
Lattice QCD and GPU Computing

Bálint Joó, Jefferson Lab

Extreme Computing and Its Implications for the
Nuclear Physics/Applied Mathematics/Computer

Science Interface
Seattle, July 2011

Tuesday, July 5, 2011

Contents
• Motivation: Lattice QCD Calculations
• The QUDA library for LQCD on GPUs

– Capacity Use
– Capability Use

• Domain Decomposition
• LQCD Programming, Frameworks and the GPU

– Re-engineering QDP++
• Musings on the Future
• Conclusions

Tuesday, July 5, 2011

QCD In Nuclear Physics
• Can QCD predict the spectrum of hadrons ?

– what is the role of the gluons?
– what about exotic matter?

• How do quarks and gluons make nucleons?
– what are the distribution of quarks, gluons, spin, etc ?

• QCD must explain nuclear interactions
– ab initio calculations for simple systems
– bridges to higher level effective theories

• QCD phase structure, equation of state
– input to higher level models (e.g hydrodynamics)

– experiments (e.g. RHIC), astrophysics (early universe)

Hägler, Musch, Negele,
Schäfer, EPL 88 61001

Tuesday, July 5, 2011

Enter Lattice QCD...
• Lattice QCD is the only known model independent, non-

perturbative technique for carrying out QCD calculations.
– Move to Euclidean Space, Replace space-time with lattice
– Move from Lie Algebra su(3) to group SU(3) for gluons
– Gluons live on links (Wilson Lines) as SU(3) matrices
– Quarks live on sites as 3-vectors.
– Produce Lattice Versions of the Action

Evaluate Path Integral Using Markov Chain Monte Carlo Method

Tuesday, July 5, 2011

Large Scale LQCD Simulations Today
• Stage 1: Generate Configurations

– snapshots of QCD vacuum
– configurations generated in sequence
– capability computing needed for large

lattices and light quarks

• Stage 2a: Compute quark propagators
– task parallelizable (per configuration)
– capacity workload (but can also use capability h/w)

• Stage 3: Extract Physics
– on workstations,

small cluster
partitions

• Stage 2b: Contract propagators into Correlation Functions
– determines the physics you’ll see
– complicated multi-index tensor contractions

Tuesday, July 5, 2011

• Key component of Gauge Generation and Propagator Calculation

• The Dirac Operator M describes interactions of quarks & gluons :
– Features (Wilson-Clover formulation):

• dim (M) = NcxNsxV, V=323x256, Nc=3, Ns=4 -> dim~100M
• Complex, Wilson form is J-hermitian, ie: JM=M†J† (J=γ5)
• NB: γ5 = diag(1,-1) is maximally indefinite
• Condition ~ (1/mq)(1/a)5 ~ (1/mπ)2(1/a)6
• Local (nearest neighbor, or next-to-nearest neighbor)

Mx = b

Solving the Dirac Equation

Props:

M†M x = b
�
M†M + σiI

�
x = b

MD Force Terms:

Tuesday, July 5, 2011

Enter QUDA
• QUDA is a library of solvers for lattice QCD on CUDA GPUs

– Clark, et. al., Comp. Phys. Commun. 181:1517-1528, 2010
– Supports: Wilson-Clover, Improved Staggered fermions
– Domain Wall fermion support is ‘in development’
– ‘Standard’ Krylov Solvers for QCD: CG(NE), BiCGStab

• Key Optimizations
– Memory Coalescing Friendly Data Layout
– Memory Bandwidth reducing ‘tricks’

• Mixed Precision (16 bit, 32 bit, 64 bit) solvers
• Field Compression
• Dirac Basis (save loading half of t-neighbours)
• Solve in Axial Gauge (save loading t-links)

Tuesday, July 5, 2011

The Wilson-Clover Fermion Matrix

M = 1 -

total: 1824 flops,
408 words in + 24 words out
FLOP/Byte: 1.06 (SP), 0.53 (DP)

SU(3) matrix

permutes spin
components, flips
signs

⎧ ⎨ ⎩

‘get nearest neighbour’
from forward μ direction

After even-odd (red-black) preconditioning (Schur style):

Clover term
(local)

Dslash term
(nearest neighbor)

Tuesday, July 5, 2011

QUDA Tricks: Compression
• Bandwidth reduction through compression

– Store 3x3 SU(3) matrix as 6 complex numbers, or 8 reals
– spend ‘free’ flops to uncompress

• For DP no compression is best - not enough free flops

Tuesday, July 5, 2011

QUDA Optimizations
• Data Layout tuned for Memory Coalescing

– 1 thread / lattice site,
– break up data for site data into chunks (e.g. float4 for SP)

Single Precision Gauge Field Example
• V sites x 12 floats/site (2 row compressed)
• Break 12 into 3 chunks of 4 floats (float4-s)
• 1 block = V float4-s, 3 blocks for full field
• each thread reads a float4 at a time

• coalesced reads
• Add Pad to avoid ‘partition camping’
• Store ghost zones in Pad
• for spinors store ghost zones at end of data.
• similar for other types

(V-1 sites) x 12 floats12 floats

(V-1 sites) x 4 floats4 floats Pad

1 block

Host Order:

GPU Order:

Tuesday, July 5, 2011

QUDA Community
• QUDA has unified separate development branches

– Wilson, Clover, Twisted Mass, Staggered, DWF
• Integrated with Application Code - enlarge user base

– Chroma & MILC
• A group of interested developers coalesced around QUDA

– Mike Clark (Harvard), Ron Babich (BU) - QUDA leads
– Bálint Joó (Jefferson Lab) - Chroma integration
– Guochun Shi (NCSA) - Staggered Fermions, MILC integration
– Will Detmold, Joel Giedt - previous contributors
– Rich Brower, Steve Gottlieb

• Source Code Openly available from GitHub
– http://github.com/lattice/quda

Tuesday, July 5, 2011

QUDA Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 5, 2011

Face Exchange

!"#$%&'%()

*+,#$%&'%(

)-'.

/'0%&12&#$%&'%(3

4205(#6#.785 90&%5:)

;"#3<=5.$>5&8

?"#3<@2&>5&8

%A0%&12&
$%&'%()

B C 4

.785D%:.E-

:%:.E- FG2)0H

D+/#)%'8I&%.J

)-'.

*+,#18(%

K50G%&#$%&'%(

L"#4<=5.$>5&8

M"#4<@2&>5&8

N
N
N

N
N
N

Gather Kernel
packs face data into
buffers and projects
appropriately

Interior kernel computes full dslash on
interior sites, and all but the ghost
contribution to boundary sites

Exterior kernel completes boundary sites
with ghost data. Corner sites need
contribution from multiple exterior
kernel - exterior kernels run sequentially

Tuesday, July 5, 2011

Test Clusters

Westmere
Socket

IOH

Westmere
Socket

IOH

Westmere
Socket

Westmere
Socket

IOH

PLXPCIe x16
 8 + 8 GiB

QPI @ 24 GiB/s

Full QDR IB

PCIe x16
 8 + 8 GiB

JLab Nodes (Up to 32 in partition) Edge Nodes (Up to 392 in partition)

QDR/SDR IB
in x4 slot

IOH

Tesla
C2050s Tesla

M2050s

Tuesday, July 5, 2011

Basic Scaling: Clover Dslash on Edge

Tried 1, 2, 3 and 4D partitions, picked highest performance

Significant degradation
for

#GPUs > 32

Tuesday, July 5, 2011

Basic Scaling: AsqTAD on Edge

NB: Using Uncompressed Gauge Fields

Tuesday, July 5, 2011

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32

G
F
L
O

P
S

 S
u

st
a
in

e
d

Number of GPUs

Edge: 24x24x24x128

Single-Half

Single-Single

Double-Half+GF

Double-Single+GF

Double-Double+GF

Scaling Of BiCGStab Solver

Tuesday, July 5, 2011

0

500

1000

1500

2000

2500

3000

3500

8 16 32 64

G
F
L
O

P
S

 S
u

st
a
in

e
d

Number of GPUs

Single Half: 32x32x32x128

Jlab Tesla

Edge

Jlab GTX480

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32

G
F
L
O

P
S

 S
u

st
a
in

e
d

Number of GPUs

Single-Half: 24x24x24x128

Jlab Tesla

Edge

Jlab GTX480

Scaling of BiCGStab Solver
• JLab Tesla tops out at 8 GPUs
• JLab GTX480 tops out at 4 GPUs

– GTX 480 cluster uses SDR
– JLab Tesla: QDR in x4 slots

• JLab Tesla tops out at 16 GPUs
• GTX480 tops out at 8 GPUs
• Edge can almost make it to 32.

0

500

1000

1500

2000

2500

3000

3500

8 16 32 64

G
F
L
O

P
S

 S
u

st
a
in

e
d

Number of GPUs

Single Half: 32x32x32x128

Jlab Tesla

Edge

Jlab GTX480

Tuesday, July 5, 2011

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30

G
flo

p

ngpus

Strong scaling of KS matmult
pms7-hardware= 2xGTX470+inf-QDR

30%

10
0%

324

323x64
484

644

Others Fare Similarly

• Budapest-Wuppertal code. Courtesy of Kálmán Szabó
• 323 top out at 4-8 GPUs, 484 and 644 fare better (larger surf/vol)

Tuesday, July 5, 2011

Perfect for Capacity Work
• 4-8 GPUs can fit into a single host these days (8 in Tyan)
• Or can use 2 nodes with 4 GPU each + SDR connection
• Remaining Capacity Challenge: Amdahl’s law

– Solver is fast, but everything else is SLOW
• Source (right hand side) creation
• Link Smearing
• Contractions

– 8-12 cores for CPU work - used to be 128-256 cores.
• Solution:

– Move more work to GPU - (come back to this later)
– Rearrange Workflow

Tuesday, July 5, 2011

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

Isoscalar Meson Spectrum

• Dudek et. al. PRD, 83, 111502(R) (2011)
• 31 Million solves + large variational basis + anisotropic lattice
• All T to all T ‘perambulators’ using Distillation method
• Excited States, JPC identfication, light/strange quark content
• Exotics within reach of JLab@12 GeV

Tuesday, July 5, 2011

5

Our science requires that we advance
computational capability 1000x over the
next decade
Mission: Deploy and operate
the computational resources
required to tackle global challenges

Vision: Maximize scientific productivity
and progress on the largest scale
computational problems

•! Deliver transforming discoveries
in climate, materials, biology,
energy technologies, etc.

•! Ability to investigate otherwise
inaccessible systems, from
regional climate impacts to energy
grid dynamics

•! Providing world-class computational resources and
specialized services for the most computationally
intensive problems

•! Providing stable hardware/software path of increasing
scale to maximize productive applications development

Cray XT5 2+ PF
Leadership system for
science

OLCF-3: 10-20 PF
Leadership system with
some HPCS technology

2009 2012 2015 2018

OLCF-5: 1 EF

OLCF-4: 100-250 PF
based on DARPA
HPCS technology

What about Capability?
• Accelerated Capability

Machines are on the Way
– More Clusters like Edge
– Cray XK6 System
– Keeneland Phase 2
– Titan@OLCF
– Nvidia’s Echelon?

• What about Capability GPU
Capability?

Tuesday, July 5, 2011

What about Capability?
• Communication appears to be scaling bottleneck
• How to ameliorate this:

– Wait for technology to improve
– Change Algorithm, do less communication

• Domain Decomposed Preconditioner:
– Divide lattice into domains, assign 1 domain to 1 GPU
– No communication between domains (interior kernel only)
– Apply preconditioner with ‘inner solve’
– Need a ‘flexible’ solver (variable preconditioner) e.g. GCR,

Flexible GMRES etc.

Tuesday, July 5, 2011

Preconditioned GCR Algorithm

Solve for χl l=k,k-1,...,0:

Compute correction for x:

(Re)Start

Generate Subspace Update Solution

repeat for all k or until
residuum drops enough
or convergence

Full precision restart
if not converged

Quantities with
^ are in reduced
precision

normalize ẑk

Orthogonalize ẑ-s

Apply
Preconditioner:

reduced precision
inner solve

Reduced
Precision

M v

Tuesday, July 5, 2011

Size Matters

Tuesday, July 5, 2011

Size Matters
• No comms between domains

– Block Diagonal Preconditioner
• Blocks impose λ cutoff
• Finer Blocks

– lose structure in operator
– lose long wavelength/low energy modes

• Heuristically (& from Lüscher)
– keep wavelengths of ~ O(ΛQCD-1)
– ΛQCD -1 ~ 1fm
– Aniso: (as=0.125fm, at=0.035fm)

• Our case: 83x32 blocks are ideal
– Iso: 1fm ~ 8-10 sites (a=0.11fm)
– Min. blocksize has scaling implications

(1/2)λMax

Tuesday, July 5, 2011

Size Matters
• No comms between domains

– Block Diagonal Preconditioner
• Blocks impose λ cutoff
• Finer Blocks

– lose structure in operator
– lose long wavelength/low energy modes

• Heuristically (& from Lüscher)
– keep wavelengths of ~ O(ΛQCD-1)
– ΛQCD -1 ~ 1fm
– Aniso: (as=0.125fm, at=0.035fm)

• Our case: 83x32 blocks are ideal
– Iso: 1fm ~ 8-10 sites (a=0.11fm)
– Min. blocksize has scaling implications

(1/2)λMax

(1/2)λMax

Tuesday, July 5, 2011

Size Matters
• No comms between domains

– Block Diagonal Preconditioner
• Blocks impose λ cutoff
• Finer Blocks

– lose structure in operator
– lose long wavelength/low energy modes

• Heuristically (& from Lüscher)
– keep wavelengths of ~ O(ΛQCD-1)
– ΛQCD -1 ~ 1fm
– Aniso: (as=0.125fm, at=0.035fm)

• Our case: 83x32 blocks are ideal
– Iso: 1fm ~ 8-10 sites (a=0.11fm)
– Min. blocksize has scaling implications

(1/2)λMax

(1/2)λMax

(1/2)λMax

Tuesday, July 5, 2011

Size Matters

Trade-off outer iterations v.s. inner
iterations in the preconditioner.

Problem: Optimize wallclock time

Tuesday, July 5, 2011

Strong Scaling of DD-GCR
• With DD-GCR, we can scale up

to 256 GPUs on 323x256 lattice.
– 83x32 blocks: 512 GPUs max

• > 2x more FLOPS v.s. BiCGStab
– but only 1.64x faster walltime
– trade off fast inner/slow outer

iterations
• Scaling drops off at 256 GPUs

– outer solver + reductions (?)
• This is just the first step: need

more research on ‘architecture
aware’ algorithms

Babich, Clark, Joó, Shi, Brower, Gottlieb, accepted for SC’11

Tuesday, July 5, 2011

“Please sir, can we have some more?”
• 17.2 Tflop on 256 GPUs = 69 Gflops/GPU

– using all the precision tricks
– The local problem is small

• Low occupancy?
• Driver overheads?
• Communications?

– Single GPU runs
• with ‘strong scaling’ local volumes

– Communications seems not the worst bottleneck here.
• Current Multi-GPU sweet spot: 128 GPUs ~ 100Gflop/GPU.
• Ambition: 403x256 lattice, 1000 GPUs, 50-100 Tflops(?)
• Large algorithmic space to explore

!"##$%

&'(#)%

+,%-,.,+)/-01
+,.,.,+)/%+.1

+,.,0,+)/+2-1

3

+3

03

-3

.3

%33

%+3

%03

%-3

%.3

+33

!45(6#)7&8)9:45()$"#)6;<'6)=;69>#:)?@;>)$"#)A96$4B7&8)@95545()

C:6':")D'6?

C:6':")!45(6#

CCB7EF

CCB7EF)/A96$4B7&81

6;<'6)=;69>#)/59>G#@);?)7&8:):4>96'$#H1

7
I
J
K
&
!
L7
&
8

Tuesday, July 5, 2011

Related Algorithmic Work
• Schwarz preconditioner

– (SAP+GCR) Lüscher, Comput.Phys.Commun. 156(2004) 209-220
– (RAS+ flex. BiCGStab) Osaki, Ishikawa, PoS(Lattice2010), 036

• Domain Decomposed HMC
– Lüscher, JHEP 0305 (2003) 052
– Lüscher, Comput.Phys.Commun.165:199-220,2005

• Multi-Grid:
• Babich et. al., Phys.Rev.Lett.105:201602,2010
• Osborn et. al., PoS Lattice2010:037,2010

• Deflation:
– Lüscher, JHEP 0707:081,2007, JHEP 0712:011,2007
– Stathopoulos & Orginos: SIAM J. Sci. Comput. 32, pp. 439-462

Challenge:
Updating

preconditioner/
deflation space
in the Gauge

evolution.

Tuesday, July 5, 2011

Programming GPUs, Frameworks
• GPU Programming today

– CUDA, OpenCL, #pragma
– low level, ‘general’

• Libraries: e.g. QUDA
– Hide low level details
– problem & architecture specific

• Domain Specific Frameworks
– QDP++, QLUA, QDP/C
– productivity enabling ‘glue’

• Application Suites: e.g. Chroma
– large, prefer not to re-engineer
– too large investment to throw away

0

75,000

150,000

225,000

300,000

QUDA QDP++ Chroma

Lines of C/C++ Code per package measured on
May 11, 2011, using CLOC
http://cloc.sourceforge.net/

Chroma CPS

Tools: QA0, GCC-BGL, Workflow, Viz

QMP
Message Passing

QLA
Linear Algebra

QMT
Threading

QCD Data Parallel (QDP, QDP++) QIO

Dslashes MDWF QDPQOP QUDA

MILC

Tuesday, July 5, 2011

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/

QDP++
• QDP++ - a Data-Parallel Domain Specific framework for LQCD

– Embedded in C++
– provides LQCD types/operations
– arithmetic ‘expressions’ on multi-tensor index objects

• productivity layer - the purpose is to be expressive
– bedrock for Chroma code

• Implemented using
– nested templates (for indices)
– expression templates (ETs)
– specialization (optimization)

• Parallel nature hidden from user
– ETs hide OpenMP, QMT, QMP/MPI etc

LatticeFermion x, y,z;
Real a = Real(5);
gaussian(x);
gaussian(y);
x += a*y;
z = shift(x,0,FORWARD);
Double zn = norm2(z);

parallel reduce

parallel ‘forall’

Tuesday, July 5, 2011

• Large library of LQCD components (solvers, gauge generation algs.)
– e.g. CGNE, BiCGStab, HMC, Symplectic Integrators, physics...
– implemented using QDP++ or wrapping 3rd party routines

• Key applications: chroma (analysis) and hmc (gauge generation)
• Applications driven by XML
• Can use as ‘out of the box’ application or as library to build on

Chroma

Chroma
application

SysSolverLinOp

for(int ...)
{
 M(p,x,PLUS)
 Double pn=norm2(p);
 ...

// Setup code...
...
// Call 3rd party lib
quda_invert(...);
...

CGNE in
QDP++

CGNE from
QUDA

<?xml version=‘1.0’?>
<chroma>
 ..
 <InvertParams>
 <invType>CG_INVERTER</invType>
 <RsdCG>1.0e-8</RsdCG>
 <MaxCG>1000</MaxCG>
 </InvertParams>
 ...
</chroma>

Chroma Library:

Tuesday, July 5, 2011

Re-engineering QDP++
• Move QDP++ to the GPU

– Speed up all of Chroma that is not part of QUDA library
– Needs to be ‘just good enough’

• there will always be super optimized libraries
• but need to counter Amdahl’s law for rest

• How to generate GPU Kernels for QDP++ expressions?
– Compile time: e.g. source to source transformation

• must deal with QDP++ types, expressions
• but must retain full C++ compatibility
• not easy, maybe doable with a framework like ROSE?

– Alternative: Generate kernels ‘just-in-time’ (JIT)
• The use of expression templates can help

Tuesday, July 5, 2011

 JIT + Expression templates
• QDPExpr is a C++ Type

– recursive
– compile time type signature
– run time parameter binding

• First instantiation:
– Code Generation for signature
– Just-In-Time Compilation
– Dynamic Library of kernels

• Data movement
– explicit v.s. automated

// QDP++ code
LatticeFermion x, y;
Real a=Real(1);
gaussian(x);
y += a * x;

QDPExpr<OpMultiply,... >

Reference<> Reference<>

a x

y OpAddAssign

evaluate()
{ // Lookup
 KFunc* kernel = lookupKernel(hash);
 // Generate if needed
 if(!kernel) generate(kernel, hash);
 (*KFunc)(...); // Invoke
}

Tuesday, July 5, 2011

Current Progress
• Two independent efforts have sprung up

– Frank Winter (U. of Edinburgh), Jie Chen (Jefferson Lab)
• Code Generation triggered by the QDP++ evaluate() functions
• Just In Time compilation: use ‘system()’ call to invoke nvcc
• Loading Resulting Kernels

– generate .o file, use system dynamic loader interface or
– generate PTX, load with CUDA driver API

• Data Movement:
– push() pop() interface to push/pop data onto/off device
– automatic management of data movement (sfw. cache)

• Beginning collaboration to join the two efforts

Tuesday, July 5, 2011

Re-Engineering QDP++
• Chroma Jacobi

Smearing Interface
accelerated. (F. Winter)

5.3. Mixed Memory Domain Approach
Since device memory is (still) a scarce resource a

mixed memory domain approach was favoured: Mem-
ory allocation for lattice wide objects utilise the host
memory domain. Upon user request the object’s data
is pushed to the device memory domain.

A new feature coming with version 4.0 of CUDA pro-
vides the possibility to page-lock a memory range that
was already allocated (4kB aligned) in the host memory
domain and to add it to the tracking mechanism to auto-
matically accelerate calls to device copy functions. This
mechanism eliminates the previously required staging
of data regions prior to the transfer to device memory
and reduces pressure on host memory.

5.4. Thread Geometry
The evaluation function template in ET based vector

libraries typically triggers execution of a loop iterating
over all lattice sites. With CUDA, parallelisation of a
loop is typically carried out unrolling the loop and start-
ing one thread per loop iteration.

Since here the applied CUDA kernels not only consist
of processing the lattice sites but also require prior re-
construction of the expression tree it was not clear that
the typical approach leads to the best performance. A
software configuration parameter Nsite was introduced
which specifies the number of sites assigned to one
thread.

CUDA kernel functions are launched with specifying
the grid and block geometries. Thus a software configu-
ration parameter Nthreads is introduced that specifies the
number of threads per block.

Given the total number of lattice sites the grid geom-
etry is a function of Nthreads and Nsite.

For each expression Ei a separate CUDA kernel is
generated. Thus the sustained performance P is a func-
tion of the number of threads per block, the number of
lattice sites processed per thread, and the expression Ei:

P(Nthreads,Nsite, Ei).

CUDA enabled software packages might be equipped
with an auto-tuning mechanism that determines the op-
timal grid and block geometries for the particular set of
installed devices. Auto-tuning is run prior to production
and the geometry parameters that yield the best perfor-
mance are stored for later inclusion.

6. New QDP++ API Elements

The QDP++ API was extended by the following ele-
ments:

Listing 1: Modified Chroma implementation for Jacobi smearing.
Prior to any calculation the lattice wide objects are pushed to the de-
vice (first darker grey shaded region). After calculation the result ob-
ject is copied back to host memory and device memory is freed (sec-
ond shaded region). QDP++ expressions (line number): E0(16, 20),
E1(25), E2(27),E3(30),E4(33).

1 template <typename T>

2 void jacobiSmear(const multi1d <

LatticeColorMatrix >& u, T& chi ,

3 const Real& kappa , int iter , int

no_smear_dir , const Real& _norm)

4 {

5 T psi;

6 Real norm;

7 T s_0 ,h_smear;

8

9 psi.pushToDevice();

10 for(int mu = 0; mu < Nd; ++mu)

11 u[mu].pushToDevice();

12 chi.pushToDevice();

13 h smear.pushToDevice();

14 s 0.pushToDevice();

15

16 s_0 = chi;

17

18 for(int n = 0; n < iter; ++n)

19 {

20 psi = chi;

21 bool first = true;

22 for(int mu = 0; mu < Nd; ++mu)

23 {

24 if (first)

25 h_smear = u[mu]*shift(psi , FORWARD

, mu) + shift(adj(u[mu])*psi ,

BACKWARD , mu);

26 else

27 h_smear += u[mu]* shift(psi , FORWARD

, mu) + shift(adj(u[mu])*psi ,

BACKWARD , mu);

28 first = false;

29 }

30 chi = s_0 + kappa * h_smear;

31 }

32

33 chi /= _norm;

34

35 chi.popFromDevice();

36 for(int mu = 0; mu < Nd; ++mu)

37 u[mu].freeDeviceMem();

38 psi.freeDeviceMem();

39 h smear.freeDeviceMem();

40 s 0.freeDeviceMem();

41

42 }

4

http://github.com/fwinter/qdp

see Parallel Talk by F. Winter at Lattice’11

Tuesday, July 5, 2011

https://github.com/fwinter/qdp
https://github.com/fwinter/qdp

Re-engineering QDP++
• Our (ideal) wish list for the overall system

– ‘syntax compatible’ with current QDP++, no change to Chroma
– Multi-GPU / host, Multi-host
– Generalize to also produce CPU code

• same framework for CPU & GPU
– Code transformation and auto-tuning of generated code
– Configurable Data layout if possible.
– Automated memory management (e.g. host/device traffic?)
– Compilation via ‘system()’ is hacky

• JIT via LLVM to PTX/binary?
• or go back to compile time source transformation: ROSE?

• We’ll need help from Tools/Performance/DSL community.

Tuesday, July 5, 2011

Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

Tuesday, July 5, 2011

Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

// z= a*x + y
#pragma unroll,vectorize
forall(i=0;...) {
 z[i] = a*x[i] + y[i];
}

// zn = norm2(z)
#pragma unroll,vectorize
forall_reduce(zn=0,i=0;...) {
 zn += z[i]*z[i];
}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) {
 y[i] += b*z[i];
}

JIT-ed (Pseudo) Code:
naive, untuned

Tuesday, July 5, 2011

Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

// z= a*x + y
#pragma unroll,vectorize
forall(i=0;...) {
 z[i] = a*x[i] + y[i];
}

// zn = norm2(z)
#pragma unroll,vectorize
forall_reduce(zn=0,i=0;...) {
 zn += z[i]*z[i];
}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) {
 y[i] += b*z[i];
}

JIT-ed (Pseudo) Code:
naive, untuned

Vector vzn = bcast_vec(0);
Vector va = bcast_vec(a);
Vector vb = bcast_vec(b);

#pragma omp for reduction(+:vzn)
for(i=0;...;i+=veclen*UNROLL) {
 Vector vz;
 Vector vx = load_vec(&x[i]);
 Vector vy = load_vec(&y[i]);

 vz = vec_add(vy,
 vec_mul(va,vx));

 vzn = vec_add(vzn,
 vec_mul(vz,vz));
 vy = vec_add(vy,
 vec_mul(b,vz);

 vec_store(&z[i], vz);
 vec_store(&y[i], vy);
 ...
 // UNROLL times
}
zn = vec_sum(vzn)

Autotuned (Pseudo) Code:
unrolled, vectorized

Tuesday, July 5, 2011

Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

// z= a*x + y
#pragma unroll,vectorize
forall(i=0;...) {
 z[i] = a*x[i] + y[i];
}

// zn = norm2(z)
#pragma unroll,vectorize
forall_reduce(zn=0,i=0;...) {
 zn += z[i]*z[i];
}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) {
 y[i] += b*z[i];
}

JIT-ed (Pseudo) Code:
naive, untuned

Vector vzn = bcast_vec(0);
Vector va = bcast_vec(a);
Vector vb = bcast_vec(b);

#pragma omp for reduction(+:vzn)
for(i=0;...;i+=veclen*UNROLL) {
 Vector vz;
 Vector vx = load_vec(&x[i]);
 Vector vy = load_vec(&y[i]);

 vz = vec_add(vy,
 vec_mul(va,vx));

 vzn = vec_add(vzn,
 vec_mul(vz,vz));
 vy = vec_add(vy,
 vec_mul(b,vz);

 vec_store(&z[i], vz);
 vec_store(&y[i], vy);
 ...
 // UNROLL times
}
zn = vec_sum(vzn)

Autotuned (Pseudo) Code:
unrolled, vectorized

Similar, but more elaborate idea for GPUs

Tuesday, July 5, 2011

Future Hardware
• NVIDIA

– next: Kepler GPU, rumored to be 3-4x Fermi FLOPS/Watt
– after: Maxwell GPU

• Intel MIC architecture
– Knights Corner announced at ISC’11: >50 cores
– Current: Knights Ferry Software Development Platform

• 7 Demos at ISC’11
– x86 compatible cores, 512 bit vector unit

• AMD
– Next gen. GPU architecture (GCN). More SIMD, less VLIW
– AMD Fusion: GPU + CPU = APU (Accelerated Processing Unit)
– Announced next generation Fusion System Architecture (FSA)

Tuesday, July 5, 2011

Remember CPUs?
• GPUs are great, but CPUs still exist... (and improve)
• New #1 on Top 500 is SPARC based K-computer (http://top500.org).

– ~8.2 (HPL) PFlops, ~9.9 MW => ~1.2 kW/(HPL) TFlop
• CPU trends:

– more cores
– shared caches
– Longer vectors (AVX: 256 bit= 8 SP / 4 DP)
– More H/W threads (Intel Nehalem/Westmere: 2, Power7: 4)

• CPU Based Capability Systems are still with us (or coming soon)
– Cray XT/XE,
– BlueWaters,
– BlueGene

Tuesday, July 5, 2011

http://top500.org
http://top500.org

Conclusions
• GPUs are extremely useful for LQCD Calculations

– especially for capacity workloads
– already producing useful physics (e.g. spectrum of hadrons)

• Successfully scaled DD+GCR solver to 256 GPUs (114,688 cores?)
– Need more research on ‘architecture aware’ algorithms

• RAS DD preconditioned GCR reduces communications
• 17 Tflops on 256 GPUs is only the beginning
• large algorithmic space to explore

– Technology also improves
• direct GPU to GPU transfers

Tuesday, July 5, 2011

Conclusions (cont’d)
• Need to move more code to the accelerator

– Counteract Amdahl’s Law: in gauge generation AND analysis
– Porting the framework level (QDP++) would be most useful
– BUT want system to work on CPU as well (portable performance)
– QDP++ Challenges

• Expressions => Kernel Generation, Data Movement
• First steps: efforts by Frank Winter, Jie Chen -> Collaboration

– A lot of work: plenty more scope for collaboration
• Heterogeneity is now mainstream

– many (sufficiently different) options (NVIDIA, AMD, soon Intel)
– logical to expect CPU+GPU integration in future...

• CPUs, we still love you too!

Tuesday, July 5, 2011

Acknowledgements
• QUDA Collaborators:

– Mike Clark, Ron Babich, Guochun Shi, Steve Gottlieb, Rich
Brower

• Thanks to Jefferson Lab and LLNL for cluster use.
• B. Joó acknowledges funding through US DOE grants

– DE-FC02-06ER41440 and DE-FC02-06ER41449 (SciDAC)
– DE-AC05-06OR23177 under which JSA LLC operates JLab.

• M. Clark acknowledges funding through NSF grant OCI-1060067
• G. Shi acknowledges funding through the Institute for Advanced

Computing Applications and Technologies (IACAT) at the
University of Illinois at Urbana-Champaign.

Tuesday, July 5, 2011

Backup Slides

Tuesday, July 5, 2011

Pacc = min
�
1, e−∆H

�

Hybrid Monte Carlo

Propose updated links
(reversibly)

Accept Update

Reject Update

?

Canonical coordinates: U
Potential: S(U)

Canonical momenta: π
Kinetic energy: (1/2) π2

H = (1/2)π2 + S(U)

Hamiltonian
Molecular Dynamics

H’ = (1/2)π’2 + S(U’)

Updated links U’
Potential: S(U’)

Updated momenta: π’
Kinetic energy: (1/2) π’2

Reversible
Symplectic Integrator

Accept/Reject
test

Metropolis
Acceptance

Test:

ΔH = H’-H

Tuesday, July 5, 2011

Capacity v.s. Capability
• Gauge Generation:

– ~5000-10,000 MC Updates, use ~500-1000 configs for analysis
– ~600-1000 solves per MC Update -> 3M - 10 M solves
– MC Update process is sequential
– Capability level computing is needed for timely progress

• Stage 1 Analysis:
– Distillation Technique: current ‘small’ dataset 31M solves
– Putative 323x256 dataset (300 cfgs, 192 ev/cfg): 118M solves
– As much as 10x more solves than gauge generation
– BUT

• Task parallel, and batches of solves use the same config
• worth computing costly preconditioner. or deflation space

Tuesday, July 5, 2011

• Multi-Shift Solvers used to evaluate rational approximations in
partial fraction form:

• Multi-Shift Systems typically use:
– Single Krylov Process for all Shifts
– Initial guesses for all shifts must be parallel (usually 0)
– This is a difficulty for Inner/Outer/Restarted Schemes

• Use Polynomial Approximation (don’t use shifted solver)
• Use Single Mass Solver separately for each shift

– All single mass accelerations + intelligent guesses for solutions
of the shifted systems

– Alexandru reports > 2x speedup on GPUs (arXiv:1103.5103)

Multi-Shift Solvers:

Tuesday, July 5, 2011

http://arxiv.org/abs/1103.5103
http://arxiv.org/abs/1103.5103

What Else Do We Need?
• For Basic Gauge Generation one also needs

– Gauge and Fermion Actions, MD Forces on the GPU
– Link Smearing (e.g. Stout/HEX/etc) on the GPU

• SU(3)xSU(3) matrix multiplication routines
• Nearest and Next to Nearest Neighbor access

• Non-solver work can take between ~5-35% of runtime on CPU
– Depending on your situation Amdahl’s law may/may not bite.

• Progress from several groups:
– Gauge Action + Link Fattening used by MILC in QUDA
– BMW Group has full HMC implementation on GPU

Tuesday, July 5, 2011

