
Lattice QCD and GPU Computing

Bálint Joó, Jefferson Lab

Extreme Computing and Its Implications for the 
Nuclear Physics/Applied Mathematics/Computer 

Science Interface
Seattle, July 2011

Tuesday, July 5, 2011



Contents
• Motivation: Lattice QCD Calculations
• The QUDA library for LQCD on GPUs         

– Capacity Use    
– Capability Use  

• Domain Decomposition
• LQCD Programming, Frameworks and the GPU

– Re-engineering QDP++
• Musings on the Future
• Conclusions

Tuesday, July 5, 2011



QCD In Nuclear Physics
• Can QCD predict the spectrum of hadrons ?

– what is the role of the gluons?
– what about exotic matter?

• How do quarks and gluons make nucleons?
– what are the distribution of quarks, gluons, spin, etc ?

• QCD must explain nuclear interactions
– ab initio calculations for simple systems
– bridges to higher level effective theories

• QCD phase structure, equation of state
– input to higher level models (e.g hydrodynamics) 

– experiments (e.g. RHIC), astrophysics (early universe)

Hägler, Musch, Negele, 
Schäfer, EPL 88 61001
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Enter Lattice QCD...
• Lattice QCD is the only known model independent, non-

perturbative technique for carrying out QCD calculations.
– Move to Euclidean Space, Replace space-time with lattice
– Move from Lie Algebra su(3) to group SU(3) for gluons
– Gluons live on links (Wilson Lines) as SU(3) matrices
– Quarks live on sites as 3-vectors.
– Produce Lattice Versions of the Action 

Evaluate Path Integral Using Markov Chain Monte Carlo Method
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Large Scale LQCD Simulations Today
• Stage 1: Generate Configurations

– snapshots of QCD vacuum
– configurations generated in sequence
– capability computing needed for large 

lattices and light quarks

• Stage 2a: Compute quark propagators
– task parallelizable (per configuration)
– capacity workload (but can also use capability h/w)

• Stage 3: Extract Physics
–  on workstations, 

small cluster 
partitions

• Stage 2b: Contract propagators into Correlation Functions
– determines the physics you’ll see
– complicated multi-index tensor contractions
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• Key component of Gauge Generation and Propagator Calculation

• The Dirac Operator M describes interactions of quarks & gluons :
– Features (Wilson-Clover formulation): 

• dim (M) = NcxNsxV,   V=323x256, Nc=3, Ns=4 -> dim~100M
• Complex, Wilson form is J-hermitian, ie:  JM=M†J†  (J=γ5)
• NB: γ5 = diag(1,-1) is maximally indefinite
• Condition  ~ (1/mq)(1/a)5 ~ (1/mπ)2(1/a)6 
• Local  (nearest neighbor, or next-to-nearest neighbor)

Mx = b

Solving the Dirac Equation

Props:

M†M x = b
�
M†M + σiI

�
x = b

MD Force Terms:
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Enter QUDA
• QUDA is a library of solvers for lattice QCD on CUDA GPUs

– Clark, et. al., Comp. Phys. Commun. 181:1517-1528, 2010
– Supports: Wilson-Clover, Improved Staggered fermions
– Domain Wall fermion support is ‘in development’
– ‘Standard’ Krylov Solvers for QCD: CG(NE), BiCGStab

• Key Optimizations
– Memory Coalescing Friendly Data Layout
– Memory Bandwidth reducing ‘tricks’

• Mixed Precision (16 bit, 32 bit, 64 bit) solvers
• Field Compression
• Dirac Basis ( save loading half of t-neighbours )
• Solve in Axial Gauge (save loading t-links) 
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The Wilson-Clover Fermion Matrix

M = 1   - 

total: 1824 flops,
408 words in + 24 words out
FLOP/Byte: 1.06 (SP), 0.53 (DP)

SU(3) matrix

permutes spin
components, flips
signs

⎧ ⎨ ⎩

‘get nearest neighbour’
from forward μ direction

After even-odd (red-black) preconditioning (Schur style): 

Clover term 
(local)

Dslash term
(nearest neighbor)
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QUDA Tricks: Compression
• Bandwidth reduction through compression

– Store 3x3 SU(3) matrix as 6 complex numbers, or 8 reals
– spend ‘free’ flops to uncompress

• For DP no compression is best - not enough free flops
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QUDA Optimizations
• Data Layout tuned for Memory Coalescing

– 1 thread / lattice site, 
– break up data for site data into chunks (e.g. float4 for SP)

Single Precision Gauge Field Example   
• V sites  x  12 floats/site ( 2 row compressed )
• Break 12 into 3 chunks of 4 floats (float4-s)
• 1 block = V float4-s, 3 blocks for full field
• each thread reads a float4 at a time

• coalesced reads
•  Add Pad to avoid ‘partition camping’
• Store ghost zones in Pad
• for spinors store ghost zones at end of data.
• similar for other types

(V-1 sites) x 12 floats12 floats

(V-1 sites) x 4 floats4 floats Pad

1 block 

Host Order:

GPU Order:
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QUDA Community
• QUDA has unified separate development branches

– Wilson, Clover, Twisted Mass, Staggered, DWF
• Integrated with Application Code - enlarge user base

– Chroma & MILC 
• A group of interested developers coalesced around QUDA

– Mike Clark (Harvard), Ron Babich (BU) - QUDA leads
– Bálint Joó (Jefferson Lab) - Chroma integration
– Guochun Shi (NCSA) - Staggered Fermions, MILC integration
– Will Detmold, Joel Giedt - previous contributors
– Rich Brower, Steve Gottlieb

• Source Code Openly available from GitHub
– http://github.com/lattice/quda
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QUDA Parallelization

face
exchange

wrap
around

face
exchange

wrap
around
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Face Exchange
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Gather Kernel 
packs face data into 
buffers and projects 
appropriately

Interior kernel computes full dslash on 
interior sites, and all but the ghost 
contribution to boundary sites

Exterior kernel completes boundary sites 
with ghost data. Corner sites need 
contribution from multiple exterior 
kernel - exterior kernels run sequentially 
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Test Clusters

Westmere 
Socket

IOH

Westmere 
Socket

IOH

Westmere 
Socket

Westmere 
Socket

IOH

PLXPCIe x16
 8 + 8 GiB

QPI @ 24 GiB/s

Full QDR IB

PCIe x16
 8 + 8 GiB

JLab Nodes (Up to 32 in partition) Edge Nodes (Up to 392 in partition)

QDR/SDR IB
in x4 slot

IOH

Tesla
C2050s Tesla

M2050s
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Basic Scaling: Clover Dslash on Edge

Tried 1, 2, 3 and 4D partitions, picked highest performance 

Significant degradation 
for 

#GPUs > 32
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Basic Scaling: AsqTAD on Edge

NB: Using Uncompressed Gauge Fields 
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Scaling of BiCGStab Solver
• JLab Tesla tops out at 8 GPUs
• JLab GTX480 tops out at 4 GPUs

– GTX 480 cluster uses SDR
– JLab Tesla: QDR in x4 slots

• JLab Tesla tops out at 16 GPUs
• GTX480 tops out at 8 GPUs
• Edge can almost make it to 32.
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Perfect for Capacity Work
• 4-8 GPUs can fit into a single host these days (8 in Tyan)
• Or can use 2 nodes with 4 GPU each + SDR connection
• Remaining Capacity Challenge: Amdahl’s law 

– Solver is fast, but everything else is SLOW
• Source (right hand side) creation
• Link Smearing 
• Contractions

– 8-12 cores for CPU work - used to be 128-256 cores. 
• Solution:

– Move more work to GPU - (come back to this later)
– Rearrange Workflow
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• Dudek et. al. PRD, 83, 111502(R) (2011)
• 31 Million solves + large variational basis + anisotropic lattice
• All T to all T ‘perambulators’ using Distillation method
• Excited States, JPC identfication, light/strange quark content
• Exotics within reach of JLab@12 GeV
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5 

Our science requires that we advance 
computational capability 1000x over the 
next decade 
Mission: Deploy and operate 
the computational resources 
required to tackle global challenges 

Vision: Maximize scientific productivity 
and progress on the largest scale 
computational problems 

•! Deliver transforming discoveries 
in climate, materials, biology, 
energy technologies, etc. 

•! Ability to investigate otherwise 
inaccessible systems, from 
regional climate impacts to energy 
grid dynamics 

•! Providing world-class computational resources and 
specialized services for the most computationally 
intensive problems 

•! Providing stable hardware/software path of increasing 
scale to maximize productive applications development 

Cray XT5 2+ PF 
Leadership system for 
science 

OLCF-3: 10-20 PF 
Leadership system with 
some HPCS technology 

2009 2012 2015 2018 

OLCF-5:   1 EF 

OLCF-4:  100-250 PF 
based on DARPA 
HPCS technology 

What about Capability?
• Accelerated Capability 

Machines are on the Way
– More Clusters like Edge
– Cray XK6 System 
– Keeneland Phase 2
– Titan@OLCF 
– Nvidia’s Echelon?

• What about Capability GPU 
Capability?
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What about Capability?
• Communication appears to be scaling bottleneck
• How to ameliorate this:

– Wait for technology to improve
– Change Algorithm, do less communication

• Domain Decomposed Preconditioner:
– Divide lattice into domains, assign 1 domain to 1 GPU
– No communication between domains (interior kernel only)
– Apply preconditioner with ‘inner solve’
– Need a ‘flexible’ solver (variable preconditioner) e.g. GCR, 

Flexible GMRES etc.
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Preconditioned GCR Algorithm

Solve for χl   l=k,k-1,...,0:

Compute correction for x:

(Re)Start

Generate Subspace Update Solution

repeat for all k or until
residuum drops enough 
or convergence

Full precision restart
if not converged

Quantities with
^ are in reduced
precision

normalize ẑk

Orthogonalize ẑ-s

Apply 
Preconditioner:

reduced precision 
inner solve

Reduced 
Precision 

M v
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Size Matters
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Size Matters
• No comms between domains 

– Block Diagonal Preconditioner
• Blocks impose λ cutoff
• Finer Blocks

– lose structure in operator
– lose long wavelength/low energy modes

• Heuristically (& from  Lüscher)
– keep wavelengths of ~ O(ΛQCD-1)
– ΛQCD -1 ~ 1fm 
– Aniso:  (as=0.125fm, at=0.035fm)

• Our case: 83x32 blocks are ideal
– Iso: 1fm ~ 8-10 sites  (a=0.11fm)
– Min. blocksize has scaling implications

(1/2)λMax
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Size Matters

Trade-off outer iterations v.s. inner 
iterations in the preconditioner.

Problem: Optimize wallclock time 
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Strong Scaling of DD-GCR
• With DD-GCR, we can scale up 

to 256 GPUs on 323x256 lattice.
– 83x32 blocks: 512 GPUs max

• > 2x more FLOPS v.s. BiCGStab
– but only 1.64x faster walltime 
– trade off fast inner/slow outer 

iterations 
• Scaling drops off at 256 GPUs

– outer solver + reductions (?)
• This is just the first step: need 

more research on ‘architecture 
aware’ algorithms

Babich, Clark, Joó, Shi, Brower, Gottlieb, accepted for SC’11
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“Please sir, can we have some more?”
• 17.2 Tflop on 256 GPUs = 69 Gflops/GPU

– using all the precision tricks
– The local problem is small 

• Low occupancy? 
• Driver overheads?
• Communications?

–  Single GPU runs
• with ‘strong scaling’ local volumes

– Communications seems not the worst bottleneck here. 
• Current Multi-GPU sweet spot: 128 GPUs ~ 100Gflop/GPU.
• Ambition: 403x256 lattice, 1000 GPUs, 50-100 Tflops(?)
• Large algorithmic space to explore
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Related Algorithmic Work
• Schwarz preconditioner 

– (SAP+GCR) Lüscher, Comput.Phys.Commun. 156(2004) 209-220
– (RAS+ flex. BiCGStab) Osaki, Ishikawa, PoS(Lattice2010), 036

• Domain Decomposed HMC
– Lüscher, JHEP 0305 (2003) 052
– Lüscher,  Comput.Phys.Commun.165:199-220,2005

• Multi-Grid:
• Babich et. al.,  Phys.Rev.Lett.105:201602,2010
• Osborn et. al., PoS Lattice2010:037,2010

• Deflation: 
– Lüscher, JHEP 0707:081,2007, JHEP 0712:011,2007
– Stathopoulos & Orginos: SIAM J. Sci. Comput. 32, pp. 439-462

Challenge:
Updating 

preconditioner/
deflation space 
in the Gauge 

evolution.
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Programming GPUs, Frameworks
• GPU Programming today

– CUDA, OpenCL, #pragma
– low level, ‘general’

• Libraries: e.g. QUDA
– Hide low level details
– problem & architecture specific

• Domain Specific Frameworks
– QDP++, QLUA, QDP/C
– productivity enabling ‘glue’

• Application Suites: e.g. Chroma
– large, prefer not to re-engineer
– too large investment to throw away

0

75,000

150,000

225,000

300,000

QUDA QDP++ Chroma

Lines of C/C++ Code per package measured on 
May 11, 2011,  using CLOC
http://cloc.sourceforge.net/

Chroma CPS 

Tools: QA0, GCC-BGL, Workflow, Viz 

QMP 
Message Passing 

QLA 
Linear Algebra 

QMT 
Threading 

QCD Data Parallel (QDP, QDP++) QIO 

Dslashes MDWF QDPQOP QUDA 

MILC 
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QDP++
• QDP++ - a Data-Parallel Domain Specific framework for LQCD

– Embedded in C++
– provides LQCD types/operations
– arithmetic ‘expressions’ on multi-tensor index objects

• productivity layer - the purpose is to be expressive
– bedrock for Chroma code

• Implemented using
– nested templates (for indices)
– expression templates (ETs)
– specialization (optimization)

• Parallel nature hidden from user
– ETs hide OpenMP, QMT, QMP/MPI etc

LatticeFermion x, y,z;
Real a = Real(5);
gaussian(x);
gaussian(y);
x += a*y;
z = shift(x,0,FORWARD);
Double zn = norm2(z); 

parallel reduce

parallel ‘forall’
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• Large library of LQCD components (solvers, gauge generation algs. )
– e.g. CGNE, BiCGStab, HMC, Symplectic Integrators, physics...
– implemented using QDP++ or wrapping 3rd party routines

• Key applications: chroma (analysis) and hmc (gauge generation)
• Applications driven by XML 
• Can use as ‘out of the box’ application or as library to build on

Chroma

Chroma 
application

SysSolverLinOp

for(int ...) 
{ 
   M(p,x,PLUS)
   Double pn=norm2(p);
   ...

// Setup code...
...
// Call 3rd party lib
quda_invert(...);
...

CGNE in
QDP++

CGNE from
QUDA

<?xml version=‘1.0’?>
<chroma>
 ..
 <InvertParams>
 <invType>CG_INVERTER</invType>
 <RsdCG>1.0e-8</RsdCG>
 <MaxCG>1000</MaxCG>
 </InvertParams>
 ...
</chroma>

Chroma Library:
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Re-engineering QDP++
• Move QDP++ to the GPU

– Speed up all of Chroma that is not part of QUDA library
– Needs to be ‘just good enough’

• there will always be super optimized libraries
• but need to counter Amdahl’s law for rest

• How to generate GPU Kernels for QDP++ expressions?
– Compile time: e.g. source to source transformation

• must deal with QDP++ types, expressions
• but must retain full C++ compatibility
• not easy, maybe doable with a framework like ROSE?

– Alternative: Generate kernels  ‘just-in-time’ (JIT)
• The use of expression templates can help
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 JIT + Expression templates
• QDPExpr is a C++ Type

– recursive
– compile time type signature
– run time parameter binding

• First instantiation:
– Code Generation for signature
– Just-In-Time Compilation
– Dynamic Library of kernels

• Data movement
– explicit v.s. automated

// QDP++ code
LatticeFermion x, y;
Real a=Real(1);
gaussian(x);
y += a * x;

QDPExpr<OpMultiply,... >

Reference<> Reference<>

a x

y OpAddAssign

evaluate(             )
{ // Lookup
  KFunc* kernel = lookupKernel(hash);
  // Generate if needed
  if( !kernel ) generate(kernel, hash);
  (*KFunc)(...); // Invoke
}
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Current Progress 
• Two independent efforts have sprung up

– Frank Winter (U. of Edinburgh), Jie Chen (Jefferson Lab)
• Code Generation triggered by the QDP++ evaluate() functions
• Just In Time compilation:  use ‘system()’ call to invoke nvcc
• Loading Resulting Kernels

– generate .o file, use system dynamic loader interface or
– generate PTX, load with CUDA driver API

• Data Movement: 
– push() pop() interface to push/pop data onto/off device
– automatic management of data movement (sfw. cache)

• Beginning collaboration to join the two efforts
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Re-Engineering QDP++
• Chroma Jacobi 

Smearing Interface 
accelerated. (F. Winter)

5.3. Mixed Memory Domain Approach
Since device memory is (still) a scarce resource a

mixed memory domain approach was favoured: Mem-
ory allocation for lattice wide objects utilise the host
memory domain. Upon user request the object’s data
is pushed to the device memory domain.

A new feature coming with version 4.0 of CUDA pro-
vides the possibility to page-lock a memory range that
was already allocated (4kB aligned) in the host memory
domain and to add it to the tracking mechanism to auto-
matically accelerate calls to device copy functions. This
mechanism eliminates the previously required staging
of data regions prior to the transfer to device memory
and reduces pressure on host memory.

5.4. Thread Geometry
The evaluation function template in ET based vector

libraries typically triggers execution of a loop iterating
over all lattice sites. With CUDA, parallelisation of a
loop is typically carried out unrolling the loop and start-
ing one thread per loop iteration.

Since here the applied CUDA kernels not only consist
of processing the lattice sites but also require prior re-
construction of the expression tree it was not clear that
the typical approach leads to the best performance. A
software configuration parameter Nsite was introduced
which specifies the number of sites assigned to one
thread.

CUDA kernel functions are launched with specifying
the grid and block geometries. Thus a software configu-
ration parameter Nthreads is introduced that specifies the
number of threads per block.

Given the total number of lattice sites the grid geom-
etry is a function of Nthreads and Nsite.

For each expression Ei a separate CUDA kernel is
generated. Thus the sustained performance P is a func-
tion of the number of threads per block, the number of
lattice sites processed per thread, and the expression Ei:

P(Nthreads,Nsite, Ei).

CUDA enabled software packages might be equipped
with an auto-tuning mechanism that determines the op-
timal grid and block geometries for the particular set of
installed devices. Auto-tuning is run prior to production
and the geometry parameters that yield the best perfor-
mance are stored for later inclusion.

6. New QDP++ API Elements

The QDP++ API was extended by the following ele-
ments:

Listing 1: Modified Chroma implementation for Jacobi smearing.
Prior to any calculation the lattice wide objects are pushed to the de-
vice (first darker grey shaded region). After calculation the result ob-
ject is copied back to host memory and device memory is freed (sec-
ond shaded region). QDP++ expressions (line number): E0(16, 20),
E1(25), E2(27),E3(30),E4(33).

1 template <typename T>

2 void jacobiSmear(const multi1d <

LatticeColorMatrix >& u, T& chi ,

3 const Real& kappa , int iter , int

no_smear_dir , const Real& _norm)

4 {

5 T psi;

6 Real norm;

7 T s_0 ,h_smear;

8

9 psi.pushToDevice();

10 for(int mu = 0; mu < Nd; ++mu )

11 u[mu].pushToDevice();

12 chi.pushToDevice();

13 h smear.pushToDevice();

14 s 0.pushToDevice();

15

16 s_0 = chi;

17

18 for(int n = 0; n < iter; ++n)

19 {

20 psi = chi;

21 bool first = true;

22 for(int mu = 0; mu < Nd; ++mu )

23 {

24 if (first)

25 h_smear = u[mu]*shift(psi , FORWARD

, mu) + shift(adj(u[mu])*psi ,

BACKWARD , mu);

26 else

27 h_smear += u[mu]* shift(psi , FORWARD

, mu) + shift(adj(u[mu])*psi ,

BACKWARD , mu);

28 first = false;

29 }

30 chi = s_0 + kappa * h_smear;

31 }

32

33 chi /= _norm;

34

35 chi.popFromDevice();

36 for(int mu = 0; mu < Nd; ++mu )

37 u[mu].freeDeviceMem();

38 psi.freeDeviceMem();

39 h smear.freeDeviceMem();

40 s 0.freeDeviceMem();

41

42 }

4

http://github.com/fwinter/qdp

see Parallel Talk by F. Winter at Lattice’11
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Re-engineering QDP++
• Our (ideal) wish list for the overall system

– ‘syntax compatible’ with current QDP++, no change to Chroma
– Multi-GPU / host,  Multi-host
– Generalize to also produce CPU code

• same framework for CPU  & GPU
– Code transformation and auto-tuning of generated code
– Configurable Data layout if possible.
– Automated memory management (e.g. host/device traffic?)
– Compilation via ‘system()’ is hacky 

•  JIT via LLVM to PTX/binary?  
• or go back to compile time source transformation: ROSE? 

• We’ll need help from Tools/Performance/DSL community. 
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Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:
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Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

// z= a*x + y
#pragma unroll,vectorize
forall(i=0;...) {
  z[i] = a*x[i] + y[i];
}

// zn = norm2(z)
#pragma unroll,vectorize
forall_reduce(zn=0,i=0;...) { 
  zn += z[i]*z[i];
}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) { 
  y[i] += b*z[i];
}

JIT-ed (Pseudo) Code:
naive, untuned

Tuesday, July 5, 2011



Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

// z= a*x + y
#pragma unroll,vectorize
forall(i=0;...) {
  z[i] = a*x[i] + y[i];
}

// zn = norm2(z)
#pragma unroll,vectorize
forall_reduce(zn=0,i=0;...) { 
  zn += z[i]*z[i];
}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) { 
  y[i] += b*z[i];
}

JIT-ed (Pseudo) Code:
naive, untuned

Vector vzn = bcast_vec(0);
Vector va = bcast_vec(a);
Vector vb = bcast_vec(b);

#pragma omp for reduction(+:vzn)
for(i=0;...;i+=veclen*UNROLL) {
  Vector vz;
  Vector vx = load_vec(&x[i]);
  Vector vy = load_vec(&y[i]);

  vz = vec_add(vy, 
            vec_mul(va,vx));

  vzn = vec_add(vzn, 
               vec_mul(vz,vz));
  vy = vec_add(vy, 
               vec_mul(b,vz);
   
  vec_store(&z[i], vz);
  vec_store(&y[i], vy);
  ...
  // UNROLL times
}
zn = vec_sum(vzn) 

Autotuned (Pseudo) Code:
unrolled, vectorized
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Optimizaton Opportunities

z = a*x + y;
zn = norm2(z);
y += b*z;

QDP++ Code:

// z= a*x + y
#pragma unroll,vectorize
forall(i=0;...) {
  z[i] = a*x[i] + y[i];
}

// zn = norm2(z)
#pragma unroll,vectorize
forall_reduce(zn=0,i=0;...) { 
  zn += z[i]*z[i];
}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) { 
  y[i] += b*z[i];
}

JIT-ed (Pseudo) Code:
naive, untuned

Vector vzn = bcast_vec(0);
Vector va = bcast_vec(a);
Vector vb = bcast_vec(b);

#pragma omp for reduction(+:vzn)
for(i=0;...;i+=veclen*UNROLL) {
  Vector vz;
  Vector vx = load_vec(&x[i]);
  Vector vy = load_vec(&y[i]);

  vz = vec_add(vy, 
            vec_mul(va,vx));

  vzn = vec_add(vzn, 
               vec_mul(vz,vz));
  vy = vec_add(vy, 
               vec_mul(b,vz);
   
  vec_store(&z[i], vz);
  vec_store(&y[i], vy);
  ...
  // UNROLL times
}
zn = vec_sum(vzn) 

Autotuned (Pseudo) Code:
unrolled, vectorized

Similar, but more elaborate idea for GPUs
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Future Hardware
• NVIDIA

– next: Kepler GPU,  rumored to be 3-4x Fermi FLOPS/Watt
– after: Maxwell GPU

• Intel MIC architecture 
– Knights Corner announced at ISC’11: >50 cores 
– Current: Knights Ferry Software Development Platform

• 7 Demos at ISC’11
– x86 compatible cores, 512 bit vector unit

• AMD 
– Next gen. GPU architecture (GCN). More SIMD, less VLIW
– AMD Fusion: GPU + CPU = APU (Accelerated Processing Unit)
– Announced next generation Fusion System Architecture (FSA)
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Remember CPUs?
• GPUs are great, but CPUs still exist... (and improve)
• New #1 on Top 500 is SPARC based K-computer (http://top500.org).

– ~8.2 (HPL) PFlops, ~9.9 MW => ~1.2 kW/(HPL) TFlop
• CPU trends:

– more cores
– shared caches
– Longer  vectors (AVX: 256 bit= 8 SP / 4 DP)
– More H/W threads (Intel Nehalem/Westmere: 2, Power7: 4) 

• CPU Based Capability Systems are still with us (or coming soon)
– Cray XT/XE, 
– BlueWaters, 
– BlueGene 
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Conclusions
• GPUs are extremely useful for LQCD Calculations

– especially for capacity workloads 
– already producing useful physics (e.g. spectrum of hadrons)

• Successfully scaled DD+GCR solver to 256 GPUs (114,688 cores?)
– Need more research on ‘architecture aware’ algorithms 

• RAS DD preconditioned GCR reduces communications
• 17 Tflops on 256 GPUs is only the beginning
• large algorithmic space to explore

– Technology also improves
• direct GPU to GPU transfers 
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Conclusions (cont’d)
• Need to move more code to the accelerator

– Counteract Amdahl’s Law: in gauge generation AND analysis
– Porting the framework level (QDP++) would be most useful
– BUT want system to work on CPU as well (portable performance)
– QDP++ Challenges

• Expressions => Kernel Generation, Data Movement
• First steps: efforts by Frank Winter, Jie Chen -> Collaboration

– A lot of work: plenty more scope for collaboration
• Heterogeneity is now mainstream

– many (sufficiently different) options (NVIDIA, AMD, soon Intel)
– logical to expect CPU+GPU integration in future...

• CPUs, we still love you too!
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Pacc = min
�
1, e−∆H

�

Hybrid Monte Carlo

Propose updated links
(reversibly)

Accept Update

Reject Update

?

Canonical coordinates: U
Potential: S(U)

Canonical momenta: π
Kinetic energy: (1/2) π2

H = (1/2)π2 + S(U)

Hamiltonian
Molecular Dynamics

H’ = (1/2)π’2 + S(U’)

Updated links U’
Potential: S(U’)

Updated momenta: π’
Kinetic energy: (1/2) π’2

Reversible
Symplectic Integrator

Accept/Reject
test

Metropolis 
Acceptance  

Test:

ΔH = H’-H
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Capacity v.s. Capability
• Gauge Generation:

– ~5000-10,000 MC Updates,  use ~500-1000 configs for analysis
– ~600-1000 solves per MC Update -> 3M - 10 M solves
– MC Update process is sequential
– Capability level computing is needed for timely progress

• Stage 1 Analysis: 
– Distillation Technique: current ‘small’ dataset 31M solves
– Putative 323x256 dataset (300 cfgs, 192 ev/cfg): 118M solves
– As much as 10x more solves than gauge generation
– BUT

• Task parallel, and batches of solves use the same config
• worth computing costly preconditioner. or deflation space
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• Multi-Shift Solvers used to evaluate rational approximations in 
partial fraction form:

• Multi-Shift Systems typically use:
– Single Krylov Process for all Shifts
– Initial guesses for all shifts must be parallel (usually 0)
– This is a difficulty for Inner/Outer/Restarted Schemes

• Use Polynomial Approximation (don’t use shifted solver)
• Use Single Mass Solver separately for each shift

– All single mass accelerations + intelligent guesses for solutions 
of the shifted systems

– Alexandru reports > 2x speedup on GPUs (arXiv:1103.5103)

Multi-Shift Solvers:
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What Else Do We Need?
• For Basic Gauge Generation one also needs 

– Gauge and Fermion Actions, MD Forces on the GPU
– Link Smearing (e.g. Stout/HEX/etc) on the GPU

• SU(3)xSU(3) matrix multiplication routines
• Nearest and Next to Nearest Neighbor access

• Non-solver work can take between ~5-35% of runtime on CPU
– Depending on your situation Amdahl’s law may/may not bite.

• Progress from several groups:
– Gauge Action + Link Fattening used by MILC in QUDA
– BMW Group has full HMC implementation on GPU
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