDF5/
- File format for storing scientific data

* To store and organize all kinds of data
* To share data, to port files from one platform to another
* To overcome a limit on number and size of the objects in the file

- Software for accessing scientific data
* Flexible I/0 library (parallel, remote, etc.)
* Efficient storage
* Available on almost all platforms
* C, F90, C++, Java APIs
e Tools (HDFView, utilities)

OAK
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Parallel netCDF-4/ HDF5

- http://www.unidata.ucar.edu/software/netcdf/
- Use HDF5 for the file format.
- Keep backward compatibility in tools to read netCDF 3 files.

- HDF5 optimized chunking
- New journaling techniques to handle resiliency.

- Many other optimizations
* http://www.hdfgroup.org/pubs/papers/howison_hdf5_lustre iasds2010.pdf

Vorpal, 40°3: 1.4 MB/proc, 11.5 MB/proc Chunked
JaguarPF

SiNVon



ADIOS: Adaptable I/0O System

- Provides portable, fast, scalable, easy-to-use, Scienificcodes | Exna
metadata rich output A pr——
. ed _ M:d'" Buffering || Schedule | | Feedback
° Slmple API T Staging
: ADIOS 3 AH IHHHL
- Change I/0 method by changing XML = ./ ™ = AHIHHHT
file only ( s EE
- Layered software architecture:

 Allows plug-ins for different I/O implementations
* Abstracts the APl from the method used for I/O

— ADI@S oS 12k bt

* New file format (ADIOS-BP) =
- Open source: ”":M

» http://www.nccs.gov/user-support/center-projects/adi - MMN~~ )
- Research methods from many groups: *

* Rutgers: DataSpaces/DART , Georgia Tech:
DataTap, Sandia: NSSI, Netcdf-4, ORNL: MPI_AMR

Hepnumer <@ CPES A OLCF PRIDGE
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ADIOS BP File Format

MPI Processor 0 MPI Processor 1 MPI Processor n Metadata segment (footer)
Process Process Process
Group O Groupl | ot Group n
Header Payload
Process Variable Attributes Index
Group Index Index Index Offset

1) ADIOS BP File Format — single file case

- Fault tolerance is critical for success of a parallel file format.
« Failure of a single writer is not fatal.

- Necessary to have a hierarchical view of the data (like HDF5).

- Tested at scale (140K processors for XGC-1) with over 20TB in a sing

Ores aolic | OPES -

G e b Mo B Ay B A h Center for Plasma Edge Simulation \.

OAK
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Natior atnry

SiNVon



ADIOS 1.2 write speeds

- Synchronous write speeds:
« S3D: 32 GB/s with 96K cores, 1.9MB/core: 0.6% |/O overhead.
« XGC1 code = 40 GB/s

¢ SCEC COde 30 G B/S 1/0 performance of the Combustion S3D
code (96K cores), and the SCEC PMCL3D
« GTC code: 40 GB/S 35 - (30K cores)
« GTS code: 35 GB/S 30 1 ® Original
25 .
* + many more. . ADIOS
i . B
- All times include s
(open, write, close, 10
flush) >
0 .
S3D SCEC
Simulation with and without ADIOS

o ¥ OAK
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How to use ADIOS to write out data

» User Fortran code
call adios open (adios handle, "particles”, fname, "w', comm, err)
#include "gwrite particles.fh” (automatically genereated)

call adios_close (adios handle,err)

» Sample XML file

<adios-group name='"particles" coordination-communicator="comm">
<var name="mype" type="integer"/>
<var name="nparam" type="integer"/>
<var name="nspecies" type="integer"/>
<var name="numberpe" type="integer"/>
<var name="nparam*numberpe" type="integer" />
<var name="nparam*mype" type="integer" />
<var name="ntracke" type="integer" gwrite="ntrackp(2)"/>
<global-bounds dimensions="nparam*numberpe,ntracke" offsets="nparam*mype, 0">

<var name="electrons" type="real" dimensions="nparam,ntracke"
gwrite="ptrackede (:,l:ntrackp(2))"/>

</global-bounds>
</adios-group>
<transport method=“MPI" group="particles"/>

HIISDM
&> gPES ADI@S

it of Energy Py e b R s B Ay B
S 0
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ADIOS MPI_LUSTRE Method

- Improved version of MPI method.

- The file is written out with Lustre stripe-aligned.

- Automatically set Lustre 1I/O parameters from XML file.
i.e., stripe count, stripe size and write block size.

For example, to stripe your file on 16 OST’ s with stripe size 4MB and write block

size 512KB,

<method group="temperature" method="MPI_LUSTRE">
stripe_count=16;stripe_size=4194304;block_size=524288

</method>

—
Managed by UT-Battelle @ g p ES
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ADIOS MPI_AMR Method

- Newly developed method that further improves 10
performance on Lustre Parallel File System

- Key improvements:
* Eliminate lock contention: Write out multiple subfiles with
each file striped on 1 storage target (OST)

* Aggregate |0 among processors: Selected processors gathers
all the data and write them out in a big chunk

* Threaded file opens: Simulation can continue while waiting for
file to be opened

* Good usability: Other than telling ADIOS the # of aggregators
to use, everything is the same as writing/reading one file to
users.

Managed by UT-Battelle @ g P ES
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ADIOS MPI_AMR Method
How does it work?

Group 0 Group 1 Group 2 Group 3

[ Interconnection Network }

T A A A
file

o OAK
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/0 interference

- Internal: at 128 MB/proc, 8k->16k process, bandwidth degrades
16-28%

IOR Aggregate Write Bandwidth (512 OST, POSIX-IO)

@iMB  m8MB
g. 50000 64MB 128MB
512MB 1024MB
2 40000 - o
)
= 30000 |
£
T 20000 -
E-_’J 10000 (-
2 0
512 1024 2048 4096 8192 16384
Number of Writers

3.44 vs. 1.86 imbalance factor

Time ({Seco

128 MB/ process, o en33B820RIBENBISTRNBIRENBIZCHSIE S

3 m I n utes apart Write Time vs. Writer (One Writer per OST, the 8th Iteration)

Time (Seco
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Total /O time (sec)

Variability in 1/O is a reality.

GTS. 4096 Processes, Cray XT5 Cray XT4, Pixie3D, 128x128x128 (16MB/var), 8 doubles

I T I I I T I I 1200
1200 seconds - [
1200 - 1000 @ Adaptive I/O
1000~ . B Non-adaptive I/0
ool 400 seconds __ 800
L
600 — — o
w00l i £ 600
|
200 1 2 3 4 Skunsé 7 8 9 10 400
- F_.
0 — i : :
512 1024 2048 4096
Processors

» Application scientist want consistent results.
« Minimize network and file system congestion.
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Reduce the variability of I/0

80000

- Adaptive methods meant to | e Peak I/O performance
W Adaptive Interference

handle the variability of the mwmererece ADOULIBO GB/S

writes. (Lofstead et. al SC

2010). § <o

- Creates sub files on each

storage target of different _

sizes. N
300 E%:PZ :{%E :j:rfe rence //

Storage Target

QOO
OO (-
@O [
®OO [
®®O (>
O®E) (-

O Writing Process
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bpls (can extract any portion of data).

- $time bpls -l record.bp -v
of groups: 1
of variables: 32
of attributes: 0
time steps: 10 starting from 1
file size: 162 GB
bp version: 1
Group record:

double /time {10}=0.003 /0.03
integer /itime {10}=3/30
double /dt {10} =0.001/ 0.001
integer /nvar scalar=8

integer /dimensions/nxd+2 scalar = 1026
integer /dimensions/nyd+2 scalar =514
integer /dimensions/nzd+2 scalar=514

double /var/vl {10, 514, 514, 1026} =1/ 1

double /var/v2 {10, 514, 514, 1026} = -2.07946e-06 / 3.43263e-08
double /var/v3 {10, 514, 514, 1026} =-1.17581e-10 / 1.24015e-10
double /var/v4 {10, 514, 514, 1026} = -3.65092e-13 / 3.65092e-13
double /var/v5 {10, 514, 514, 1026} = -7.95953e-11 / 7.95953e-11
double /var/v6 {10, 514, 514, 1026} =-0.184178 / 0.0123478
double /var/v7 {10, 514, 514, 1026} = -0.000488281 / 0.984914
double /var/v8 {10, 514, 514, 1026}=0/0

byte /name/vl_name {20}=32/111
byte /name/v2_name {20}=32/94
byte /name/v3_name {20}=32/94
byte /name/v4 name {20}=32/94
byte /name/v5 _name {20}=32/94
byte /name/v6_name {20}=32/94
byte /name/v7_name {20}=32/94
byte /name/v8_name {20}=32/101
integer /bconds {48}=-4/7
real 0m2.091s

» OAK
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ADIOS Read API

1. open restart.bp file
ADIOS_FILE * f = adios_fopen (“restart.bp”’, MPI_COMM_WORLD);

2. open a ADIOS group called “temperature” 10x10 2D array
ADIOS_GROUP * g = adios_gopen (f, “temperature”);

3. inquire the variable you want to read by its ID
for (i = 0; i < g->vars_count; i++) {
ADIOS_VARINFO * v = adios_inq_var_byid (g, i);

}
or a more common way is to inquire var by its name
% _ . . 11 ’” .
ADIOS_VARINFO * v = adios_ing_var (g, v2); start[0] = 4;
start[1] = 4;
4. read data count[0] = 2;

bytes_read = adios_read_var (g, “v2”, start, count, data); count[1] = 4;

OAK
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What about Read performance from ADIOS-BP?

- 4 papers: simple conclusion.

* Chunking has a profound effect on read
performance. T o

= NetCDF
400 1574/’@ ,ﬁr.“'g s

70 m
350 =K /’ ¢
0 —<—BP 7K n 300 | —W—NC47K S5
—#-NC47K / 3 —A—BP 16K /
550 —A—BP 16K 2250 " J
3 / g f F_,,-ﬂl"r
940 =200 B m
£ -
- F——/-—d 2150 - .
Eso / £ 0 500 1000 it
s —— — 100

:
|

o

T T T T T T T T 1

] ‘ 512 1024 1536 2048 2560 3072 3584 4096
512 1024 1536 2048 2560 3072 3584 4096 Reading Process Count

o

Reading Process Count

o s OAK
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But Why? (Look at reading 2D plane from 3D
dataset)

- Use Hilbert curve to place chunks on lustre file system with an
Elastic Data Organization.

@’@ cD— 13
0010/ ¢ P DOE

)
loto[ere|

=
II ‘)
pu- /l b%
b L4 ﬁ g
' %, s
%
0%
z
%
3
~N
V
F=y
Number of OSTs per Plane

£” 4" —-
[o[1]s]a]8]12]13]9 [10[1a[1s]11] 76 [2]3]
1 4 1
| Suipe Comt EDO ORG LC
@ @ Logieally Contiguous (a) Case S (stripe=128)
m E n — - ~~
= ! Py
(b) SFC-based Placement with EDO s 200 3
g 150 A‘M.
% E
§ 100 ;
; g ol
50 C
0 L ]
0 20 4 60 80 100 120 140 160 F
Stripe Count

(c) Hilbert Curve EDO

OAK

Managed by UT-Battelle “RIDGE
o @ Opes.  Apis

for the Department of Energy

. e la™on by deld
<ivon LA A Mkt



Six “degrees” of scientific data: Reading Patterns
for Extreme scale data.

- Read all of the variables from an integer multiple of the original
number of processors.

* Example: restart data.

- Read in just a few variables on a small number of processors.

e Visualization

- Read in a 2D slice from a 3D dataset (or lower dimensional reads)
on a small number of processors.
* Analysis.
- Read in a sub volume of a 3D dataset from a small number of
pProcessors.

* Analysis.

- Read in data in multi-resolution data.

—_—
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Problem of reading in 2D data from 3D dataset

b Srom 126 cores.

Peak 1/O Y
|

[

h N AN IW‘

" \ f
,;.qu"ﬂuﬂ \fﬂ u‘\rA Wh“ Wy

100

do
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Bandwidth(MB/Sec)
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I

ADIOS-new ADIOS-org LC

(a) Small(stripes=128) L e e e e e e e e

k Readery

i Readers
Read speed
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Read Time (Sec)
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New methods to read data in ADIOS 1.3

[

’Staglng

- Stage reads, and reduce the number of “readers”.

- Initial results when using “real” S3D data indicate 12X improvement
of reading analysis data from arbitrary number of processors with
sub-files.

OAK
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Staging I/O

- Why asynchronous I/0? at lode
* Reduces performance linkage w By e Y e
between I/O subsystem and
application
* Decouple file system performance
variations and limitations from | v
application run time potaging 1/0 Nodes

- Enables optimizations based on
dynamic number of writers ——

- High bandwidth data extraction from application

- Scalable data movement with shared resources requires us to manage the
transfers

- Scheduling properly can greatly reduce the impact of I/0

geses:: _—r OAK_‘ .
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Data Service Approach

In network data
Exchange

Managed Data Flow
)

=

l

Application / |
/ \

. __~smartTap

~

Co r?fﬁﬁ-ejl\rea

Staging Area

 Qutput costs can be reduced

« Total data size can be managed

 Input cost to workflow can be reduced

* Meta-operations can aid eventual analysis
» Application is decoupled from storage bottlenecks

[({)AJ(
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Runtime Overhead comparison for all evaluated
scheduling mechanism 16 Stagers

35
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Creation of I/O pipelines to reduce file activity

Streaming Processing in Staging Area

Traditional approach

compute 10 compute 10
@ In-Compute-Node (ICN) approach
compute ICN 10 compute ICN 10

Asynchronous I/O pipeline approach with DataTap and SmartTap

10 pipeline 10 pipeline

A

LLELE) CEEETT

compute compute compute

Processors

Differences with MapReduce:

- Two-pass streaming processing (In compute nodes or Staging Area) ,

Time

- In-memory storage for speed

-Customizable shuffling phase and additional initialize/finalize phases Example of an 1/0 pipeline

o s OAK
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ADIOS with DataSpaces for in-memory loose code coupling

. . . data
- Semantically-specialized ble

virtual shared space XGCo Datadpaces M3D-OMP
kinetic code uilibrium solve

- Constructed on-the-fly on the = Q
cloud of staging nodes O

Indexes data for quick access and server

retrieval O
data

Provides asynchronous coordination data

. . . 0
and interaction and realizes the diagnistic |~ \_ ELITE

shared-space abstraction visualization check-ELM
[

- Complements existing

interaction/coordination - Supports complex geometry-based

mechanisms queries
. In-memory code coupling - In-space (online) data transformation
becomes part of the 1/0 and manipulations
pipeline - Robust decentralized data analysis in-
the-space
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On Compute
Nodes
106 Cores

Local Statistics
(Min, Max, Mean)
Local features
Binning of data
Sorting within a bucket
Compression

Minimize cross
node
communication

-

&>

S—

SiMon

Managed by UT-Battelle
for the Department of Energy

)

Dividing up the pipeline

On Staging Post Processing
Nodes 102 Disks
103 Cores <>

)

Global Statistics
Global features
Ordered sorts
Indexing of data
Compression
Spatial correlation
Topology mapping

Temporal
Correlations

Minimize cross
timestep
communication

CpES.

Everything else

AD|Ws




JITStager

. . ) s . ™
Application Staging Area
* Runtime placement
. . ADIOS IO .
d ecisions Pre}Data processing
. ADIOS DataTap
* Dynamic code Output Data
generation @ @
* Filter specialization T ’
o |ntegl’at6d Wlth Specialized COD Specialization <
ADIOS ] /
* Moves code to
data.
OAK
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ActiveSpaces: Dynamic Code Deployment

« Provide the programming support to define custom
data kernels to operate on data objects of interest

« Provide the runtime system to dynamically deploy
binary code to DataSpaces, execute them on the
relevant data objects in parallel, and return results

. Advantages
. Data kernel size is typically smaller than data sizes

- Processing often reduces data size

« Data processing is offloaded to external resources
such as the staging node

« Faster processing time due to better data-locality in
the staging area (i.e., the data source)

Y
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In-situ viz. and

monitoring with Pixie3D,
staging 1024 cores

_ Pixmon
— 7 1 core
(login node) ol

Pixplot -
8 cores “. Pixie3d.bp

-

ParaView Server
4 cores

ParaView client
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Next generation analytics stack

| APl + meta-data description of data j Stand-

‘ Data Management Services l alone Vis
» Apps, such

Feedapack Bufferine ’ Schedule as

Multi-resolution Data Compression Data Indexing
methods methods methods

“Plug-ins” for staging resource

WWWM

Vlsualization technlques

j

sisAjeuy |esodwajogeds

Persistent Storage Methods
IDX “ HDF5 “ Raw data “ ADIOS-BP “ NetCDF-4 I

» OAK
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More up-coming features.

Multi-resolution output/analysis. Pascucci, Frank, “Global Static
Indexing for Real-time exploration of Very large regular Grids”

* |deais to re-order the data, using a Z-SFC, and to provide algorithms to
“progressively analyze the output”

Renew the focus on topological methods

* Extract the feature in the data to reduce the amount of data touching the file
system.

ADIOS 1.4 will incorporate I/O compression + multi-resolution
output formats (in BP).

Query interface coming soon.
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Managed by UT-Battelle
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Questions and challenges.

How to run complex queries for
large data saved from scientific
data.

How to perform complex
analysis with “plug-in” services
created from users, with best
numerical algorithms by
analysis/visualization experts.

How do we minimize the I/O
impact when reading and
writing data, and allow file
format to work on multitude of

file systems.

Ensure a type of QoS while
working with data.

SiNVon

AD|Ws

Data Mining Techniques for
performing fast queries.

Certificates, along with
virtualizing “analysis/
visualization” clusters, allow
scientist to move and reserve
VM to move to data to work
with “large” complex data and
multiple locations.

Many approaches to handle this
challenge. Our approach is with
the ADIOS-BP file format.

Always a challenge with large

data running on batch systems.
We need “predictable”
performance.

OAK
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