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QCD In Nuclear Physics

e Can QCD predict the spectrum of hadrons ? @\
— what is the role of the gluons? @ jJ

— what about exotic matter?

 How do quarks and gluons make nucleons? ’

— what are the distribution of quarks, gluons, spin, etc ?

*  QCD must explain nuclear interactions
— ab initio calculations for simple systems

— bridges to higher level effective theories

* QCD phase structure, equation of state

— 1nput to higher level models (e.g hydrodynamics)

— experiments (e.g. RHIC), astrophysics (early universe)
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Enter Lattice QCD...

e Lattice QCD is the only known model independent, non-
perturbative technique for carrying out QCD calculations.
— Move to Euclidean Space, Replace space-time with lattice
— Move from Lie Algebra su(3) to group SU(3) for gluons
— Gluons live on links (Wilson Lines) as SU(3) matrices
— Quarks live on sites as 3-vectors.

— Produce Lattice Versions of the Action

...... S MTILL / \
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all links all sites

\4 q.._4 _____ 1 .. Evaluate Path Integral Using Markov Chain Monte Carlo Method
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Large Scale LQCD Simulations Today

: * Stage 1: Generate Configurations
e ‘,‘““"‘“""-!’_'f — snapshots of QCD vacuum
— configurations generated in sequence
— capability computing needed for large
lattices and light quarks

* Stage 2a: Compute quark propagators
— task parallelizable (per configuration)
— capacity workload (but can also use capability h/w)

« Stage 2b: Contract propagators into Correlation Functions
— determines the physics you’ll see
— complicated multi-index tensor contractions

-a-

» Stage 3: Extract Physics

= — m- rl]') ‘ . -- — on workstations,

small cluster
partitions
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Solving the Dirac Equation

* Key component of Gauge Generation and Propagator Calculation

4 )
Props: g MD Force Terms: A
f _
Mar — b MM =0
- - (MTM + o, 1)z =1b
- J

e The Dirac Operator M describes interactions of quarks & gluons :
— Features (Wilson-Clover formulation):
e dim (M) = NexNexV, V=323x256, N.=3, Ni=4 -> dim~100M
e Complex, Wilson form is J-hermitian, ie: JM=MTJT (J=vys)
* NB: ys=diag(l,-1) is maximally indefinite
e Condition ~ (1/mg)(1/a)> ~ (1/mg)2(1/a)°

e Local (nearest neighbor, or next-to-nearest neighbor)
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Enter QUDA

e QUDA is a library of solvers for lattice QCD on CUDA GPUs
— Clark, et. al., Comp. Phys. Commun. 181:1517-1528, 2010
— Supports: Wilson-Clover, Improved Staggered fermions
— Domain Wall fermion support 1s ‘in development’
— ‘Standard’ Krylov Solvers for QCD: CG(NE), BiCGStab
e Key Optimizations
— Memory Coalescing Friendly Data Layout
— Memory Bandwidth reducing ‘tricks’
e Mixed Precision (16 bit, 32 bit, 64 bit) solvers
e Field Compression
e Dirac Basis ( save loading half of t-neighbours )
e Solve in Axial Gauge (save loading t-links)

Thomas Jefferson National Accelerator Facili
.{effergon Lab = @ € A
Tuesday, July 5, 2011




The Wilson-Clover Fermion Matrix

After even-odd (red-black) preconditioning (Schur style):
total: 1824 flops,

J — —1 —1 '
M=1 — AOO DOeAee Deo 408 words in + 24 words out

FLOP/Byte: 1.06 (SP), 0.53 (DP)

Clover term
(local)

Dslash term
(nearest neighbor)

permutes spin . . ,
get nearest neighbour

components, flips ) )
from forward p direction

SU(3) matrix )
signs

o |/

1 .
Day =3 D Uu@) @ (1= 7) ®buppy + ULz — 2) ® (14 7,) @ bopy
u=0
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QUDA Tricks: Compression

e Bandwidth reduction through compression

— Store 3x3 SU(3) matrix as 6 complex numbers, or 8 reals
— spend ‘free’ flops to uncompress
e For DP no compression is best - not enough free flops

(&1,(1-2, 0'3)
(b1, b2, bs) G 1 a2 a3

(axb)” bl b2 b3
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QUDA Optimizations

e Data Layout tuned for Memory Coalescing
— 1 thread / lattice site,
— break up data for site data into chunks (e.g. float4 for SP)

Host Order:

Single Precision Gauge Field Example
o V sites x 12 floats/site ( 2 row compressed )
® Break 12 into 3 chunks of 4 floats (float4-s)
¢ | block =V float4-s, 3 blocks for full field

12 floats (V-1 sites) x 12 floats

‘ e cach thread reads a float4 at a time
GPU Order: e coalesced reads

4 floats (V-1 sites) x 4 floats ~ Pad ¢ Add Pad to avoid ‘partition camping’
/ / e Store ghost zones in Pad

e for spinors store ghost zones at end of data.
¢ similar for other types

1 block
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QUDA Community

QUDA has unified separate development branches
— Wilson, Clover, Twisted Mass, Staggered, DWF
Integrated with Application Code - enlarge user base
— Chroma & MILC
* A group of interested developers coalesced around QUDA
— Mike Clark (Harvard), Ron Babich (BU) - QUDA leads
— Balint Joo (Jefferson Lab) - Chroma integration
— Guochun Shi1 (NCSA) - Staggered Fermions, MILC integration
— Will Detmold, Joel Giedt - previous contributors
— Rich Brower, Steve Gottlieb
e Source Code Openly available from GitHub

— http://github.com/lattice/quda
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QUDA Parallelization

*»e# = el = ﬁ(
- o) o .

@ =2
>
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Total 9 cuda Streams

0: kernels

1: X-backward

2: X-forward

7: T-backward

8: T-forward

Gather Kernel
packs face data into
buffers and projects
appropriately

.geffer?on Lab

Face Exchange

kernels
Interiorkernel X Y Z T

_]:I Exterior kernel completes boundary sites
with ghost data. Corner sites need

contribution from multiple exterior

kkernel - exterior kernels run sequentially/

sync

—
‘N Em

sync

i

gather kernel'
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exterior
—_—

nterior kernel computes full dslash on
interior sites, and all but the ghost
contribution to boundary sites

~

|
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GPU kernel
cudaMemcpy
memcpy (host)
MPI send/recv

GPU idle

@
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Test Clusters

JLab Nodes (Up to 32 in partition)

Westmere Westmere
Socket

Socket
|

|
‘ QPI @ 24 GiB/s ‘

PCle x16
8+ 8 GiB

Ne

Tesla

Edge Nodes (Up to 392 in partition)

o
!

Westmere Westmere
Socket Socket
| |
-

PCle x16
8+ 8 GiB

Full QDR IB

&

| PLX

l

Tesla

Lawrence Livermore

C2050s
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Basic Scaling: Clover Dslash on Edge

256 T T I

A~'D Kernel

128 Significant degradation

for
-
B #GPUs > 32
2 64}
é.
5
-9 sp
=3 HP
2 -
16 l 1 1 | | |
8 16 32 64 128 256

Number of GPUs

Tried 1, 2, 3 and 4D partitions, picked highest performance
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Basic Scaling: AsqTAD on Edge

128 T I T T
64 |- -
= 32+ -
&
2
: :
S 16 \~“~:-."‘=:-_ 7]
®®/TDP “~\~ \~::
-9 /TSP ~~_
=@ YZT DP ~<e
8 |- =8 YZT SP .
& - XYZT DP
& XYZTSP
4 | | I 1
32 64 128 256

Number of GPUs

NB: Using Uncompressed Gauge Fields
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Scaling Of BiCGStab Solver

GFLOPS Sustained

1600
1400
1200
1000
800
600
400

200 -

Edge: 24x24x24x128

u Single-Half

® Single-Single
® Double-Half+GF

® Double-Single+GF

® Double-Double+GF

2 4 8 16 32
Number of GPUs
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Scaling of BiCGStab Solver

Single-Half: 24x24x24x128

1600

1400

-
N
o
o

1000

800

600 -

GFLOPS Sustained

400 ~
200 A

1 2

4

= Jlab Tesla
H Edge
H Jlab GTX480

e JLab Tesla tops out at 8 GPUs

e JLab GTX480 tops out at 4 GPUs
— GTX 480 cluster uses SDR
— JLab Tesla: QDR 1n x4 slots

e JLab Tesla tops out at 16 GPUs

e (GTX480 tops out at 8 GPUs

e Edge can almost make it to 32.

8 16 32 Single Half: 32x32x32x128
Number of GPUs 3500
3000
3
£ 2500
S
@ 2000 -
n = Jlab Tesla
@ 1500 -
o ® Edge
5 1000 - = Jlab GTX480
500 -
O -
8 16 32 64
Number of GPUs
Thomas Jefferson National Accelerator Facility @ € JSA
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1400
1200
1000
800
600
400
200

Gflop

* Budapest-Wuppertal code. Courtesy of Kalman Szabo
e 323 top out at 4-8 GPUs, 48+ and 644 fare better (larger surf/vol)

@&

4effergon Lab

Others Fare Similarly

Strong scaling of KS matmult
pms7-hardware= 2xGTX470+inf-QDR
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Perfect for Capacity Work

e 4-8 GPUs can fit into a single host these days (8 in Tyan)
e Or can use 2 nodes with 4 GPU each + SDR connection
 Remaining Capacity Challenge: Amdahl’s law
— Solver 1s fast, but everything else 1s SLOW
e Source (right hand side) creation
e Link Smearing

e Contractions
— 8-12 cores for CPU work - used to be 128-256 cores.
Solution:

— Move more work to GPU - (come back to this later)

— Rearrange Workflow
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Isoscalar Meson Spectrum

negative parity
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positive parity exotics
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— ot
1++
m, = 396 MeV
isoscalar mm
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Dudek et. al. PRD, 83, 111502(R) (2011)

31 Million solves + large variational basis + anisotropic lattice

All T to all T ‘perambulators’ using Distillation method
Excited States, JPC identfication, light/strange quark content

Exotics within reach of JLab@12 GeV
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What about Capability?

* Accelerated Capability
Machines are on the Way

— More Clusters like Edge
— Cray XK6 System
— Keeneland Phase 2
— Titan@OLCF
— Nvidia’s Echelon?
e What about Capability GPU
Capability?

OLCF-3: 10-20 PF

2012

.geffergon Lab

Leadership system with
some HPCS technology

= L B
|1

lc::=!AY L

OLCF-4: 100-250 PF
based on DARPA
HPCS technology

2015
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£ 11

OLCF-5: 1EF

2018

&

A

Tuesday, July 5, 2011




What about Capability?

e Communication appears to be scaling bottleneck

 How to ameliorate this:
— Wait for technology to improve
— Change Algorithm, do less communication
 Domain Decomposed Preconditioner:
— Divide lattice into domains, assign 1 domain to 1 GPU
— No communication between domains (interior kernel only)
— Apply preconditioner with ‘inner solve’

— Need a ‘flexible’ solver (variable preconditioner) e.g. GCR,
Flexible GMRES etc.

Thomas Jefferson National Accelerator Facili
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Preconditioned GCR Algorithm

Apply
Preconditioner:
reduced precision

inner solve

Generate Subspace Update Solution

A Sl A
- P = KTy, )
v A Precision Solve for y1 I=kk-1,...,0:
(Re)Start 2k = Mpx M v k
B ) = (,2. ;L) X1 Z Brixi = o
/7'(] =b-— .‘\[.Ix b e i=I1+1
A Orthogonalize Z-s .
v — | X — 5 | Compute correction for x:
Fo =0 e = ||kl -
k=0 ) normalize % T = z; XiPi
ak = (Zk,Tk) .
. . . rT=x+2
Thk+1 = Th — QkZk _ )
k=k+1

j
repeat for all k or until
residuum drops enough
or convergence

Thomas Jefferson National Accelerator Facility

Quantities with
A are in reduced
precision

Full precision restart
if not converged
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Size Matters

32"x256 lattice, temporal anisotropy ~ 3.5, m_~ 230 MeV

GCR lterations

.geffegon Lab

G—© N=256/N_,, . k__ =10, Max inner iters=1000

max

B8 N=32,k _ =10, Max inner iters=1000
O—© N=32,k =10, Max inner iters=10

number of GPUs

Thomas Jefferson National Accelerator Facility

@&~

Tuesday, July 5, 2011




Size Matters

(1/2)}\.Max

No comms between domains

— Block Diagonal Preconditioner
Blocks impose A cutoff
Finer Blocks

— lose structure in operator

— lose long wavelength/low energy modes
Heuristically (& from Liischer)

— keep wavelengths of ~ O(Aqcp™)

— Aqcp '~ 1fm

— Aniso: (as=0.125fm, a;=0.035fm)

e Our case: 83x32 blocks are ideal
— Iso: Ifm ~ 8-10 sites (a=0.11fm)

— Min. blocksize has scaling implications

Jeff ergon Lab Thomas Jefferson National Accelerator Facility @ g JSA
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Size Matters

(1/2)hmax e No comms between domains

e — Block Diagonal Preconditioner
oy e Blocks impose A cutoff

.- J : e Finer Blocks
N ' — lose structure in operator

-"r — lose long wavelength/low energy modes

o e Heuristically (& from Liischer)

g — keep wavelengths of ~ O(Aqcp™!)
_'_' | ~ Aogcp !~ Ifm

NS ~ Aniso: (a,=0.125fm, a:=0.035fm)
J -y . e Our case: 83x32 blocks are ideal

i _ Iso: 1fm ~ 8-10 sites (a=0.11fm)

(1/2)A — Min. blocksize has scaling implications
Max
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Size Matters

- ( 1/ 2)}\,Max
—_—
e
o, KB,
T Tt
'rr."".
. L 4 '-: ( 1 / 2) ax
A # 2
N
e -.-‘:__--
e, Tl
.-:. --F ':.
T
: 1?& i 8
) ? C 3 ...".
._.. ,'N:l ‘ .‘_:
e
"R
- Jr o
.-.":.Jt{ e
. - :f_;-

.!effergon Lab
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No comms between domains

Block Diagonal Preconditioner

Blocks impose A cutoff
Finer Blocks

lose structure in operator

lose long wavelength/low energy modes

Heuristically (& from Liischer)

keep wavelengths of ~ O(Aqcp!)
Aqcp "1~ 1fm
Aniso: (a,=0.125fm, a=0.035fm)

e Qur case: 83x32 blocks are ideal
Iso: 1fm ~ 8-10 sites (a=0.11fm)

Min. blocksize has scaling implications
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Size Matters

3
32°x256 lattice, temporal anisotropy ~ 3.5, m_~ 230 MeV

2000

1800

1600

1400

'8)

GCR Iterations

.gefferzon Lab

G—© N=256/N_,, . k__ =10, Max inner iters=1000
B8 N=32,k__ =10, Max inner iters=1000
O—© N=32,k =10, Max inner iters=10

N =
16.5s

Trade-off outer iterations v.s. inner
iterations in the preconditioner.

Problem: Optimize wallclock time

number of GPUs

Thomas Jefferson National Accelerator Facility
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Strong Scaling of DD-GCR

—" Y e With DD-GCR, we can scale up
“I - : to 256 GPUs on 323x256 lattice.

ot - — &83x32 blocks: 512 GPUs max
" | e >2xmore FLOPS v.s. BiCGStab
— but only 1.64x faster walltime

1 — trade off fast inner/slow outer
e iterations

e Scaling drops off at 256 GPUs

— outer solver + reductions (?)

1 ® This 1s just the first step: need
more research on ‘architecture
aware’ algorithms

- L - L L = Babich, Clark, Joo, Shi, Brower, Gottlieb, accepted for SC’11
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‘““Please sir, can we have some more?”
e 17.2 Tflop on 256 GPUs = 69 Gflops/GPU

Single GPU using the local volumes from the Multi-GPU running

— using all the precision tricks

200

— The local problem is small oo
140
* Low occupancy? 2 o = oo Sl
. E 80 DD-GCR
e Driver overheads? 2 e I . I = DD-GCR (Mult-GPU)
40
e Communications? 2
. 32x16x8x32 (64) 2Oz 28:)32x8x4x32 (256)
— Single GPU runs )

local volume (number of GPUs simulated)

e with ‘strong scaling’ local volumes
— Communications seems not the worst bottleneck here.
e Current Multi-GPU sweet spot: 128 GPUs ~ 100Gflop/GPU.
e Ambition: 403x256 lattice, 1000 GPUs, 50-100 Tflops(?)

e Large algorithmic space to explore

Thomas Jefferson National Accelerator Facili Y
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Related Algorithmic Work

e Schwarz preconditioner
— (SAP+GCR) Liischer, Comput.Phys.Commun. 156(2004) 209-220
— (RAS+ flex. BiCGStab) Osaki, Ishikawa, PoS(Lattice2010), 036

e Domain Decomposed HMC
— Liischer, JHEP 0305 (2003) 052
— Liischer, Comput.Phys.Commun.165:199-220,2005 -

e Multi-Grid: Challenge:
Updating
e Babich et. al., Phys.Rev.Lett.105:201602,2010 | preconditioner/
e Osborn et. al., PoS Lattice2010:037,2010 deflation space
in the Gauge
e Deflation: evolution. Y,

— Liischer, JHEP 0707:081,2007, JHEP 0712:011,2007
— Stathopoulos & Orginos: SIAM J. Sci. Comput. 32, pp. 439-462
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Programming GPUs, Frameworks

 GPU Programming today
— CUDA, OpenCL, #pragma = T
— low level, ‘general’ i) ) Bl i
e Libraries: e.g. QUDA
— Hide low level details Message Pasing || Linea tgetra | Tesdng
— problem & architecture specific —
* Domain Specific Frameworks 300,000
— QDP++, QLUA, QDP/C 225,000
— productivity enabling ‘glue’ 150,000
e Application Suites: e.g. Chroma o000 - I
— large, prefer not to re-engineer " Tauoa QoPr+ Gvoma
— too large investment to throw away o fcjg;%‘;;fﬂé’ p;;w’%d B
Jeff ergon Lab Thomas Jefferson National Accelerator Facility @ @ JSA
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http://cloc.sourceforge.net/
http://cloc.sourceforge.net/

QDP++

QDP++ - a Data-Parallel Domain Specific framework for LQCD
— Embedded in C++
— provides LQCD types/operations

— arithmetic ‘expressions’ on multi-tensor index objects

e productivity layer - the purpose is to be expressive

— bedrock for Chroma code

LatticeFermion X, Vy,2Z;
Real a = Real(5);
gaussian(x);
gaussian(y);

X += a*y;

o o z = shift(x,0,FORWARD) ;
— specialization (optimization) Double zn = norm2(z);

parallel reduce

Jeff ergon Lab Thomas Jefferson National Accelerator Facility @ € JSA

. parallel ‘forall’
 Implemented using

— nested templates (for indices)
— expression templates (ETSs)

e Parallel nature hidden from user
— ETs hide OpenMP, QMT, QMP/MPI etc
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Chroma

Large library of LQCD components (solvers, gauge generation algs. )
— e.g. CGNE, BiCGStab, HMC, Symplectic Integrators, physics...
— 1mplemented using QDP++ or wrapping 3rd party routines

* Key applications: chroma (analysis) and hmc (gauge generation)

e Applications driven by XML

e Can use as ‘out of the box’ application or as library to build on

Chroma Library:

zz::;im;rirsion= 1.0 2> ch CGNE in SySSOIVCI’LinOp CGI\[I}E‘:DfZ)m
1 —> roma QDP+/ \ Q
<InvertParams> . .

<invType>CG INVERTER</invType> appllcatlon

FHREEES L Uemes Hs e for(int ...) /] Setup code...
<MaxCG>1000</MaxCG>

</InvertParams> {

... M(p . x ,PLUS) // Call 3rd party lib
S Ehrenes Double pn=norm?2(p); quda_invert(...);

Thomas Jefferson National Accelerator Facili
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Re-engineering QDP++

e Move QDP++ to the GPU
— Speed up all of Chroma that is not part of QUDA library
— Needs to be ‘just good enough’
 there will always be super optimized libraries
e but need to counter Amdahl’s law for rest
 How to generate GPU Kernels for QDP++ expressions?
— Compile time: e.g. source to source transformation
* must deal with QDP++ types, expressions
e but must retain full C++ compatibility
* not easy, maybe doable with a framework like ROSE?
— Alternative: Generate kernels ‘just-in-time’ (JIT)

e The use of expression templates can help

Thomas Jefferson National Accelerator Facili
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JIT + Expression templates

e QDPExpr is a C++ Type // QDP++ code

LatticeFermion x, Vy;
Real a=Real(1);
gaussian(x);

y t= a * x;

— recursive

— compile time type signature

— run time parameter binding % i

|

e First instantiation: I

Reference<>

— Code Generation for signature

Reference<>

~

— Just-In-Time Compilation OpAddAssign | | QDPExpr<OpMultiply,... >
— Dynamic Library of kernels
e Data movement \ \ /
evaluate ( )
o eXpliCit V.S. aUtomated : I/Gg'uizikll?e)rnel = lookupKernel (hash);

// Generate if needed

if( !kernel ) generate(kernel, hash);

(*KFunc) (...); // Invoke
}

Thomas Jefferson National Accelerator Facility

..!effergon Lab
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Current Progress

 Two independent efforts have sprung up
— Frank Winter (U. of Edinburgh), Jie Chen (Jefferson Lab)
e Code Generation triggered by the QDP++ evaluate() functions
e Just In Time compilation: use ‘system()’ call to invoke nvcc
* Loading Resulting Kernels
— generate .0 file, use system dynamic loader interface or
— generate PTX, load with CUDA driver API
 Data Movement:
— push() pop() interface to push/pop data onto/off device
— automatic management of data movement (sfw. cache)

* Beginning collaboration to join the two efforts

Thomas Jefferson National Accelerator Facili
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Re-Engineering QDP++

. Jacobi smearing e Chroma Jacobi
— cru Smearing Interface
—  GTX480 .

Jol| — CPUDP | accelerated. (F. Winter)
— GTX480 DP

template<typename T>

void jacobiSmear (const multild<

15 1 LatticeColorMatrix>& u, T& chi,

const Real& kappa, int iter, int
no_smear_dir, const Real& _norm)

T

{
T psi;
10 E Real norm;
T s_O0,h_smear;

GFLOPS

T

psi.pushToDevice();
5l i for(int mu = 0; mu < Nd; ++mu )
u[mu] . pushToDevice() ;

chi.pushToDevice() ;

0 ‘ ‘ ‘ ‘ h_smear.pushToDevice() ;

5 10 15 20 25 30 35 s_0.pushToDevice();
L,/a

s_0 = chi;

[http://github.com/fwinter/qdpj for(in n = 0 m < iver; vm

nai = chi -

see Parallel Talk by F. Winter at Lattice’ll

Thomas Jefferson National Accelerator Facili
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https://github.com/fwinter/qdp
https://github.com/fwinter/qdp

Re-engineering QDP++

e QOur (1deal) wish list for the overall system
— ‘syntax compatible’ with current QDP++, no change to Chroma
— Multi-GPU / host, Multi-host
— Generalize to also produce CPU code
e same framework for CPU & GPU
— Code transformation and auto-tuning of generated code
— Configurable Data layout if possible.
— Automated memory management (e.g. host/device traffic?)
— Compilation via ‘system()’ 1s hacky
e JIT via LLVM to PTX/binary?
e or go back to compile time source transformation: ROSE?

e We’ll need help from Tools/Performance/DSL community.
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Optimizaton Opportunities

QDP++ Code:

z = a*x + y;
zn = norm2(z);
y += b*z;

Thomas Jefferson National Accelerator Facili )
.{effer?on Lab o @ €JSA
Tuesday, July 5, 2011




QDP++ Code:

z = a*x + y;

Optimizaton Opportunities

JIT-ed (Pseudo) Code:

naive, untuned

// z= a*x + vy
#pragma unroll,vectorize
forall(i=0;...) {

z[1] = a*x[i] + y[i];

}

// zn = norm2(z)
#pragma unroll,vectorize

zn = norm2(z);—> forall reduce(zn=0,1i=0;...) {

y += b*z;

.{effergon Lab

zn += z[i]*z[1i];

}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) {
y[i] += b*z[1i];
}

Thomas Jefferson National Accelerator Facility

@&

JSA

Tuesday, July 5, 2011



Optimizaton Opportunities

QDP++ Code: JIT-ed (PSGHdO) Code: Autotuned (Pseudo) Code:

naive, untuned unrolled, vectorized
Vector vzn = bcast vec(0);
// z= a*x + vy Vector va = bcast vec(a);
#pragma unroll,vectorize Vector vb = bcast vec(b);
forall(i=0;...) {
z[i] = a*x[i] + y[i]; #pragma omp for reduction(+:vzn)
} for(i=0;...;i+=veclen*UNROLL) {

Vector vz;
Vector vx = load vec(&x[1]);

// zn = norm2(z) ,
Vector vy = load vec(&y[1]);

z = a*x + y; #pragma unroll,vectorize
zn = norm2(z);—> forall reduce(zn=0,i=0;...) { —> vz = vec add(v
y += b*z; zn += z[i]*z[1i]; - Y

vec _mul(va,vx));
} vzn = vec_add(vzn,

vec_mul(vz,vz));
/]y + = b*z vy = vec_add(vy,

#pragma unroll,vectorize vec_mul(b,vz);
forall(i=0; ...) {

y[i] += b*z[i]; vec store(&z[i], vz);
} vec_store(&y[i], Vy);

// UNROLL times
}

zn = vec_sum(vzn)
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Optimizaton Opportunities

QDP++ Code:

z = a*x + y;
zn = norm2(z);—>
y += b*z;

JIT-ed (Pseudo) Code:

naive, untuned

// z= a*x + vy
#pragma unroll,vectorize
forall(i=0;...) {

z[1] = a*x[i] + y[i];

}

// zn = norm2(z)

#pragma unroll,vectorize

forall reduce(zn=0,i=0;...)
zn += z[i]*z[1];

}

// y + = b*z
#pragma unroll,vectorize
forall(i=0; ...) {
y[i] += b*z[1i];
}

Similar, but more elaborate idea for GPUs

.{effergon Lab
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Autotuned (Pseudo) Code:

unrolled, vectorized

Vector vzn = bcast vec(0);
Vector va = bcast vec(a);
Vector vb = bcast vec(b);

#pragma omp for reduction(+:vzn)
for(i=0;...;i+=veclen*UNROLL) {
Vector vz;
Vector vx = load vec(&x[1]);
Vector vy = load vec(&y[i]);

vz = vec_add(vy,
vec _mul(va,vx));
vzn = vec_add(vzn,
vec_mul(vz,vz));
vy = vec_add(vy,
vec_mul(b,vz);

vec_ store(&z[i], vz);
vec store(&y[i], Vy);

// UNROLL times
}

zn = vec_sum(vzn)
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Future Hardware

e NVIDIA
— next: Kepler GPU, rumored to be 3-4x Fermi FLOPS/Watt
— after: Maxwell GPU
e Intel MIC architecture
— Knights Corner announced at ISC’11: >50 cores
— Current: Knights Ferry Software Development Platform
e 7 Demos at ISC’11

— x86 compatible cores, 512 bit vector unit
e AMD

— Next gen. GPU architecture (GCN). More SIMD, less VLIW
— AMD Fusion: GPU + CPU = APU (Accelerated Processing Unit)

— Announced next generation Fusion System Architecture (FSA)
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Remember CPUs?

GPUs are great, but CPUs still exist... (and improve)
New #1 on Top 500 is SPARC based K-computer (http://top500.0rg).

— ~8.2 (HPL) PFlops, ~9.9 MW => ~1.2 kW/(HPL) TFlop
CPU trends:

— IMOore COores

— shared caches

— Longer vectors (AVX: 256 bit= 8 SP/ 4 DP)

— More H/W threads (Intel Nehalem/Westmere: 2, Power7: 4)
CPU Based Capability Systems are still with us (or coming soon)
— Cray XT/XE,

— BlueWaters,

— BlueGene
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Conclusions
e GPUs are extremely useful for LQCD Calculations

— especially for capacity workloads

— already producing useful physics (e.g. spectrum of hadrons)

e Successfully scaled DD+GCR solver to 256 GPUs (114,688 cores?)
— Need more research on ‘architecture aware’ algorithms
* RAS DD preconditioned GCR reduces communications
e 17 Tflops on 256 GPUs is only the beginning
e large algorithmic space to explore

— Technology also improves
e direct GPU to GPU transfers
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Conclusions (cont’d)

* Need to move more code to the accelerator
— Counteract Amdahl’s Law: in gauge generation AND analysis
— Porting the framework level (QDP++) would be most useful
— BUT want system to work on CPU as well (portable performance)
— QDP++ Challenges
e Expressions => Kernel Generation, Data Movement
 First steps: efforts by Frank Winter, Jie Chen -> Collaboration
— Alot of work: plenty more scope for collaboration
* Heterogeneity 1s now mainstream
— many (sufficiently different) options (NVIDIA, AMD, soon Intel)
— logical to expect CPU+GPU integration in future...
e CPUs, we still love you too!
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Hybrid Monte Carlo

Accept/Reject  Accept Update

P dated link fest By
ropose updated links e e
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[T 4] > [ el 1_': ?
hd % AdEE \ EERPN
Ralais
Reject Update
ical coordinates: U i ’ :
lEaflolrtl.lcla S0 Update.:d links U Metropolis
otential: o : )
Hamiltonian Potential: 5(U°) Acceptance
Test:
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Capacity v.s. Capability

* Gauge Generation:
— ~5000-10,000 MC Updates, use ~500-1000 configs for analysis
— ~600-1000 solves per MC Update -> 3M - 10 M solves
— MC Update process 1s sequential
— Capability level computing is needed for timely progress
e Stage 1 Analysis:
— Distillation Technique: current ‘small’ dataset 31M solves
— Putative 323x256 dataset (300 cfgs, 192 ev/cfg): 118M solves
— As much as 10x more solves than gauge generation
— BUT
» Task parallel, and batches of solves use the same config

e worth computing costly preconditioner. or deflation space
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Multi-Shift Solvers:

e Multi-Shift Solvers used to evaluate rational approximations in

partial fraction form:

-1

R(z) o= A Zp,- (;‘\[TJ\[ + q,-) o)

e Multi-Shift Systems typically use:

— Single Krylov Process for all Shifts

— Initial guesses for all shifts must be parallel (usually 0)

— This 1s a difficulty for Inner/Outer/Restarted Schemes
e Use Polynomial Approximation (don’t use shifted solver)
e Use Single Mass Solver separately for each shift

— All single mass accelerations + intelligent guesses for solutions
of the shifted systems

— Alexandru reports > 2x speedup on GPUs (arXiv:1103.5103)
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What Else Do We Need?

e For Basic Gauge Generation one also needs
— Gauge and Fermion Actions, MD Forces on the GPU
— Link Smearing (e.g. Stout/HEX/etc) on the GPU
e SU(3)xSU(3) matrix multiplication routines

e Nearest and Next to Nearest Neighbor access

e Non-solver work can take between ~5-35% of runtime on CPU
— Depending on your situation Amdahl’s law may/may not bite.
e Progress from several groups:
— Gauge Action + Link Fattening used by MILC in QUDA
— BMW Group has full HMC implementation on GPU
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