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Outline 
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 Multigrid Software Design and Development (hypre) 

 

 AMG for Electromagnetic Problems 

 Adaptive AMG 
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The scalable solution of linear systems is crucial in many 

large-scale simulations 

 The solution of linear systems is at the core of many 

scientific simulation codes 

 

 

 

 

 

 High fidelity requires huge linear systems and large-

scale (e.g., petascale) computing 

 We are developing parallel multigrid linear solvers and 

software (hypre), driven by applications 

 

Magnetohydrodynamics Electromagnetics Elasticity / Plasticity Quantum Chromodynamics 
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Multigrid linear solvers are optimal (O(N) operations), 

and hence have good scaling potential 

 

 

 

 

 

 

 

 

 

 Weak scaling – want constant solution time as problem 
size grows in proportion to the number of processors 
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Multigrid  uses a sequence of coarse grids to 

accelerate the fine grid solution 

Error on the fine grid 

Error approximated on 

a smaller coarse grid 

restriction 

prolongation 

(interpolation) 

The Multigrid 

V-cycle 

smoothing 

(relaxation) 
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The basic multigrid research challenge 

 Optimal O(N) multigrid methods don‟t exist for some 
applications, even in serial 

 Need to invent methods for these applications 

 

 However … 

 

 Some of the classical and most proven techniques used in 
multigrid methods don‟t parallelize 
• Gauss-Seidel smoothers are inherently sequential 

• W-cycles have poor parallel scaling 

 Parallel computing imposes additional restrictions on 
multigrid algorithmic development 

 

 Tomorrow‟s exascale computers with huge core counts and 
small memories just magnifies the challenge 
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Parallel Multigrid 
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Approach for parallelizing multigrid is straightforward 

data decomposition 

 

 

 

 

 

 

 

 

 Basic communication pattern is “nearest neighbor” 
• Relaxation, interpolation, & Galerkin not hard to implement 

 Different neighbor processors on coarse grids 

 Many idle processors on coarse grids (100K+ on BG/L) 
• Algorithms to take advantage have had limited success 

 

 

Level  1 

    

    

Level  2 

    

    

Level  L 
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Straightforward parallelization approach is optimal for 

V-cycles on structured grids (5-pt Laplacian example) 

 Standard communication / computation models 

 

 

 

 Time to do relaxation 

 

 

 Time to do relaxation in a V(1,0) multigrid cycle 

 

 

 

 For achieving optimality in general, the log term is unavoidable! 

 

 More precise:  

(communicate m doubles) 

(compute m flops) 

nn grids 
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Additional comments on parallel multigrid 

 W-cycles scale poorly: 

 

 
 Lexicographical Gauss-Seidel is too sequential 

• Use red/black or multi-color GS 
• Use weighted Jacobi, hybrid Jacobi/GS, L1 
• Use C-F relaxation (Jacobi on C-pts then F-pts) 
• Use Polynomial smoothers 

 Parallel smoothers are often less effective 

 

 Recent survey on parallel multigrid: 
• “A Survey of Parallelization Techniques for Multigrid Solvers,” Chow, Falgout, Hu, Tuminaro, and 

Yang, Parallel Processing For Scientific Computing, Heroux, Raghavan, and Simon, editors, 
SIAM, series on Software, Environments, and Tools (2006) 

 Recent paper on parallel smoothers: 
• “Multigrid Smoothers for Ultra-Parallel Computing,” Baker, Falgout, Kolev, and Yang, SIAM J. Sci. 

Comput., to appear. 

 

C-pts F-pts 



11 

Lawrence Livermore National Laboratory 

Example weak scaling results on Dawn (an IBM BG/P 

system at LLNL) in 2011 

 

 

 

 

 

 

 

 

 

 

 

 Laplacian on a cube; 403 = 64K grid per processor; largest had 8 billion unknowns 

 PFMG is a semicoarsening multigrid solver in hypre 

 Constant-coefficient version - 1 trillion unknowns on 131K cores in 83 seconds 

 Still room to improve setup implementation (these results already employ the 

assumed partition algorithm described later) 
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Parallel Algebraic Multigrid (AMG) 
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Algebraic Multigrid (AMG) is based on MG principles, but uses 

matrix coefficients 

 Many algorithms (AMG alphabet soup) 

 Automatically coarsens “grids” 

 

 Error left by pointwise relaxation is  
called algebraically smooth error 

• Not always geometrically smooth 

 

 Weak approximation property: interpolation must 
interpolate small eigenmodes well 

 

 

 Near null-space is important! 
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Error left by relaxation can be geometrically oscillatory 

 7 GS sweeps on 

 

 

 

 

 

 This example… 

• targets geometric smoothness 

• uses pointwise smoothers 

 Not sufficient for some problems! 

 

a = b a » b 

AMG coarsens grids in the 

direction of geometric smoothness 
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AMG grid hierarchies for several 2D problems 

domain1 - 30º domain2 - 30º pile square-hole 
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Parallel Coarsening Algorithms 

 AMG coarsening algorithm is inherently sequential 

 

 Several parallel algorithms (in hypre): 
• CLJP (Cleary-Luby-Jones-Plassmann) – one-pass approach with 

random numbers to get concurrency 

• Falgout – C-AMG on processor interior, then CLJP to finish 

• PMIS – CLJP without the „C‟; parallel version of C-AMG first pass 

• HMIS – C-AMG on processor interior, then PMIS to finish 

• CGC (Griebel, Metsch, Schweitzer) – compute several coarse grids on 

each processor, then solve a global graph problem to select the grids 

with the best “fit” 

• … 

 Other parallel AMG codes use similar approaches 
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Parallel coarse-grid selection in AMG can produce unwanted 

side effects 

 Non-uniform grids can lead to increased operator 
complexity and poor convergence 

 Operator “stencil growth” reduces parallel efficiency 

 

 

 

 

 

 

 Currently no guaranteed ways to control complexity 

 Can ameliorate with more aggressive coarsening 

 Requires long-range interpolation approaches 
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New parallel coarsening and long-range interpolation 

methods are improving scalability 

 Unstructured 3D problem with material discontinuities 

 About 90K unknowns per processor on MCR (Linux cluster) 

 AMG - GMRES(10) 
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Parallel AMG in hypre now scales to 130K processors 

on BG/L … and beyond 

 

 

 

 

 

 

 

 

 

 

 Largest problem above: 2B unknowns 

 Largest problem to date: 26B unknowns on 98K processors of BG/L 

 Most processors to date: 16B unknowns on 196K cores of Jaguar  

(Cray XT5 at ORNL) 
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We analyzed the scalability of several smoothers 

based on a two-grid multigrid theory 

 For a given set of coarse variables, let P be the 
prolongation that optimizes convergence, then 

 

 

 In the classical AMG setting, P is “ideal interpolation” 

 

 

 In the classical setting of smoothing factor analysis,  
P consists of the smallest eigenvectors of A 

 

 

 We analyzed K


 for various smoothers 

 

- 
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Hybrid Gauss-Seidel smoother is the default smoother 

in BoomerAMG and scales better than expected 

 Block Jacobi 

𝐼 − 𝑀𝐻
−1 𝐴;  𝑀𝐻 = 𝑑𝑖𝑎𝑔 𝐴𝑘𝑘  

 

 Hybrid GS – GS on each processor, Jacobi on 
processor boundaries (inexact block Jacobi) 
• Default smoother used in hypre‟s BoomerAMG 

 

𝐼 − 𝑀𝐻𝐺𝑆
−1  𝐴;  𝑀𝐻𝐺𝑆 = 𝑑𝑖𝑎𝑔 𝐷𝑘𝑘 + 𝐿𝑘𝑘  

 

 As number of cores increases, block Jacobi 
convergence approaches that of point Jacobi 

 For “large enough” blocks, block Jacobi 
smoothing does not approach point Jacobi 

 

 Hybrid GS is a better smoother than block Jacobi 

 More local work may not be beneficial! 

 

A = 

MH = 
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Multigrid Software 

2007 Winner! 
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Simulation codes present a wide array of challenges for 

scalable linear solver libraries 

 Different applications 
• Diffusion, elasticity, magnetohydrodynamics (MHD) 

 Different discretizations and meshes 
• Structured, block-structured, structured AMR,  

overset, unstructured 

 

 

 

 

 Different languages – C, C++, Fortran 

 Different programming models – MPI, OpenMP 

 Scalability beyond 100,000 processors! 
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Unique software interfaces in hypre provide efficient solvers 

not available elsewhere 

 

 

 

 

 

 

 

 

 Example: hypre‟s interface for semi-structured grids 

• Based on “grids” and either “stencils” or “finite elements” (new) 

• Allows for specialized solvers for structured AMR 

• Also provides for more general solvers like AMG 

 

Data Layouts 

structured composite block-struc unstruc CSR 

Linear Solvers 

PFMG, ... FAC, ... Split, ... MLI, ... AMG, ... 

Linear System Interfaces 

Block-structured grid with 3 variable 

types and 3 discretization stencils 



25 

Lawrence Livermore National Laboratory 

Assumed partition (AP) algorithm enables scaling to 100K+ 

processors 

 Answering global distribution questions previously required O(P) 

storage & computations 

 On BG/L, O(P) storage may not be possible 

 

 New algorithm requires 

• O(1) storage 

• O(log P) computations 

 Now available in hypre 

 

 

 AP has general applicability  

beyond hypre 

Data owned by processor 3, 

in 4‟s assumed partition 

Actual partition 

1 2 4 3 

1 N 

Assumed partition ( p = (iP)/N ) 

1 2 3 4 

Actual partition info is sent to the assumed 

partition processors  distributed directory 
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Assumed partition (AP) algorithm is more challenging for 

structured AMR grids 

 AMR can produce grids with “gaps” 

 Our AP function accounts for these  

gaps for scalability 

 Demonstrated on 32K procs of BG/L 

 

Simple, naïve AP function leaves 

processors with empty partitions 
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Currently, hypre supports four system interfaces 

 Structured-Grid (Struct) 

• logically rectangular grids 

 

 Semi-Structured-Grid (SStruct) 

• grids that are mostly structured 

 

 Finite Element (FEI) 

• unstructured grids with finite elements 

 

 Linear-Algebraic (IJ) 

• general sparse linear systems 
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Current solver / preconditioner availability via hypre‘s 

system interfaces 

Solvers Struct SStruct FEI IJ

Jacobi P P

SMG P P

PFMG P P

Split P

SysPFMG P

FAC P

Maxwell P

AMS P P P

BoomerAMG P P P

MLI P P P

ParaSails P P P

Euclid P P P

PILUT P P P

PCG P P P P

GMRES P P P P

BiCGSTAB P P P P

Hybrid P P P P

System Interfaces

Structured 

Semi-structured 

Sparse matrix 

Matrix free 

Data Layouts 
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Getting the code 

 To get the code, go to 

 

 

 User‟s / Reference Manuals can be downloaded directly 

 A short form must be filled out (this is just for our own records) 

 

 

 To report bugs, request features, or ask general usage questions, 

send email to 

 

 

 We use a tool called Roundup to automatically tag and track issues 

http://www.llnl.gov/CASC/hypre/ 

hypre-support@llnl.gov 



30 

Lawrence Livermore National Laboratory 

AMG for Electromagnetic Problems 
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Electromagnetic (EM) problems have huge oscillatory near null 

spaces 

 Definite Maxwell, Indefinite Maxwell, Helmholtz 

 Require specialized smoothers and coarse grids 

 

 

 

 

 Definite Maxwell, Nédélec edge FEM discretization 

 

 Near null-space characterized by gradients 

 

Local: specialized relaxation 

(Definite / Indefinite Maxwell) 

Global: specialized coarse grids 

(Helmholtz, Indefinite Maxwell) 
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Geometric multigrid for definite Maxwell 

 Helmholtz decomposition 

 

 

 Smooth both components (Hiptmair, SINUM 1998) 

 

 

 

 Block smoother (Arnold, Falk, Winther, Num. Math. 2000) 

 Natural FE interpolation 

 Difficulties extending to 
• unstructured meshes 

• variable coefficients 

 

curl-free divergence-free 

Point smoother for Point smoother for 

Discrete Gradient 

de Rham 

Sequences 

(edge, Nédélec) (nodal) 
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Auxiliary-space Maxwell solver (AMS) utilizes a new 

decomposition 

 Based on Hiptmair, Xu (2006) 

 

 

 Define preconditioner based on nodal solvers 

 

 

 

 

 

 User provides A, Gh and vertex coordinates 

 Fast computation of  h (~ 3 mat-vec multiplies) 

 AMS is a variational form of Hiptmair-Xu 

Point smoother for AMG solver for AMG solver for 
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Auxiliary-space Maxwell Solver (AMS) is improving 

solve times by up to 25x for some EM problems 

 Hiptmair-Xu / AMS are the 
first provably scalable solvers 
for EM on unstructured grids 

 

 Employs BoomerAMG 

 

 Highly robust 

• Materials with widely varying 
electromagnetic properties 

• Unstructured grids 

 

 Example: 1.2B unknowns on 
1.9K processors took 355s 
(23 iterations) 



35 

Lawrence Livermore National Laboratory 

Adaptive AMG 
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Adaptive AMG is well-suited for QCD 

 Quantum Chromodynamics (QCD) is the theory of strong 
forces in the Standard Model of particle physics  

 

 Scalable solvers for the Dirac equations  
have been elusive until recently 

 

 Challenges: 
• The system is complex and indefinite 

• The system can be extremely ill-conditioned 

• Near null space is unknown and oscillatory! 
 
 
 
 
 

Real part Imaginary part 
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Adaptive AMG idea: use the method to improve the 

method 

 Requires no a-priori knowledge of the near null space 

 Idea: uncover representatives of slowly-converging 

error by applying the “current method” to Ax = 0, then 

use these to adapt (improve) the method 

 

 Achi Brandt‟s Bootstrap AMG is an adaptive method 

 PCG can be viewed as an adaptive method 

• Not optimal because it uses a global view 

• The key is to view representatives locally 

 

 We developed 2 methods: AMG and SA (SISC pubs) 
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To build effective interpolation, it is important to interpret the 

near null space in a local way 

 (2-level) Coarse-grid correction is a projection 

 

 Better to break up near null space into a local basis 

 

 

 

 

 

 

 

 Get full approximation property (low-frequency Fourier 
modes in this example) 

Deflation – not optimal Multigrid – optimal 
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Smoothed Aggregation (SA) builds interpolation by first 

chopping up a global basis, then smoothing it 

 Tentative interpolation is constructed from “aggregates” 

(local QR factorization is used to orthonormalize) 

 

 

 

 

 

 

 

 Smoothing adds basis overlap and  

improves approximation property 

= 
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Adaptive smoothed aggregation (SA) automatically builds the 

global basis for SA 

 Generate the basis one vector at a time 
• Start with relaxation on Au=0  u1  SA(u1)  

• Use SA(u1) on Au=0  u2  SA(u1,u2)  

• Etc., until we have a good method 

 

 Setup is expensive, but is amortized over many RHS‟s 

 

 Published in 2004, highlighted in SIAM Review in 2005 
• Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge, 

“Adaptive smoothed aggregation (SA),” SIAM J. Sci. Comput. (2004) 

 Successfully applied to 2D QED 
• Brannick, Brezina, Keyes, Livne, Livshits, MacLachlan, Manteuffel, 

McCormick, Ruge, and Zikatanov, “Adaptive smoothed aggregation in 
lattice QCD,” Springer (2006) 
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4D Wilson-Dirac Results: D-MG shows no critical slowing down 

(Time) 

 Parameters: N=163x32, =6.0, mcrit = -0.8049 

 D-MG Parameters: 44x3x2 blocking, 3 levels, W(2,2,4) cycle, Nv = 20, setup run at mcrit 
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Summary and Conclusions 

 Multigrid methods are optimal and have good scaling potential 

 

 Many useful tools (GS, W-cycles) cannot be used in parallel 

 

 AMG is based primarily on matrix entries 

 In practice, some additional properties of the underlying system are 
assumed (near null space) 

 

 AMG can solve a large class of problems and can scale to BG/L-class 
machines 

 Parallel computing imposes additional restrictions on MG algorithmic 
development 

 

 Getting efficient use out of multi-core architectures is challenging! 

 

 Still many outstanding research questions 
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The Scalable Linear Solvers Team 

Charles Tong Ulrike Yang Panayot Vassilevski 

Allison Baker Tzanio Kolev Rob Falgout 

Former 

• Chuck Baldwin 

• Guillermo Castilla 

• Edmond Chow 

• Andy Cleary 

• Noah Elliott 

• Van Henson 

• Ellen Hill 

• David Hysom 

• Jim Jones 

• Mike Lambert 

• Barry Lee 

• Jeff Painter 

• Tom Treadway 

• Deborah Walker 
See http://www.llnl.gov/casc/linear_solvers for 

publications, presentations, and software (hypre) 
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Thank You! 
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